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A b s t r a c t . 
We study the higher Bruhat orders B(n, k) of Manin & Schechtman [MaS] and 

- characterize them in terms of inversion sets, 
- identify them with the posets ZY(Cn+1 ' r,n+l) of uniform extensions of the alter­

nating oriented matroids Cn ' r for r := n—k (that is, with the extensions of a cyclic 
hyperplane arrangement by a new oriented pseudoplane), 

- show that B(n, k) is a lattice for k = 1 and for r < 3, but not in general, 
- show that B(n, k) is ordered by inclusion of inversion sets for k — 1 and for r < 4. 

However, 2?(8,3) is not ordered by inclusion. This implies that the partial order 
Bc (n, k) defined by inclusion of inversion sets differs from B(n, k) in general. We 
show that the proper part of Bc (n, k) is homotopy equivalent to Sr~2. Consequently, 

- £ ( n , k) ~ Sr~2 for Jfe = 1 and for r < 4. 
In contrast to this, we find that the uniform extension poset of an affine hyperplane 
arrangement is in general not graded and not a lattice even for r = 3, and that the 
proper part is not always homotopy equivalent to Sr(-M'~2. 

1. Introduction 
The higher Bruhat orders B(n,k) were introduced by Manin & Schechtman [MaS, §2] 
[MaSl]. In this paper we clarify the geometric interpretation of the higher Bruhat orders 
(as suggested by Kapranov & Voevodsky [KaV, Sect. 4]). We use the geometric picture to 
analyze the main structural properties of B(n, k), including new proofs for the results of 
Manin & Schechtman. 

We start with a review of the weak ordering of the symmetric group, see also [YaO] 
[Bjl] [BLSWZ, Sect. 2.3]. For this denote the set of integers { l , . . . , n } by [n], and the 
set of Jfc-subsets of [n] by ([f). We write U G U' if U, U' are finite sets with U C U' and 
\U'\ = \U\+1. For any collection U of finite sets, we define the partial order by single step 
inclusion on U by the condition that U < U' if and only if there exist sets Ui € S with 
U = Uo C Ü! G ... G Ut = U', where *'= \U'\ - \U\ is implied. 
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Definition 1.1. 
(i) Let A(n, 1) denote the set of permutations of the n-element set [n]. 

(ii) For every permutation p = ( p i , . . . , p„), the inversion set inv(p) := {ij : i<j, Pi>Pj} 
is a set of pairs, that is, a subset of (W). 

(iii) Define J5(n,l) := {inv(p) : p G A(n,l)}. Every permutation is determined by its 
inversion set, thus A(n, 1) is in bijection to the collection B(n, 1) of inversion sets. 

(iv) The weak Bruhat order is "the set B(n,l), partially ordered by single step inclusion. 

Some main structural properties of the weak ordering are the following: 
(1) B(n, 1) is a graded poset of length (!j), whose rank function is r(B) = \B\, 

(2) U C (M) is an inversion set, U G B(n, 1), if and only for every triple i < j < I the 
intersection U fl {ij,il,jl} is neither {il} nor {ij,jl}, [YaO, Prop. 2.2] 

(3) B(n, 1) is a lattice, [YaO, Thm. 2.1] 
(4) U < U' holds if and only if U C U', [YaO, Prop. 2.1] 
(5) the proper part of -B(n, 1) has the homotopy type of the (r — 2)-sphere. [Bjl] 

Furthermore, B(n, 1) has various geometric interpretations. For example, it is the 
"poset of regions" of the Coxeter arrangement A„_i, which is the arrangement of all hy­
perplanes spanned by n vectors in general position in I R n - 1 . This also suggests far-reaching 
generalizations of the weak order, to the posets of regions of arbitrary arrangements. The 
analogues of (1), (4) and (5) are still true in this context [Edl] [EdW]. If the arrangement 
is simplicial, then the poset of regions is a lattice, but not in general [BEZ]. If the poset is 
a lattice, then an analogue of (2) holds, see [BEZ]. 

We will now generalize the construction of the weak orders B(n, 1) to give a definition 
of the higher Bruhat orders of Manin & Schechtman. The equivalence of our version of 
B(n, k) with the original definition is non-trivial; it will be demonstrated in Corollaries 
2.3 and 4.2. Define a k-packet as the set P ( I ) := {J G (}y) : J G 1 } of all fc-subsets of a 
(&+l)-set I = {ii < %i < ... < ifc+i} G (fc+i)- In the lexicographic order the elements of 
P(I) are J\ijfc+i < I\ik <..< I\h. 

Definition 1.2. 
(i) A permutation p of ( ^ ) is admissible if every fc-packet P(I) occurs in it either in 

lexicographic order or in reversed lexicographic order. Let A(n, k) denote the set of 
all admissible permutations of ( ^ ) . 

(ii) For each p G A(n, k) the inversion set inv(p) C (jf?^) *s the set of packets that appear 
in reversed lexicographic order in p. 

(iii) The set B(n,k) is defined as the collection of all inversion sets B(n,k) := {inv(p) : 
/>GA(n,fc)}. 

(iv) The higher Bruhat order B(n, k) is the partial order on B(n, k) given by single step 
inclusion. 

In this paper, we will treat the questions for higher Bruhat orders that correspond 
to the five structural features of the weak order listed above. In the course of our work, 
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we will also show that our definition is equivalent to the original one given by Manin & 
Schechtman [MaS]. Specifically we prove the following results, where r := n — k. 
(1) B{n, k) is a graded poset of length (£), whose rank function is r(B) = | S | , [MaS, §2 

Thm. 3b]. (Theorem 4.1(G)) 
(2) U C ( jMj is an inversion set, U € B(n, k), if and only for every K 6 ($2) and 

for {i < j < 1} C K, the intersection U D {K\l, K\j,K\i} is neither {K\j} nor 
{K\l, K\i}. (Theorem 4.1(B)) 

(3) B(n, 1) is a lattice for k = 1 and for r < 3, but not in general. (Theorem 4.4) 
(4) U < U' holds if and only if U C U', provided that Ar = 1 or r < 4, but not in general. 

(Theorem 4.5) 
This last fact shows that the (simpler) partial order Bc (n, k) on the set B(n, k) defined 

by inclusion does not in general coincide with the partial order by single step inclusion 
defined by Manin & Schechtman. However, the combinatorics of B(n, k) is intimately 
related to that of Bc(n, k), so all main results on B(n, k) have counterparts for Bc(n, k), 
see Theorem 5.1. The partial order of Bc(n, k) is easier to study, however. We prove the 
following result, which applies to B(n, k) whenever Bc(n, k) — B(n, k): 
(5) the proper part of J3c(n, k) has the homotopy type of S^r~2\ (Theorem 5.2) 

The key to our development is the interpretation of B(n, k) and of Bc (n, k) as "posets 
of oriented matroid extensions" of a cyclic configuration of n vectors in IR r by a new ele­
ment. Choosing a particular vector representation, B(n, k) includes elements that corre­
spond to the regions of the "adjoint" arrangement of hyperplanes spanned by the vectors, 
plus in general many more extensions that correspond to other extensions, realizable or 
not. We refer to [BLSWZ, Sect. 5.3] for the fact that the regions of the adjoint arrangement 
correspond to only a part of the realizable single element extensions of the correspond­
ing oriented matroid. In this paper, we will treat oriented matroids as arrangements of 
pseudo-hyperplanes. So we get the interpretation of B(n, k) as the poset of extensions of 
the cyclic hyperplane arrangement X.">n~k~1 by a new pseudo-hyperplane. 

This paper is organized as follows. In Section 2 we collect elementary facts about 
admissible orderings and show that their inversion sets are "consistent", while in Section 
3 we discuss affine hyperplane arrangements and show that for "cyclic" arrangements the 
extensions by a new pseudohyperplane correspond to consistent sets. In Theorem 4.1, 
this is used for a geometric characterization of the sets A(n, k) and the higher Bruhat 
orders B(n, k). From this, we get in Section 4 structural information about the posets 
B(n, k), whose homotopy types are determined in Section 5. The geometric interpretation 
of B(n, k) also suggests a generalization: one can consider the poset of all extensions of any 
affine arrangement in general position by a new pseudo-hyperplane. This poset, however, 
does not retain any of the above structural features, see Section 6. Enumerative results 
are collected in Section 7. 
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2. Admissible Orders and Consistent Sets 

We will now review the original construction of the set B(n, k) by Manin & Schechtman. 

Definition 2.1. [MaS, Def. 2.2] 
(i) A permutation of ( ^ ) is admissible if its restriction to each A;-packet I G (k+i) IS 

either the lexicographic order or the reversed lexicographic order. A(n, k) is defined 
as the set of all admissible orders on ( '^) . 

(ii) Two permutations p, p' G A(n, k) are elementarily equivalent (p ~ p') if they differ by 
an interchange of two neighbors not contained in a common packet. Let B(n, k) be 
the quotient by the induced equivalence relation and A(n, k) —>• B(n, k), p i-> [p] the 
quotient map. 

(iii) For each p G A(n, k) the inversion set 'mv(p) is the set of packets that appear in 
reversed lexicographic order in p. Here p ~ p' implies inv(p) = inv(/>'), so the inversion 
set inv[/?] := inv(/>) is well-defined for [p] G B(n, k). 

We will view permutations of (^') as linear orders on the set ( ^ ) . For [p] G B(n,k) 
let Q[p] be the intersection of the linear orders in [/?], that is, the partial order on ( ^ ) 
defined by I' < I if and only if I' <T I for all r G [p]. Similarly, let Q'[p] be the intersection 
of all admissible orders r with inv(r) = 'mv(p). 

Lemma 2.2. The following four sets coincide: 

A\: [p], the set of linear orders of ( ^ ) equivalent to p, 

A2: the linear extensions of Q[p], 
A3: the admissible orders of (^') with inversion set inv(p), 

A4: the linear extensions of Q'[p\. 

Proof. Every r that is equivalent to p is admissible with inversion set inv(p), and thus 
it is also a linear extension of Q'[p\. Now we use that any two linear extensions of a 
poset Q' can be connected by a sequence of transpositions of adjacent elements that are 
incomparable in Q'. Furthermore, if J, J G ( ^ ) are incomparable in Q'[p], then they are 
not contained in a common fc-packet. Thus every linear extension of Q'[p] is in [p], 

With this we have shown that A\ = A3 = A4. But the equality of the first and the 
third set also implies Q[p] = Q'[p], that is, A\ = A3 implies A2 — A4. D 

Corollary 2.3. [MaS, §2 Thm. 3d] Every [p] e B(n, k) is uniquely determined by its 
inversion set inv(/>). 

In particular we get from this corollary that our Definition 1.2(iii) of the set B(n, k) 
is equivalent to that of Definition 2.1(ii) due to Manin & Schechtman. Our goal is 
now to characterize inversion sets. For this we consider any (fc+l)-packet P(I), with 
I — {h < h < • • • < ü+2}5 in its lexicographic order. Thus a beginning segment is of 
the form {I\ik+i,I\ik, • • •,I\ij} for some j . An ending segment of P(K) is of the form 

4 



{A*i> A l ' j-i> • • • > A*i} f° r s o m e i- The subsets 0 and P(J ) are considered both as begin­
ning and as ending segments of P(I). We get the following lemma, which identifies the 
characterizing property of inversion sets. Its converse will be proved in Theorem 4.1(B). 

Lemma 2.4. Every inversion set U € B(n, k) satisfies the following equivalent conditions: 

(1) U and its complement are both convex: if {ji<j2<jz} Q K for some K e (1%), then 
the intersection.of'U.with .{K\j3,K\j2,-K\ji} is neither {K\j3,K\ji} nor {K\j2}, 

(2) U is consistent, that is, the intersection ofU with any (k+l)-packet is a beginning or 
an ending segment of it. 

Proof. The condition (2) that U fl P(I) is either a beginning or a final segment of P(I) 
means the following: if we consider the fc+1-packet in its lexicographic order I\ik+2 < 
Ü+1 < . . . < i i , then there is at most one switch between elements of U and between 
non-elements of U. This yields (2) •£=>• (1). 

Now assume that p € A(n, k) is an admissible order on ( ^ ), and let {ji<J2<J3} Q K 
for some K € Q%). Now if 

K\j3 € inv(p), K\j2 i inv(/o), K\j\ € inv(p). 

then this implies 

K\{h,ji} >P K\{j3,j2}, K\{j2,j3} <p K\{J2,h}, K\{juj2} > p K\{juj3}, 

which yields a contradiction. An analogous contradiction arises if we find {i i<i2<j3} with 
K\j3 £ inv(/>), K\J2 € inv(p), K\j\ £ inv(p). Thus inv(p) satisfies (2). D 

Let U C ( ^ j ) be a consistent set. Then the complement U := (fc+i) of U is con­
sistent as well. Define the boundary of U by dU := {/={i i< . . . <ijfc+i} G (fc"2) : A*1 ^ 
U, I\ik+2 € U). Similarly, let U*{n+1} := {KU{n+l} : K € U}, and define the extension 

Ü C (Ij+J) of U as Ü := *7*{n+l} U d*7. 
The following two lemmas contain the key to an inductive treatment of consistent sets. 

Their geometric significance will become clear in Section 3. In fact, both the statements 
and the arguments in the proofs can be identified in Figure 1. 

Lemma 2.5. Let U' be a consistent subset of ('"'), and let U" be a consistent subset 

of (,W). Then U := U" U U'*{n+1} C (I^+Jl) is consistent if and only if dU' C U" and 

dTFcV". 

Proof. Let K 6 ([?+2
1]). If n+1 £ ÜT, then P(K) HU = P(K) D *7" is a beginning or 

ending subset of P(K), because U" is consistent. 
If K = {z'i < . . . < i/+i < n+1}, we let I := K\n+l and get 

P(K) = { / < 2 f V , + 1 < . . . < J f \ « i } , P( / ) = { A * i + i < . . . < A * i } -
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Now if U' n P(I) is a beginning, but not an ending subset of P(I), so that i" G dU', then 
U n P(K) cannot be an ending subset of P{K), so consistency if U implies I eU". From 
this we get the requirement that dU' C U". 

Similarly, if U'f]P(I) is an ending, but not a beginning subset of P(I), so that I € dU', 
then Uf)P(K) cannot be a beginning subset of P{K), so consistency of U implies I £U". 
From this we get the requirement that dU' Q U". 

If U'CiP(I) is both a beginning and an ending segment of P(I), then either P(I) C U', 
so that U n P(K) automatically is an ending segment of P(K), or P(I) n V = 0, so that 
U 0 P(K) automatically is a beginning segment of P(K). From this we get that the two 
conditions of the lemma are also sufficient for consistency of U. LJ 

Lemma 2.6. Let U C (M) be a consistent set. Then 

(i) the boundary dU ofU is a consistent subset of (}"\), 

(ii) the extension UofU is a consistent subset of ( j+i )> 

(iii) U is also a consistent subset of ( " ] " ) • 

Proof, (i) Choose K = {h < ... < il+2} G (/"]
2). We have to show that dU D P(K) is a 

beginning or ending segment of P{K). 
As the first case assume that üf\{zi,ij+2} £ J7. This implies that K\ii+2 £ dU. If 

K\{h,i2} € Ö", then this implies P(Ä"\*i) C C7 and thus dU n P(Jf) = 0. Otherwise we 
get the existence of values s,t, with 3 < s < /+2, 1 < t < /+1 with 
P(K\h) f\U = {K\{ii ,ij}:s<j<l + 2}, 
P(K\il+2) C\U = {K\{il+2, ij] : 1 < j < t}. 
From this we can compute 
dU D P(K) .= {{ÜCVJ : 1 < j < min(5 - l , i ) } , 
which is a beginning segment of P(K). 

As the second case now assume that K\{ii,ii+2} £ U. This implies that K\ii £ 
dU. If K\{il+1,il+2} <£ U, then this implies P(K\il+2) C Ü and thus dU n P(K) = 
0. Otherwise we get the existence of values s,i, with 2 < s < 1+2, 1 < t < I with 
P(^V0nt7 = {Min ,^} : 2 < j < a}, 
P(K\il+2) nU = {K\{ii+2,ij} :t<j< 1+1}. 
From this we can compute 
dU n P(K) = {{K\ij : max(s,i + 1) < j < 1+2}, 
which is a beginning segment of P(K). 

(ii) Here dU' is consistent by part (i), hence we can apply Lemma 2.5 for U" = dU': 
we also have dU' C U", because dU' and dU' are disjoint by definition, (iii) This is also 
a special case of Lemma 2.5: for U' = 0 we get also have dU' = dW7 = 0, so U = U' is also 
a consistent subset of ( ^1^) . D 
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3. Cyclic Arrangements 

Consider any arrangement X = {Hi,..., Hn} of n affine hyperplanes in general position 
m JRd. Then every vertex is determined as the intersection of d hyperplanes. Associating 
the vertex with the set oin—d hyperplanes that do not pass through it, we get a bijection 
V = V(X) <—• (n-d) D e t w e e n the vertices of X and the (n—d)-subsets of [n]. Similarly, 
every 1-dimensional line in X is the intersection of d—1 of the hyperplanes. Associating 
every line with the n—d—1 hyperplanes that do not contain it, we get a bijection between 
the lines of X and the (n—d+l)-sets in [n]. Furthermore, under these bijections the vertices 
on a line of X correspond to the (n—rf)-sets in the corresponding (n—d+l)-set, i.e., the 
vertices on a line correspond to an (n—d)-packet. 

The key observation is now that if X is the cyclic arrangement of n hyperplanes in 
IR n - *, then the vertices on a line correspond to a fc-packet in lexicographic order. 

Definition 3.1. The cyclic arrangement X"'d is the arrangement {.Hi,... ,Hn} in lRd 

given by 

Hi = { ( x i , . . . , xd) € IRd : X! + tix2 + ...+ if _ 1 x d + t{ = 0} 

for 1 < i < d, with arbitrary real parameters ii < t-i < tz < ... < tn. 

For every choice of the parameters ti this arrangement represents the alternating 
oriented matroid c n ' d + 1 . Here the hyperplane at infinity corresponds to the extension 

cn+i,d+i Q£ Qti,d+i by a n e w element g := n + 1 . Thus th^ combinatorial type of this affine 
arrangement does not depend on the choice of the parameters tj. 

L e m m a 3.2. The vertices ofX."'d correspond to (n_d) in such a way that the vertices 
on an affine line correspond to the (n—d)-packets in lexicographic order (or its reverse). 

Proof. There axe many ways to derive this basic fact, either by elementary linear al­
gebra, (the vertices Vj corresponding to J € ( ^ ) can be explicitly determined in terms 
of Vandermonde determinants), or using simple oriented matroid tools to compute the 
contractions (any contraction of Cn'd is a reorientation of a cyclic oriented matroid, with 
the induced linear order of the ground set), or by exploiting orthogonality resp. oriented 
matroid duality. u 

Now consider any extension of the cyclic arrangement X" , d by a new oriented hy­
perplane Hf in general position. For this, two extensions by hyperplanes Hf,Hf are 
equivalent if on their negative sides they have the same set Vf = Vf> of affine vertices of 
the arrangement. From Lemma 3.2 we see 

Vf := {K € ( , ) '• K corresponds to a vertex on the negative side of Hf} 

is a consistent set Vf C (M). The same is true for any extension of X"*r by a new oriented 
pseudo-hyperplane (topologically deformed hyperplane) Hf in general position. The proper 

7 



Figure 1: The cyclic arrangement X^'2 with a pseudoline extension / and the corre­
sponding vertex set. * 

framework to study such extensions of an arrangement X by a pseudohyperplane is the 
theory of oriented matroids. 

We will only sketch the connection, and refer to [BLSWZ] for the details. Let 
X — -{Hi,...,Hn} be an affine arrangement in IR/*. The affine space IRd can be iden­
tified with a hemisphere of Sd, where the hyperplanes Hi correspond to intersections of 
(d— l)-subspheres of Sd with the hemisphere. Assuming that a positive side has been 
chosen for every hyperplane, the hyperplane arrangement (resp. the corresponding sphere 
arrangement) represents an oriented matroid Mo of rank d+1 on the ground set [n], so 
the hyperplane Hi of the arrangement corresponds to the element i G [n] of the oriented 
matroid. By representing Mo by an affine arrangement we have distinguished the hyper-
plane at infinity, which corresponds to the extension of Mo by a new element g = n+l. 
In this sense we say that X represents the affine oriented matroid (M,g), that is the 
oriented matroid Mo = M\g together with a distinguished extension of Mo by g. In 
particular, the cyclic arrangement X" ' d represents the affine alternating oriented jnatroid 
(Cn+1'd+l,n+l), whose structure is well understood [BLSWZ, Sect. 8.1]. 

The fact that the extensions of an affine arrangement by a new pseudohyperplane 
correspond to oriented matroid extensions is due to the "topological representation theo­
rem", see [BLSWZ, Chap. 5]. Here two extensions are considered equivalent if and only 
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if they have the same set of vertices of X on their negative side, since this is equivalent 
to the condition that they determine the same oriented matroid extension. Denoting by 
V the vertices of X (which correspond to half of the vertices/cocircuits of the sphere rep­
resentation of .Mo), we know that every extension Mo U / of Mo is determined by its 
localization, a function 07 : V —• {+, —} that indicates for every affine vertex whether it 
is on the positive or on the negative side of the extension pseudo-hyperplane. See [BLSWZ, 
Sect. 7.1] for details and proofs. A key technical result is Las Vergrias' characterization of 
single element extensions, which in our picture can be stated as follows. 

Lemma 3.3. Let V be the set of vertices of an afRne hyperplane arrangement X. A 
subset Vj C V is the vertex set of an extension ofX. by a a new pseudohyperplane in 
general position if and only if it contains a beginning or an ending segment of the set of 
vertices on every (arbitrarily directed) line. 

Definition 3.4. The uniform extension poset of X is the set of all extensions of X by 
a new pseudohyperplane Hf in general position, partially ordered by single-step inclusion 
of their vertex sets. 

The uniform extension poset of X only depends on the affine matroid (M,g) rep­
resented by X, and will thus be denoted by U(M,g). It is the set of all uniform single 
element extensions of Mo = M\g, whose partial order depends on the extension M of 
Mo. 

Corollary 3.5. The uniform extension poset U(Cn+1'r, n+1) ofCn'r is naturally isomor­
phic to the set of all consistent subsets of ( S ) , ordered by single-step inclusion. 

Proof. This follows directly from the Lemmas 3.2 and 3.3. U 

To understand the geometry of U(Cn+1'r,n+l) we use the partial orders of oriented 
matroid programs, following the lines of [StZ, Sect. 3]. Let (M,g) be the affine matroid 
of an arrangement and M = M U / an extension of M (!) corresponding to a new 
pseudo-hyperplane Hf. The tripel (M,g,f) is an oriented matroid program, where Hf 
is interpreted as (a level plane of) a linear objective function on the affine arrangement 
{M,g), see [BLSWZ, Sect. 10.1]. The graph Gf has the affine vertices of (M,g) as its 
nodes, and the edges between them are the bounded edges of (M,g), directed according 
to increasing / , that is, according to the direction in which their line cuts the level-plane 
Hf. Assuming that M is uniform, there are no horizontal (undirected) edges. In general, 
the program can be non-euclidean [EdM], so that there are directed cycles in the graph 
Gf. The following non-trivial result is the technical key to our development. 

Proposition 3.6. If (M,g) = ( C n + 1 ' r + 1 , n + l ) , then the graph Gf is acyclic for any 

program (A4 U / , g , f ) . 

Proof. See [StZ, Prop. 4.7/Thm. 4.12]. Ü 
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4. Structure of Higher Bruhat Orders 
With the preparations of Sections 2 and 3, we can now prove the following main theorem. 

Theorem 4.1 . Let 1 < k < n and r := n—k. 
(B) There is a naturai isomorphism of posets between 

1. the higher Bruhat order B(n, k), 
2. the set of all consistent-subsets of (£"\) , ordered bysingle-step inclusion, 
3. the set of extensions of the cyclic arrangement X " ' r _ 1 by a new pseudo-hyperplane 

in general position, ordered by single-step inclusion of their vertex sets, and 
4. the poset ZY(Cn+1 ' r ,n+l) of all uniform single element extensions ofCn'r. 

(G) The poset B(n, k) is a graded poset of length ( fc"1). Its rank function is r(U) = \U\. 

The unique minimal element is 0 = 0, the unique maximal element is 1 = (fc+i). 

(A ' ) There is a natural bisection between 
1. the set £(n,fc), 
2. the posets Q[p], for p £ A(n, k), and 
3. the different ways to assign directions to the 1-dimensional lines of X",r without 

creating directed cycles. 

(A) There is a natural bisection between 
1. the set of admissible orderings A(n, k), 
2. the maximal chains of the poset B(n, k—1), and 
3. the different ways to sweep the arrangement X " ' r by a generic pseudo-hyperplane. 

We note that the geometric statements of (A3) and (B3) have precise geometric mean­
ing in the axiomatic setting of pseudoarrangements provided by oriented matroid theory, 
see [BLSWZ, Chap. 5]. 

Theorem 4.1 also contains the main results of Manin & Schechtman: the bijection 
.(A1)<->(A2) is [MaS, §2 Thm. 3c], while the part (G) is [MaS, §2 Thm. 3b]. Furthermore, 
after applying oriented matroid duality (B1)«-»(B4) is a bijection between B(n, k) and the 
single element liftings of Cn,fe: such a bijection is stated (without a proof) by Kapranov h 
Voevodsky [KaV, Thm. 4.9]. 

Proof. We start with part (B) . For this let U C (^Wj be consistent. By Corollary 2.6(h), 
U is also consistent as a subset of ( £+j ) , and thus by Lemma 3.3 it defines an extension 
of X " + 1 ' r by a new pseudo-hyperplane Hf (cf. Figure 2). We now treat Hn+i as the 
hyperplane at infinity, with g := n + l . With this we get an oriented matroid program 
(Cn+i,r+i y f^n+ijy i t s ^ n e vertices are the vertices of X ? + 1 ' r that do not lie on 
Hn+i, so they correspond to the (fc+l)-subsets of [n+l] that contain n + l . The lines that 
are not contained in Hn+i correspond to the (&+l)-packets P(K) with n + l G K. Setting 
K = {ii < i2 < ... < ik+2} and J := K\n+l, we get from Lemma 3.2 that the vertices 
on such a line are given by 

J = K\n+l — K\ik+l — . . . — K\i2 — # \ * i . 

10 

?!.»«jraWfv &&**&&&:. 



Figure 2: The cyclic arrangement Xjj'2, with g := n+1 = 6. The consistent set 
U = {1234,1235,1245} induces the extension by Hf, directions of the lines of Xjj'2 and 
thus a partial order on ( y ) . 

Thus the graph Gf of the program has the vertex set V — {I € ( jj+j ) : n + l £ 1} = 

(M)*{n+1}, with directed edges (cf. Figure 2) 

/ üT\ifc+i • ... • K\i2 • K\h i£JeU, 
\ K\ik+1 < . . . < K\i2 < K\h i£J$U. 

By Proposition 3.6, the graph is acyclic. Thus Gf defines a partial order " < " on (}f) by 

I < I' :•£=>• Gf contains a directed path from J 'U{n+l} to JU{n+ l} , 

and by construction we have 

A*fc+i > • • • > A»2 > A»i i f J € Ui 
AÜ+1 < • • • < A*2 < A»i tiJ$u. 

Hence every linear extension p of the partial order " < " is an admissible on (l£J) with 
inv(/>) = U. With Lemma 2.4, this proves part (B). 

For part (A ' ) , this also shows that every U € B(n, k) directs the lines of X?'r in an 
acyclic way, and this determines a partial order Q[p] on ( '£) . Finally U can be recon­
structed from Q[p] as U = inv(p) for every linear extension p of Q[p\. 

For part (G) , we have to verify that indeed 0 < U < ( ^ J for every consistent set 

U Q ( i+ i ) ' T h e r e s t i s t h e n c l e a r f r o m t h e definition of " < " by single-step inclusion. Given 
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U, we note that U = dU U U*{n+1} C ( ^t^ ) 1S consistent by Lemma 2.6(a), and thus 
by (B) defines and extension Hf of X " + 1 , r _ 1 . This defines a graph Gj which is acyclic 
by Proposition 3.6 and thus defines a partial order •< on (^"y as in part (A'). Any linear 
extension p of this partial order is admissible, p € A(rc, k+l). By construction, U is an 
order ideal of •<, hence the linear extension 

p = (Si < S2 < . < 'S(k»xj) '€ A(n, k+l) 

can be chosen in such a way that U is a beginning segment of p, that is, U = {Si, 52,. • •, S,} 
for some i. However, every beginning segment {Si, 5 2 , . . . , Sm} is consistent. Thus p 
induces a maximal chain 0 = 0 < {Si} < {Si,S2} < . . . < { S i , S 2 , . . . , 5/ n \} — 1 

of length (fc"j) in B(k,n) that contains U. 
Prom the same argument we also see (A): every admissible ordering p € A(n,k) in­

duces a maximal chain of length (£) in B(n, k—l). According to part (G) every maximal 
chain in B(n,k—1) has this form, and the linear orderings on ( ^ ) induced by maximal 
chains in B(n, k—l) are clearly admissible. By (B), every maximal chain in B(n, k—l) cor­
responds to a sequence of pseudohyperplane extensions of X" ' r that describes a topological 
sweep, and conversely. U 

The higher Bruhat order B(5,2) is drawn in Figure 3. Here every element is denoted 
by the corresponding consistent vertex set of a cyclic arrangement X^'2. 

We now use Theorem 4.1 to verify that our definition of the partial order on B(n, k) 
coincides with the one used by Manin & Schechtman. 

Corollary 4.2. B G B' holds for sets B , B' 6 B(n, k) if and only if there axe admissible 
orders p, p' € A(n, k) with inv(/>) = B, inv(p') = B' and p' is obtained from p by reversing 
a single k-packet P{I) whose elements appear in p in lexicographic order, with no other 
•elements in between. (That is, r < r ' <$=> = p7(r ' ) in the notation of [MaS].) 

Proof. The "if" part is clear. For the converse, let UCU', U'\U = {/} with / = {ix < 
... < ifc+i}. Consider the line orientations of X" ' r corresponding to U and to U' according 
to Theorem 4.1(A'). They only differ by the reversal of one line, and both are acyclic. For 
the associated partial orders Q, Q' on (^') this means that Q contains the packet P(I), 
ordered lexicographically, as an interval [J\ifc+i, I\h], while Q' contains the packet P(I)^ 
ordered lexicographically, as an interval [I\ii, I\ik+i], arid Q and Q' differ only in the 
reversal of this interval. Thus linear extensions p of Q and p' of Q' can be constructed to 
satisfy the conditions of the lemma. D 

Now we use Theorem 4.1(B) to derive structural properties of the posets B(n, k). 

Proposition 4.3. B(n, k) is isomorphic to a lower interval of B ( n + 1 , k). 

Proof. This is immediate from Lemma 2.6(iii), which shows that there is an order pre­
serving inclusion B(n, k) <—»• B(n+1, k). 0 
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Figure 3 : The higher Bruhat order 5(5,2) . 
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In contrast to this, it is not clear whether there is an embedding of B(n, k) into 
B(n+l,k+\) as a subposet. The case r = 2 shows that B(n,k) is not an interval of 
B(n+1, fc+1) in general. The map U —> U suggested by Lemma 2.6(h) is an injection, 
but not order-preserving in general. 

The proofs of the following two theorems are linked. We prove, in effect, that 
1) B{n, k+1) is a lattice and ordered by inclusion ==>• B(n, k) is ordered by inclusion, 
2) B(n, k) is ordered by inclusion, and ri—k < 3 =4* B(n, k) is a lattice. 

This can be avoided if one gives an independent proof that B(n, k) is a lattice for n—k = 3, 
which is possible for example by relying on geometric intuition from Figure 1. 

Theorem 4.4. The poset B(n, k) is a lattice for k = 1 and for n—k < 3. 
However, B(Q, 2) is not a lattice. 

Proof. For k = 1 the poset B(n, 1) is the weak Bruhat order of Sn, which is known to be 
a lattice, see [YaO, Thm. 2.1] [BEZ]. 

For r < 2, the result is trivial. For r = 3, we use that B(n, k) is ordered by inclusion 
by Theorem 4.5. If it is not a lattice, then by [Zie, Crit. 2] there exist six consistent sets 
ScSU{Ki} C T\{Lj} G T for i,j € {1,2} so that neither Sö{I<i, K2} nor T\{LU T2) are 
consistent. From this we get that K\ UK2 =: K = [n]\h, where (without loss of generality) 
K\ is the smallest and K2 is the largest set in P{K). Similarly, we get L\\JL2 =: L — [n]\h'', 
where L\ is the smallest and L2 is the largest set in P(L). 

By symmetry, we may assume h < h!. Now if ft. = 1, then we get L2 G P{K), but 
T\{L2} is consistent, so we get that K\ or K2 is not contained in T\{L2}, a contradiction. 
If ft' = n, then we get K\ € P(L), but S U {-Ki} is consistent, so we get that L\ or L2 is 
contained in S U {-Ki}, a contradiction. Thus we have 1 < ft < ft' < n. 

From K2 = [n]\{l,ft} € T\{L2) and L2 = [n]\{l,ft'} £ T\{L2} with K2 >lex L2 

we get [n]\{l ,n} i T\{L2}. From Kx = [n]\{n,ft} 6 5 U {Kx} and L2 = [n]\{n,h'} $ 
So {Ki} with Kx >iex Li we get [n]\{l,n} e Si) {JCi}. But this contradicts 5U {Ki} C 
T\{L2). 

Now consider B(6,2) and let 

5 = {123,124,356,456}, Kx = 134, K6 = 346. 

Then S, Ski{K) and S'U{Z-} are consistent, while 5U{iü'i,itr6} is not consistent on 
P(1346). The minimal consistent sets that contain SU{K\,KQ} are 

Sn= {123,124,356,456, 134,346, 156,126, 25i} for i = 1,6. 

They satisfy Sö{Ki} < Sj for i, j € { l , 6 } , so (5U{JC1}) V (SV{K6}) does not exist. D 

Theorem 4.5. B(n, k) is ordered by inclusion for k = 1 and for n—k < 4. 
However, i?(8,3) is not ordered by inclusion. 

Proof. For k = 1 this is well known [YaO, Prop. 2.1]. 
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Figure 4: The vertices and lines of B(<5,2). The vertices marked by a black dot are in 
S. The vertices with a white circle are K\ and A'6. 

Let Ui C U2 C ( £ £ ) be consistent. Then by, Theorem 4.1(B), U\ < U2 holds if 
and only if there exists an admissible linear order p of ( ^ j ) of which U\ and I/2 are both 
beginning segments, that is, so that Ui C C/2 are ideals of the poset Q[p]. The consistent set 
U C ( $ , ) that corresponds to Q[p] by Theorem 4.1(A') has to satisfy that f/UC/i*{n+l} 
and U U J72*{"+1} are both consistent. By Lemma 2.5, this means that 

8UiUdU2CU and dlhUdÜ^CÜ. (*) 

The sets dUx, dU2,ÖÜl, dlh € B(n, Jfc+1) are consistent, with dU^dÜ] = 0 for i,j 6 {1,2}, 

so dUi C 9(7,-. By induction on r := n—k we can assume that B(n,k) is ordered by 

inclusion, so dUi < dU] for i,j 6 {1,2}. For r < 4 we can assume that B(n,k+1) is a 

lattice (Theorem 4.4), so a consistent set U that satisfies (*) can be chosen arbitrarily from 

the interval [dUi V dU2, dUi < dlh] of B(n,k+l). Thus B(n,k) is ordered by inclusion 

for all r < 4. 

The smallest example we know for which U does not exist occurs in 5(8 ,4) . This 

leads to consider the consistent sets 

Ui = {1234,5678} 

_ fl8T\v / 1235,1245,1345,2345,1236,1246,1346,2346,1256,1 
V 4 / I 4678,4578,4568,4567,3678,3578,3568,3567,3478 J 

in 5(8,3) which satisfy Ui C U2. We will now give a direct proof for Ux £ U2, which 
does avoid the discussion "on the boundary". For this one first has to check that Ui and 
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V2 '-= ( 4 ) \^2 a f e consistent. For U\ this is obvious. For U2 one can use that the two 
rows of our listing both correspond to consistent sets, which can be checked in a situation 
of rank 3, since no set in the first line contains 7 or 8, while no set in the second line 
contains 1 or 2. The union of both lines is consistent since no 4-packet contains sets from 
both lines. 

Now assume that U\ < U2. With Theorem 4.1(B) this would imply that there is a 
linear order "-<" oh '(**') that orders every 4-packet either in lexicographic ("Zez") or in 
reversed lexicographic ("r-Zez") order, and so that if K G Ui, K' € Ui for some i, then 
K -< K'. Now we get the following sequence of implications: 

1234 € Uu 2347 i Ux = • P(12347) lex = > 1237 -; 2347 (1) 
2347 € U2, 3478 i U2 = * P(23478) /ei = ^ 2347 -̂  2378 (2) 
(1)&(2) = » 1237-^2378 =4> P(12378) ZM = » 1237 -< 1278 (3) 
2567 £ Uu 5678 e Ui = • P(25678) r-lex =4> 2567 y- 2678 (4) 
1256 i U2, 2567 e U2 = • P(12567) r-Zci ==• 1267 X 2567 (5) 
(4)&(5) = =» 12671-2678 =>• P(12678) r-/ei = » 1267 >- 1278 (6) 
1236 i U2, 2367 € U2 = • P(12367) r-lex = * 1237 >- 1267 (7) 
where (3)&(6)&(7) yield 1237 y 1267 >- 1278 y- 1237, a contradiction. D 

The question whether B(n, 2) is ordered by inclusion for all n remains open. We close 
this section with a list of the geometric interpretations of A(n, k) and of B{n, k) that are 
available for small values of r and of k: 

r = 1: A ( n , n - 1 ) = B ( n , n - 1 ) = {0,1}. 
r = 2: A(n, n—2) is the set of "topological sweeps" on the cyclic line arrangement X"'2 . 

B(n,n—2) is the poset of consistent subsets of the affine line L[nj = P([ra]). Thus 
B(n,n~2) consists of two chains of n—1 elements [MaS, §2 Lemma 7]. B(n,n—2) 
can also be identified with the weak Bruhat order of the dihedral group I2(n). 

r = 3: B{n,n—3) is the set of extensions of the cyclic line arrangement X£'2 by a new 
pseudoline. All these extensions are in fact realizable [Ric, Thm. 8.3]. 

k = 1: A(n, 1) = B(n, 1) is the weak order on 5„. 
k = 2: .A(n, 2) is the set of maximal chains in the weak order on Sn, i.e., simple allowable 

sequences, or arrangements of n pseudolines in "braid form" [GoP] [BLSWZ, 
Chapt. 6]. 
P(n ,2 ) is the set of arrangements of n + 1 pseudolines that are labeled 1 to n 
cyclicly at the line g := n-fl at infinity. This includes non-realizable arrangements 
for n > 8. (See also [KaV, Sect. 4].) The partial order is by single-step inclu­
sion of the triples of pseudolines which determine a triangle of counter-clockwise 
orientation. 

The higher Bruhat orders model the set of minimal paths through a discriminantal 
arrangement [MaS, §1]. By Theorem 4.1 shows that we have to choose a cyclic arrangement 
for this. However, in general the poset B(n, k) contains "non-realizable" elements which 
might not occur in the path space of the arrangement. 
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5. Sphericity-
There are two very natural orderings of the set B(n, k). Up to now, we have taken the 

ordering by single-step inclusion as the primitive one, since it is equivalent to the ordering 

defined by Manin & Schechtman, by Corollary 4.2. However, it is similarly natural (both 

from a combinatorial and a geometric viewpoint), to consider the ordering of B(n, k) by-

inclusion as the appropriate generalization of the weak Bruhat order on Sn. We will denote 

this poset by Bc (n, k). The following theorem collects its main properties. 

Theorem 5.1. Let Bc(n,k) := {inv(p) : p G A(n, k)} be the family of consistent sets, 
ordered by inclusion. 

(1) 0 = 0 is the minimal and 1 = (fc'"j) is the maximal element of Bc(n, k). The length 
of Bc(n,k) is ( ^ j ) , snd every element of Bc(n,k) is contained in a maximal chain 
of this length. 

(2) Bc(n, k) is graded for k = 1 and for r := n — k < 4, but not in general, 
(2') J5c(n, k) = B(n, k) for k = 1 and for r < 4, but not in general, 
(3) Bc(n, k) is a lattice for k = 1 and for r < 3, but not in general. 

Proof. (1) is Theorem 4.1(G). Note that (2) and (2') are equivalent restatements of The­
orem 4.5. With this, (3) is equivalent to Theorem 4.4. D 

The combinatorics of Bc (n, k) is easier to handle than that of B(n, k). Also, in some 
respects its combinatorics behaves nicer. We will now demonstrate this by computing the 
homotopy type of Bc (n, k). 

Theorem 5.2. The proper part of the poset Bc(n,k) is homotopy equivalent to an 
(r — 2)-sphere: 

BQ(n,k)~Sr-2. 

In the case k = 1 this is a result of Björner [Bjl], which also follows from a theorem 
of Edelman & Walker [EdW]. The geometric idea of the proof is "adjoint" to that in the 
proof of [EdW]: it considers the convex hull conv(V) of the set of vertices of the affine 
arrangement X(Cn ' r) , which is a simplex, and shows that the poset £ / (C n + 1 ' r ,n+l ) is 
homotopy equivalent to the face lattice of the simplex conv(V). A map between these 
posets is obtained by mapping every extension to the set of vertices of conv(V) that lie 
on its negative side. To see that this in fact induces a homotopy equivalence, we have to 
establish several facts, which are collected in the following lemmas. 

Denote by [i,j] the interval {i,i+l,... ,j} in [n], which is empty if i > j , and let 
Ki := [i,i + k]. The following lemma also follows by induction from Lemma 2.6(iii). 

Lemma 5.3. For all i,j e [n], the set U(i,j) := {/ G ( ^ J : I C [i,;']} is consistent. 

Proof. Let K G ($2), and note that U(iJ) H P(K) = {/ G ( ^ J : I C K n [i,j]}. 
l£\Kn[iJ]\ < ifc, then U(iJ)nP(K) = 0. U\Kn[i,j]\ = k+2, then U(i,j)CiP(K) = 

P(K). In both cases U(i,j) f~l P(K) is a beginning segment. 
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Now assume \K D [i,j]\ = fc+1, with K\[i,j] = {/}. In this case we have U(i,j) = 
{[i, j]}. But [i, j] is an interval, thus I is either the smallest or the largest element of K. 
In the first case [ij] is the last set in the (fc+l)-packet P{K), and U(i,j) = {[i,j]} is an 
ending segment. In the other case [i,j] is the first set in P{K), and U(i,j) = {[*,.?]} is a 
beginning segment. U 

Lemma 5.4. —The minimal-elements of -Bc(n,fc)\0-are the sets {I<i} = {[i,i+fc]}, for 
l<i<r. 

Proof. Note that {Ki} = U(i,i+k) is consistent by Lemma 5.3. By Theorem 5.1(1), the 
minimal non-empty consistent subsets have exactly one element. Let K = {i\< ... <ik+i}-
If ik+i — ii = k, then K = Kix. Otherwise we find j £ K with i\ < j < u + i , and see that 
{K} is not a beginning or ending segment of P(K U j), so {K} is not consistent. U 

L e m m a 5.5. If U C ( J j ' j is consistent and K\ e U for all I e [ij], then U(i,j+k) C U. 

Proof. We proceed by induction on j , the claim being trivial for j < i, where U(i,j+k) = 
0, and for j = k, where U(i,j+k) = {K{}. 

Let K € U(i,j+l+k)\U(i,j+k) = {I € {ll\) : j+l+k e I C [ij+i+k]} be an 
element of U(i, j+l+k) that is not in U, and assume that it is selected such that the sum 
of its elements is maximal. 

Since K ^ [ j+1, j+l+k] = Kj+i, we can find I € [j+l,j+l+k]\K. Consider the 
(fc-f-l)-packet P(K U /): its smallest element (K U Z)\j+l+fc is in [i,j+fc] and hence in U 
by induction. Its largest element (KUl)\ki is in U, since k\ := min K < I by construction, 
hence (K U l)\k\ has a smaller sum of elements than K, and hence it is in U by the choice 
of K. Thus we get a contradiction to consistency on the (A;+l)-packet P{K U /). D 

Lemma 5.6. If H,ji,... , i / , j / are such that \[ia,js] H [i*,jt]| < k for all s < t, then 
U(ii,,ji) U . . . U U(ii,ji) is consistent. 

Proof. Suppose not, then this union is inconsistent on some (&+l)-packet P(K). However, 
since each of the sets U(ii,ji) is consistent by Lemma 5.5, this requires that there are I" G 
U(is,js)nP(K) and J € U(itljt)r\P{K)vnth.s < t. From this we get If)J Q'[iaija]0[itjt]t 

hence |Z Pi«/[ < k, and 7, J cannot be contained in the same (Jb+l)-packet P(K). D 

Finally we need the following "Crosscut Lemma" to establish the homotopy equiv­
alence of posets. It is a very special case of the Crosscut Theorem [Bj2, (10.8)]. It can 
easily be derived from Quillen's Fiber Theorem [Bj2, (10.5)]. 

Lemma 5.7. Let Q be a poset with 0 and 1, and let A := min(Q) be the set of a := \A\ 
atoms in Q. Assume that every subset of A has a join in Q, with VA = i and Vü? < 1 for 
B C A. Then Q is homotopy equivalent to the (a — 2)-sphere, Q ~ 5 a ~ 2 . 

Note that the joins VB exist in particular if Q is a lattice. However, we will have to 
use the greater generality of the above formulation, since by Theorem 5.1(3) the posets 
Bc (n, k) are not in general lattices. 

18 



Proof of Theorem 5.2. We apply Lemma 5.7 to the bounded poset Q = Bc(n,k), 
whose minimal elements are {ifi}, • • •, {Kr}, by Lemma 5.4. We write v(i) := {Ki}, so 
A = {i>(l), . . . , u(r)}, and a = \A\ = r. 

Every B C. A can be written uniquely as 

B = {v(i) : i € [iuji] U [i2J2] U . . . U [i,,jl]} with it+1 - j t > 2. 

Now if U € BQ(n,k) = Q satisfies B C U, then I7(»i,ji+Är) U . . . U U{ihji+k) C J7 
follows from consistency of C/ (Lemma 5.5). We get that U(ii,ji+k) U . . . U U(ii,ji+k) is 
consistent from Lemma 5.6: j3+k — it = k — (it — js) < k — (it+i — js) < k — 2 for s < t 
implies \[ia,js+k] n [itJt+k]\ = I[*t,;•+*?]! < fc - 1. Thus I7(t'i,ii+fc) U . . . U U(ihji+k) 
is the join of I?, and this is 1 = U(l,n) = £f(l,r+&) exactly if B = {u ( l ) , . . . ,u(r)} = A. 
By Lemma 5.7, S c (n, fc) is homotopy equivalent to the (a — 2)-sphere. G 

The same proof technique cannot be used to determine the homotopy type of B(n, k) 
in general: in £(8 ,3) we have atoms v(l) = {1234} and v(5) = {5678}. The sets Ux = 
{1234,5678} and U2 axe both upper bounds of u(l) and v(5) in £(8 ,3) : for U\ this is 
obvious, while for Ui it is implied by the proof technique of Theorem 4.5, since d{5678} 
and ${1234} = 0. However, in Theorem 4.5 we have shown U\ ^ U2, so the atoms u(l) and 
u(5) do not have a join in B(n, k). However, Theorem 5.2 implies that B(n, k) is spherical 
in all cases where £ ( n , k) and Bc (n, k) coincide. 

Corollary 5.8. For k = 1 and for n — k < 4, the proper part of the higher Bruhat order 
£(n , k) is homotopy equivalent to an (1— 2)-sphere: 

B(n, k) ~ Sr~2 for k = 1 and for n - k < 4. 

J t would be interesting to study the combinatorics of intervals both in Bc (n, k) and in 
£ (n , k). In particular, one should try to compute the Möbius function, and to determine 
whether the intervals are always spherical or contractible, as they are in the case k = 1 
[BjlJ-
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6. Uniform Extension Spaces 
By Theorem 4.1(B), we can interpret J3(n, k) as U(Cn+1'r,n+l) for r = n-fc, that is, 
B(n,k) is the set of all uniform extensions of the cyclic oriented matroid Cn , r , ordered 
away from the single element extension C n + 1 ' r = Cn ' r U n + 1 . 

In this section, we consider the mild generalization obtained by ordering the same set 
B(n, k) away from a different single element extension M — Cn, r U g. This poset is again 
isomorphic to B(n, k) in the case k = 1, but not in general. The poset we get is the uniform 
extension poset U(M,g) of Definition 3.4, if we order by single-step inclusion. Also we 
want to consider Uc (M, g) in this case, the same set ordered by inclusion of inversion sets. 
We will see that the main structural properties (Sections 4 and 5) of B(n, k) and BQ (n, k) 
do not generalize to U(M,g) or to Uc(M,g), even in the case of M\g = Cn , r and in the 
case of rank case r = 3, where 5 (n , k) = BQ (n, k) is very well-behaved. 

For the following (M,g) will denote a uniform affine rank 3 oriented matroid on the 
ground set [n]Up, with M\g = Cn '3. X denotes a realization of (M,g) by an affine 
arrangement of n hyperplanes in IR2. A set of vertices of X is consistent if it is the 
vertex set (in the sense of Lemma 3.3) of a uniform extension / G U(M,g). Again we set 
k :=n — r. 

Figure 5: An affine arrangement in IR2 for which U(M,g) is not a lattice. 
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Example 6 .1 . Let X be the affine arrangement in IR2 sketched in Figure 5. We have 
d = 2, r = 3, n = 5 and k = 2. The arrangement is generic: the corresponding affine 
matroid (M,g) is uniform, with M\g = C5,3. The poset diagram of U(M,g)) can be 
obtained from Figure 3 by directing its graph away from the vertex that corresponds to 
M. This vertex corresponds to the extension of Figure 1; it is marked by an arrow in 
Figure 3. 

For this arrangement'Z/(A'f,#) ='Uc(M,g) is not a lattice. In fact, denote the vertex 
set of X by V, and let v,v',v",w',w" be the vertices marked in Figure 5. Then the 
atoms {v1} and {w"} do not have a join: their minimal upper bounds are V\{t>} and 
{v,v',v",w' ,w"}. 

Figure 6: An affine arrangement in IR2 for which U(M,g) is not bounded. 

Example 6.2. Let X be the affine arrangement in IR2 sketched in Figure 6. We have 
d = 2, r = 3, n — 6 and k = 3. The arrangement is generic: the corresponding affine 
matroid (M,g) is uniform, with M\g = C6'3. 

For this arrangement Uc(M,g) is not bounded and not ordered by inclusion, and 
Uc(M,g) is not graded. In fact, denote the vertex set of X by V, and let {vi,V2,v3} 
be the vertices marked in Figure 6. The vertex set {vi,v2,v3} is consistent. Now let 
S D {vi,V2,v3} be consistent. The directed arcs in Figure 6 indicate that if the vertex at 
the tail end is in S, then the vertex at the head end has to be in 5 as well. From this 
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it is easy to see that S — V: there is no consistent set S with {i>i, 1*2,̂ 3} C S C V. In 
this case {vi,V2,vs} C V are two different maximal elements of U(Ai,g). Hence we have 
£(Uc(M,g)) = |V| = 15, while every maximal chain of Uc(M,g) that contains {vi,V2,V3} 
is of the form 0 = 0 C {UJ} C {vi,Vj} C {ui,u2 ,u3} C V = I and has length 4. 

Lemma 4.6 can be applied to Uc (M,g). The minimal non-empty vertex sets are given 
by A = {{ui}, {u2}, {V3}, V\{vi,V2,v3}}, with a = \A\ = 4. Any union of these sets is a 
vertex set in U(M, g): Thus Lemma"4.6 yields U(M, g) ~ 5 2 , in contrast to Theorem 5.2. 

In general, it is not clear how much can be said about the structure of U(M.,g) or 
of Uc{M,g). There is a close connection between the gradedness problem for U(M,g) 
and "strong euclideanness" [StZ]. For example, we have the following result, which implies 
Theorem 4.1(G), and also has a similar proof (which we omit). 

Proposition 6.3. If the extension of M\g by g is lexicographic and if (M,g,f) is 
euciidean for every uniform extension M. = M. U / , then every element of U(Ai,g) is 
contained in a maxima] chain of length \V\ = ( j ^ ) -

The search for affine oriented matroids without long chains in U(A4, g) is related to Las 
Vergnas' problem about the existence of mutations: if (A4,g) is a uniform affine matroid 
for which g is not contained in a mutation of M, then no vertex set in U(M, g) has size 1, 
hence U(M,g) has no chain of length |V| = ( j ^ ) - Also, there is clearly relation between 
the extension space problem for A^o and the structure of U(M,g). 
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7. Enumeration 
The enumerative combinatorics of the ^-analogues A(n, k) is largely unexplored. Denote 
the size of A(n, k) by a(n, k), and the size of B(n, k) by b(n, k). Tables 1 and 2 list these 
numbers for small n and k. 

k\n 1 2 3 4 5 6 
1 1 2 6 24 120 720 
2 1 2 16 768 292864 
3 1 2 112 ? 

4 1 2 ? 

5 1 2 
6 1 
7 

k\n 1 2 3 4 5 6 7 
1 1 2 6 24 120 720 5040 
2 1 2 8 62 908 ? 

3 1 2 10 148 ? 

4 1 2 12 338 
5 1 2 14 
6 1 2 
7 1 

Table 1: Values for a(n,k) = \A(n,k)\. Table 2: Values for b(n,k) = \B(n,k)\. 

Proposition 7.1. The foiiowing formuias hoid for the sizes a(n,k) := \A(n,k)\ and 
b(n,k):=\B(n,k)\: 

a(n, 1) = 6(n, 1) = n! is the size ofSn, 

< " . 2 ) = n r j t t ( « - i ) - - i > ' 
6(n, n) = a(n, n) = 1, a(n, n—1) = 6(n, n—1) = 2, 
6(n,n—2) = 2n. 
fc(rc,n-3) = 2 n + n 2 n - 2 - 2 n . 

Proof. The result for a(n, 2) is Stanley's [Sta] formula for the number of maximal chains 
in the weak order of Sn. All the others are trivial except for the size of B(n, n—3), which 
counts antipodal paths through the poset of regions in the 2-dimensional affine cyclic 
arrangements. u 

There is no explicit formula known for either a(n,k) or for b(n,k). It would also be 
of interest if one could count both admissible orders and consistent sets with respect 
to their number of inversions, that is, to determine a(n,k;q) := YlpeA(n,k) <z ' m v ^ ' and 
b(n, k; q) := J2ueA(n k) s'17'» w n e r e Kn> ^! ?) 1S s^so ^ n e r a n ^ generating function of B(n, k). 

The answers corresponding to the cases above are given by the following proposition, which 
uses the notation (n) , := l+q+...+qn~1, (n),! := (1),(2), . . . ( n )„ fi)q := ( ^ 1 ^ . and 

(2')? := (l+q)-... -(1+gO for the 5-analoga of n, n!, (7) and 2'. 

Proposition 7.2. 
a(n , l ;g) = 6(n,l ;g) = (n) ?! 
b(n,n;q) = a(n,n;q) = 1, a(n,n—l;g) = 6(n,n—l;g) = 1+g = (2), 

6(n,n-2;g) = (2),(n)g . 
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b(n,n-3;q) = (2-1), + ££? { ( s ^ " ^ ) [^}q + 
( g . ( n -0 + g n- l - i ) (2« - i ) ? . ( 2 " - 2 - i ) g - (q^-V+qti)-«"-»)} . 

Proof. The first formula is well-known. All the others are trivial (using the descriptions 
of Section 4), except for the last one, which is the g-analogue of the formula for b(n,n—3) 
in Proposition 7.1. u 

There is probably not much hope for a nice general answer. We only note 
a(5,2;g) = 12+14q+38g2+108g

3+142g4+140g5-(-142g6+10837+38g8+1459+12g10, 
a(5,3;g) = \2+4q+40q2+40q3+4q*+I2q5, 

6(5,2; q) = l+dq+5q2+9q3+9q^+8q$+Qq6+9q7+5q8+Zq9+q10, 
which were computed by computer enumeration. They show that in general the generating 
polynomials are not unimodal and they do not factor. It would also be of interest to 
determine the asymptotic behavior of a(n, k) and of 6(n, fc), in view of their relation with 
the enumeration of oriented matroids. 
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