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Improved Satellite Rainfall Estimation in Malaysia by Successive Correction 

 

 Yip Weng Sang, Fadila Jasmin binti Fakaruddin, Diong Jeong Yik and  

Nursalleh K. Chang @ bin Kassim 

 

Abstract 

 

Near-real-time and quantitative rainfall estimation are useful for weather and flood 

monitoring. The high-resolution satellite rainfall estimation can fulfil this need. It resolves the 

problems of sparse, unevenly distributed, and erratic rainfall gauge observations. As a 

country located in the Maritime Continent with extensive interaction between ocean and land 

across the region, Malaysia is highly vulnerable to extreme weather events such as floods and 

drought. Therefore, an accurate near-real-time rainfall estimation at high resolution is useful 

for weather and flood monitoring in Malaysia.  This study performs the error analysis of 

satellite rainfall estimation of the near-real-time precipitation dataset of the Global Satellite 

Mapping of (GSMaP) and Precipitation Estimation from Remotely Sensed Information Using 

Artificial Neural Networks-Dynamic Infrared Rain Rate (PDIR) compared to in-situ rainfall 

gauges over Malaysia. The Barnes successive correction method was evaluated in terms of 

how well it improved satellite rainfall accuracy in relation to in-situ gauges. It was found that 

PDIR is more accurate than GSMaP in reference to in-situ gauges. It was also found that the 

Barnes successive correction further enhanced accuracy of both satellite rainfall datasets in 

reference to in-situ gauges. Nevertheless, the error between rainfall amounts estimated by 

satellite and in-situ gauge is still high. This issue can be alleviated by converting rainfall 

amounts to ranked percentiles. It was found that PDIR corrected by Barnes successive 

correction (PDIR_C) can attain probability of detection (POD) up to 0.90 out of 1.00 relative 

to the 95th percentile of gauge rainfall. However, the false alarm ratio (FAR) was also 

relatively high, that is at least 0.80 out of 1.00, for the 95th percentile of gauge rainfall. 

Further improvement, for example increasing the gauge density used to train Barnes 

successive correction, should be considered. In summary, the PDIR_C rainfall estimation was 

the most accurate in relation to gauge, of all datasets considered in this work. 
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1. Introduction  

 The rainfall amount is an input in rainfall-runoff models for flood forecasting and 

monitoring land erosion (Devi et al., 2015). Rainfall gauges are the most common instrument 

to measure rainfall (World Meteorological Organization, 2021a). Although rainfall gauges 

can be subject to systematic errors, various corrective measures can be used to reduce these 

systematic errors (Sevruk, 2006). Rainfall gauges are often used to evaluate rainfall estimated 

by satellite (Sevruk, 2006). Here, rainfall gauges shall be used to evaluate and adjust rainfall 

estimated by satellite.  

 Geostationary satellites can observe rainfall at high spatial and temporal resolutions in 

real-time. In 2018, the World Meteorological Organization (WMO) Space-based Weather and 

Climate Extremes Monitoring (SWCEM) Demonstration Project invited National 

Meteorological and Hydrometeorological Services (NHMSs) to validate satellite derived 

products using rainfall gauge data. The purpose is to monitor extreme events on a short-term 

basis (World Meteorological Organization, 2022). Among the global satellite-derived 

products recommended by the SWCEM is the GSMaP dataset. The GSMaP dataset is 

provided by the Japan Aerospace Exploration Agency (JAXA). The Global Satellite Mapping 

of Precipitation (GSMaP) with 30 minutes latency estimates rainfall rates using passive 

microwave measurements (PMW) from low-earth orbiting satellites and infrared (IR) 

measurements from geostationary satellites (Kubota et al., 2020). Additionally, the PMW 

algorithm has been adjusted for orographic / non-orographic rainfall (Kubota et al., 2020).  

MET Malaysia has been using the GSMaP dataset for near real-time monitoring of 

hourly rainfall since 2022. Nevertheless, the existence of other satellite rainfall datasets with 

higher resolution in near real time makes it possible to improve and provide an alternative 

product to monitor hourly rainfall. One such dataset is the Precipitation Estimation from 

Remotely Sensed Information Using Artificial Networks (PERSIANN)-Dynamic Infrared 

Rain Rate (PDIR), (Nguyen et al., 2020). The PDIR dataset has higher spatial resolution than 

GSMaP with similar latency and temporal resolution (Nguyen et al., 2020). One of the 

objectives of this study is to determine the near real-time satellite rainfall dataset that is most 

consistent compared to rainfall gauges.  

In our study the Barnes successive correction is used to correct the satellite rainfall 

estimates. The Barnes scheme was suggested to be computationally efficient, and robust 

towards strong gradients and areas without data (Grant et al., 2008). Moreover, the Barnes 

successive correction method does not introduce high frequency noise in the data due to the 
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possibility of discontinuity in the weighing function (Weymouth et al., 1999). The Barnes 

scheme was described as highly tunable with accuracy approaching more sophisticated 

methods (Jones et al., 2009). Additionally, the Barnes scheme does not extrapolate unrealistic 

values into regions of no data, nor dampen variance (Jones et al., 2009).  Numerous works 

(such as Weymouth et al., 1999; Sinha et al., 2006; Grant et al., 2008; Jones et al., 2009) have 

used the Barnes successive correction scheme. Weymouth et al. (1999) for instance used the 

Barnes successive correction to produce near-real-time gridded analyses of rainfall gauges in 

Australia. Similarly, our aim is also to provide a near real-time national gridded rainfall 

dataset in Malaysia from the satellite rainfall estimates that have been corrected using rainfall 

gauges through the Barnes successive correction method.  

Before producing a useful and accurate real-time national gridded rainfall dataset 

from the corrected satellite rainfall estimates, we need to determine which satellite dataset to 

use. In our understanding, only two (2) high resolution, and near-real-time datasets are 

currently available, namely the PDIR and GSMaP.  Hence, the first objective of this study is 

to examine the possibility of using PDIR data for near real-time monitoring of hourly rainfall. 

To do so, we compare the accuracy of PDIR and GSMaP relative to gauge. The second 

objective is to compare the accuracy of satellite rainfall estimation relative to gauge before 

and after applying Barnes successive correction. The period of validation, metric of 

evaluation, description of datasets, and the successive correction methods of Barnes is 

provided in Section 2. In Section 3, satellite rainfall estimates are evaluated, and the results 

of the evaluation are discussed. Finally, Section 4 the implications of this study are presented. 

 

2. Data and Methodology 

2.1 Period of Verification 

 The Northeast Monsoon (November – March) is associated with widespread torrential 

rainfall from cold air outbreaks (Moten et al., 2014). Chen et al. (2013) showed that the 

period of maximum rainfall in Peninsular Malaysia (west Malaysia) happens from November 

– December, while the period of maximum rainfall in East Malaysia (North and West Borneo) 

happens from December – February. Nevertheless, intense rainfall events are also known to 

occur outside of the usual period of maximum rainfall. For example, the southern Peninsular 

Malaysia suffered flooding in March 2023 because of heavy rainfall. To evaluate the 

performance of the PDIR, GSMaP during the NEM, hourly and daily rainfall is evaluated 

from 01 November 2022 to 01 March 2023 (121 days). These datasets are then corrected with 

Barnes successive correction scheme (known as corrected PDIR, and corrected GSMaP).     
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Around three hundred and four (304) rainfall gauges from MET Malaysia were used 

to validate the efficacy of gridded rainfall and act as input to the Barnes successive correction 

scheme.  Cross-validation is performed over hourly and daily temporal scales to compare the 

performance of corrected PDIR and GSMaP satellite dataset with their uncorrected 

counterparts.  

List of heavy rainfall events, their type, metrics to evaluate accuracy, and parameters 

to be evaluated, are summarized in Table 1.  

 

Table 1: Summary of Verification 

No. Type Metric of evaluation Temporal scale Parameters evaluated 

1 Seasonal  

1. Root mean square 

error of each 

station (rmse) 

 

2. Pearson 

correlation 

coefficient of each 

station 

 

Hourly and 

Daily 

Accumulated 

Rainfall 

1. GSMaP 

2. PDIR 

3. Corrected GSMaP 

(GSMaP_C) 

4. Corrected PDIRNow 

(PDIR_C) 

2 

 

Seasonal 

Categorical 

rainfall, 

Slight, 

Moderate, 

Heavy, and 

Intense 

 

3. 

Categorical 

rainfall by 

percentile 

1. Probability of 

Detection (POD) 

2. False Alarm Ratio 

(FAR) 

 

 

2.2 Inverse Distance Interpolation using 9-nearest points (IDW-9). 

 The satellite data are interpolated to gauge location by the method of inverse distance 

interpolation by nine (9) nearest points. Given gauge g, and set of nine (9) nearest satellite 

points, s = {s1, s2, …, s9}, the satellite rainfall interpolated to gauge g, that is s(g) is described 

in Equation 1 below:  

 

 



4 
 

where  is the distance between satellite (s) grid point i from gauge g. Meanwhile, si is 

the satellite rainfall (s) estimation at satellite grid point i.   

 

2.3 Root mean square error (rmse)  

 The root mean square error is calculated individually for each gauge, g. The rmse of 

each gauge is depicted in Equation 2:  

 

 

 

where satellite rainfall(g,t) is the satellite rainfall estimation interpolated (IDW-9) to rainfall 

gauge (g) at time t. Meanwhile, Rainfall (g,t) is the rainfall measured at rainfall gauge (g) at 

time t. The total number of time steps of rainfall gauge (g) is given by . Time t refers 

to each time step during the season.  

 

2.4 Pearson correlation coefficient 

 The Pearson correlation coefficient is calculated individually for each gauge during 

seasonal validation. The correlation of each gauge is depicted in Equation 3: 

 

 

 

where P(g) is the Pearson correlation coefficient at gauge g, Satellite rainfall (g,t) is the 

satellite rainfall estimation interpolated (IDW-9) to rainfall gauge (g) at time t, and 

 is the time-averaged satellite rainfall estimation interpolated (IDW-

9) to rainfall gauge (g). Time t refers to each time step during the season at rainfall gauge (g). 

Meanwhile, Rainfall (g,t) is the rainfall measured by rainfall gauge (g) at time t, and 

 is the time-averaged rainfall measured by rainfall gauge (g). The Pearson 

correlation coefficient (p) measures the joint covariance between two variables. Only Pearson 

correlation significant at the 95% level is displayed in this study. The significance test was 

done by bootstrapping. In addition, a minimum sample size of 29 is considered before the 

Pearson correlation coefficient is calculated. The minimum sample size of 29 is required to 
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detect correlation coefficient of at least 0.5 with alpha of 0.05 and power of 80.0%, and 

alternate hypothesis that the correlation coefficient is different from Ro = 0 (Bujang & 

Baharum, 2016).  

 

2.5 Categorical Validation 

 The RMSE and Pearson correlation coefficients focuses on rainfall amount (mm). The 

RMSE informs by how much mm of rainfall amount satellite measurement deviates from the 

gauge rainfall. Meanwhile, the Pearson correlation describes the linear relationship between 

rainfall amount (mm) of satellite with gauge.  

 However, another way to evaluate how well satellite rainfall can pick up gauge 

rainfall, is through categorical validation. This accounts for the possibility that satellites 

cannot measure the exact rainfall amount as measured by gauges. Roberts and Lean, (2008) 

validated a numerical weather prediction (NWP) model by categorizing rainfall amounts 

using percentiles. In categorical validation, each rainfall value is ranked and converted to 

percentile. Next, a rainfall event is defined based on a threshold. One hundred (100) rainfall 

events are defined based on percentiles one (1) to one hundred (100). A rainfall event is said 

to occur when the rainfall amount exceeds or is equal to the percentile defined for that rainfall 

event.  Hits are the number of rainfall events observed by gauge and picked up by satellite. 

Misses are number of rainfall event observed by gauge but not picked up by satellite. False 

alarms are non-rainfall events observed by gauge that are incorrectly classified as rainfall 

events by satellite.  

 The hits, misses and false alarms are used to calculate the Probability of Detection 

(POD) and False Alarm Ratio (FAR). The POD measures the proportion of rainfall events 

observed by gauge that are correctly picked up by satellite. The FAR measures the proportion 

of satellite detected rainfall events that are false alarms. The contingency table (Table 2) used 

to calculate POD (Equation 4) and FAR (Equation 5) are as follows:  

 

Table 2: Contingency table  

  Gauge  

  Yes No Total 

Satellite 
Yes  Hits False Alarms satellite yes 

No Miss True Negative satellite no 

  gauge yes gauge no  
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2.6 GSMaP Satellite Rainfall Estimation  

 The rainfall estimated by GSMaP is based on merged PMW-IR (Kubota et al., 2020). 

The PMW algorithm is corrected for orographic rainfall (Kubota et al., 2020). A thirty (30) 

minute forward extrapolation is applied on cloud motion vector to generate rainfall estimates 

at the current hour (Kubota et al., 2020). The GSMaP has a latency of thirty (30) minutes, 

spatial resolution of 0.1 degrees, temporal resolution of one (1) hour, and measures rainfall in 

units of mm per hour.  

 

2.7 PDIR Satellite Rainfall Estimation  

 The rainfall estimated by PDIR is calculated based on infra-red (IR) measurements 

from geostationary satellites (Nguyen et al., 2020). Rainfall rates are estimates from cloud 

types that are identified by training self-organizing feature maps (SOFMs) using high quality 

PMW dataset (Nguyen et al., 2020). Additionally, the cloud top precipitation rate (Tb – R) 

curve is calibrated using monthly rainfall climatology data (Nguyen et al., 2020). The PDIR 

has latency between fifteen (15) to sixty (60) minutes, spatial resolution of 4km, temporal 

resolution of one (1) hour, and units of mm per hour.  

 

2.8 Rainfall gauges  

 The gauges used in this study were maintained by MET Malaysia. Three hundred and 

four (304) gauges was used to correct satellite rainfall estimates in this study. The gauge data 

is available in real time at an hourly interval. Each gauge measures the rainfall accumulated 

in units of millimetres over the past hour. Daily rainfall is the sum of hourly rainfall from 

midnight to midnight (24 hours) in Malaysian Standard Time (MST). The spatial distribution 

of gauges used in this study are depicted in Figures 1.  
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Figure 1a. Spatial distribution of rainfall gauges in Peninsular Malaysia (West Malaysia).  
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Figure 1b. Spatial distribution of rainfall gauges in Borneo (East Malaysia).  
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2.9 Barnes successive correction method 

 The Barnes successive correction method was used to correct satellite gridded rainfall 

estimation. The satellite gridded rainfall estimation is corrected with respect to MET 

Malaysia rainfall gauges.  

 The methodology is succinctly described as follows. Let G denote a set of all rainfall 

gauges (G) such that . Next, let S denote a set of all satellite rainfall grids 

(S) such that . First, satellite rainfall grids are interpolated to the position 

of each rainfall gauges, G, such that . Here, G(S) is the set of 

all satellite rainfall estimation (S), interpolated to rainfall gauge location (G). Second, the 

difference between gauge and satellite is calculated at all gauges (G) where 

. Third,  is interpolated 

back to satellite grid S based on Equation 6:  

 

 

 

where e(s) is the difference between gauge and satellite interpolated back to satellite grid 

point (s). Subscript i is rainfall gauge identifier, while Wi (s) is the weight assigned to rainfall 

gauge i. The variable gi is the rainfall amount measured at rainfall gauge i and variable gi(s) is 

rainfall amount measured by satellite at location of gauge i. The weight, Wi (s) can be 

represented in Equation 7.    

 

 
 

 

where DR is the search radius, which is the distance from satellite grid point s, containing all 

gauges i used to correct the satellite grid point s.  Meanwhile, di (s) is the distance between 

gauge i and satellite grid point s, and Wi (s) is the Barnes weight as a function of distance 

between gauge i and satellite grid point s, within search radius DR.  

 Finally,  which is the interpolated difference of gauge 

and satellite is used to correct the satellite grid,  as follows:  
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where S is the satellite grid, α is a smoothing factor which helps the correction field E(S) 

adjust satellite rainfall field S smoothly. Since we are repeating the calculation over 

successively smaller search radii to obtain more localized details, α is important to prevent 

over-adjusting S. The initial search radius is 45km. It is approximately the average distance 

between rainfall gauges used in the operational version of PDIR_C, in Malaysia. The 

subsequent search radius is 35km, 25km, 15km, and 10km The PDIR (GSMaP) dataset which 

has been corrected by Barnes successive correction is referred to as PDIR_C and GSMaP_C 

from now on.  

 

2.10 Cross-validation  

 The ten-fold cross-validation is used throughout this study. It is the most common 

method of evaluation in machine learning and data mining (Refaeilzadeh et al., 2016). Our 

dataset was already ordered by increasing latitude and longitude. To increase the spatial 

coverage of all subsets within our dataset, we randomly re-ordered our dataset once. This is 

performed before applying ten-fold cross validation.  

 Next, the randomly re-ordered rainfall gauge data is divided into ten (10) equally 

(nearly equally) sized subsets. Successive correction is performed using nine (9) of the 

subsets while one (1) excluded from the successive correction process. The one (1) dataset is 

also known as the hold-out dataset, which does not participate in generating the successive 

correction gridded field. In this study, each subset is used in training and separately held-out 

for validation at least once.  

 The advantage of ten-fold cross validation is that the validation result is an acceptable 

estimate of validation result for unseen dataset, or dataset outside of that used in this study. 

The validation result of ten-fold cross-validation can generalize better to full unseen dataset 

because 90% of the data has been used to generate the successive correction field 

(Refaeilzadeh et al.,  2016).    
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3. Results and Discussion 

3.1 Seasonal Verification  

 There are three hundred and four (304) gauges used in this study. Each gauge has a 

corresponding satellite, and corrected satellite, measurement interpolated to the gauge 

location using IDW-9. For seasonal verification, the rmse and correlation is calculated across 

time, individually for each 304 gauges, hourly and daily rainfall. The rmse and correlation for 

each gauge across time (01 November 2022 until 01 March 2021; 121 days) is analysed in  

Table 3, Figures 2 (rmse), and Figures 3 (correlation).  

 

Table 3. Summary of boxplots given in Figures 2 and 3. Shaded rows (the best accuracy in 

relation to gauge) indicate median, lowest (highest) rmse (correlation). The shaded rows also 

indicate lowest interquartile range (IQR). The quartiles are calculated based on seasonal rmse 

and correlation of satellites in relation to gauge.  

 

 rmse correlation 

Time Dataset IQR Median IQR Median 

Hourly 

GSMaP 1.61 2.94 0.13 0.12 

PDIR 1.27 2.64 0.16 0.24 

GSMaP_C 1.36 2.48 0.19 0.24 

PDIR_C 1.23 2.36 0.19 0.34 

Daily 

GSMaP 16.0 22.0 0.29 0.40 

PDIR 10.6 18.7 0.33 0.43 

GSMaP_C 10.3 16.9 0.29 0.53 

PDIR_C 8.5 15.2 0.29 0.57 
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Based Table 3, over the entire season, the PDIR dataset has lower rmse and higher 

correlation than GSMaP. This implies that PDIR rainfall estimates are closer in magnitude to 

rainfall gauges (lower rmse) and higher joint variability (higher correlation) with rainfall 

gauges over the entire season. The application of Barnes successive correction further lowers 

the rmse and increases the correlation for both PDIR and GSMaP. This implies that the 

Barnes successive correction nudges satellite rainfall grids closer towards rainfall gauge 

magnitude (lower rmse) and enhances joint variability with rainfall gauges (higher 

correlation).   

The daily rainfall rmse is higher than hourly rainfall rmse because of error 

accumulation from hourly to daily rainfall. Additionally, the squared error term in the rmse 

formula penalizes larger errors more than small errors. The daily rainfall correlation is also 

higher than hourly rainfall correlation. This could happen because the satellite can easily 

detect ground rainfall over several hours, that may be missed in a single hour.  
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 Figure 2a. The rmse of hourly rainfall across the season (01 November 2022 until 01 March 2023. 
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Figure 2b. The rmse of daily rainfall across the season (01 November 2022 until 01 March 2023). 
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Figure 3a. The correlation of hourly rainfall across the season (01 November 2022 until 01 March 2023).  
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Figure  3b. The correlation of daily rainfall across the season (01 November 2022 until 01 March 2023). 
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In addition to overall error analysis of seasonal rainfall (01 November 2022 – 01 

March 2023), error analysis based on categorical rainfall are performed over the same season. 

Therefore, the accuracy of PDIR, GSMaP and the effectiveness of Barnes can be evaluated on 

different categories of rainfall. Hourly rainfall categories are classified based on World 

Meteorological Organization, 2021b. Meanwhile, the intense, daily rainfall category was 

defined as greater than or equal to 150mm (Fakaruddin et al., 2020). From here, heavy, daily 

rainfall category was taken to be greater than or equal to 100 but less than 150mm. Then, 

moderate, daily rainfall category was taken to be greater than or equal to 50 but less than 

100mm. .  Rainfall classification in this study is summarized in Table 4.  

 

Table 4: Rainfall classification (based on gauge rainfall)  

Intensity Hourly (mm/hour) Daily (mm/day) 

Slight Less than 2.5 Less than 50 

Moderate Greater than or equal to 2.5, less 

than 10 

Greater than or equal to 50, less than 

100 

Heavy Greater than or equal to 10, less 

than 50 

Greater than or equal to 100, less than 

150 

Intense Greater than or equal to 50 Greater than or equal to 150 

 

The root mean square error (rmse) of satellite in relation to gauge is calculated for 

each rainfall classifications (Figures 4 and 5). Comparison of the rmse between GSMaP in 

relation to gauge, and the rmse between PDIR to gauge, is summarized in Table 5a. The 

contents of Table 5a are calculated based on Equation 9a:  

 

 

 

where  is the percentage of rmse change by rainfall category, 

 is the rmse of GSMaP in relation to gauge for the rainfall category, 

and  is the rmse of PDIR in relation to gauge for the rainfall category.  
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Table 5a: Comparison of rmse (in relation to gauge) between GSMaP and PDIR. Calculation 

based on Equation 9a above. Positive (negative) means GSMaP is less (more) accurate with 

respect to gauge, compared to PDIR.  

 Slight Moderate Heavy Intense 

Hourly -7% +16% +9% +8% 

Daily -5% +27% +28% +24% 

 

For slight rainfall (Table 5a), GSMaP has lower rmse than PDIR in relation to gauge. 

In hourly (daily) rainfall, GSMaP has -7% (-5%) lower rmse than PDIR. This means that 

GSMaP is closer to gauge rainfall than PDIR, because it has a smaller rmse in relation to 

gauge, than PDIR. In short, for slight rainfall, GSMaP is better than PDIR, in relation to 

gauge rainfall amounts.  

However, for moderate, heavy, and intense rainfall, instead PDIR is closer to gauge 

because it has lower rmse than GSMaP. Based on Table 5a,  GSMaP has more rmse than 

PDIR by 16%, 9%, 8% for hourly rainfall, and more rmse than PDIR by 27%, 28%, 24% for 

daily rainfall. This implies that PDIR is closer to gauge rainfall than GSMaP for moderate, 

heavy, and intense rainfall, because it has lower rmse than GSMaP (refer to Table 5a) in 

these categories. In short, PDIR is better than GSMaP, for moderate, heavy, and intense 

rainfall category, in relation to gauge rainfall amounts.  

 Meanwhile, Table 5b and Table 5c compares the rmse between satellite and satellite 

corrected by Barnes successive correction, for each rainfall category. The contents of Table 

5b and Table 5c are based on Equation 9b.  

 

   (9b) 

 

where  is the percentage change of rmse (relative to gauge) when Barnes 

successive correction is applied to the satellite,  is the rmse of satellite 

relative to gauge which has been corrected using Barnes successive correction, and 

 is the rmse of satellite relative to gauge (taken as is, not yet corrected by 

Barnes successive correction).  
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Table 5b. Change in rmse (relative to hourly gauge rainfall), after Barnes successive 

correction. Calculation is based on Equation 9b. Negative means Barnes successive 

correction increases the accuracy of satellite with respect to gauge.  

 GSMaP_C PDIR_C 

Hourly 

Slight -20% -19% 

Moderate -17% -9% 

Heavy -15% -6% 

Intense -6% -4% 

 

Table 5b and 5c indicates the percentage change in rmse (in relation to gauge) for 

satellite once Barnes successive correction is applied. Table 5b and 5c shows decreased 

percentage change (%) that are indicated by negative numbers. The reduction (negative) in 

rmse (in relation to gauge) seen in Table 5b and 5c indicates that Barnes successive 

correction reduces the difference between satellites and gauges. This is true for all categories 

of rainfall.  

For example, hourly (Table 5b) slight rainfall showed reduction of rmse relative to 

gauge around -20% for GSMaP_C and PDIR_C. Meanwhile, hourly moderate rainfall 

showed reduction of rmse relative to gauge by -17% and -9% for GSMaP_C and PDIR_C. 

For hourly heavy rainfall, around -15% and -6% reduction of rmse relative to gauge was 

observed in GSMaP_C and PDIR_C. Intense hourly rainfall showed reduction in rmse 

relative to gauge by of -6% and -4% for GSMaP_C and PDIR_C, when Barnes successive 

correction is applied.  

 Table 5c  shows the percentage change in rmse (in relation to gauge) for satellite daily 

rainfall. Table 5c is depicted as follows:  

 

Table 5c. Change in rmse (relative to daily gauge rainfall), after Barnes successive 

correction. Calculation is based on Equation 9b. Negative means Barnes successive 

correction increased the accuracy of satellite with respect to gauge.  

 GSMaP_C PDIR_C 

Daily 

Slight -30% -25% 

Moderate -23% -15% 

Heavy -20% -13% 

Intense -31% -22% 
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 Analysis of daily rainfall (Table 5c) shows that, in daily slight rainfall, around -30% 

(-25%) reduction in rmse relative to gauge, was seen in GSMaP_C (PDIR_C). For moderate 

daily rainfall, -23% (-15%) reduction in rmse relative to gauge, was seen in GSMaP_C 

(PDIR_C). For heavy daily rainfall, -20% (-13%) reduction in rmse relative to gauge, was 

seen in GSMaP_C (PDIR_C). Finally, in intense daily rainfall, reduction in rmse relative to 

gauge, was -31% (-22%) for GSMaP_C (PDIR_C). 

Barnes successive correction is more effective in reducing rmse relative to gauge, for 

daily rainfall than hourly rainfall. This is shown by the more negative percentage change in 

Table 5c compared to Table 5b. PDIR_C showed the least improvement in terms of rmse (in 

relation to gauge) when Barnes successive correction is applied. This is based on less 

negative percentage values on PDIR_C, than the GSMaP_C column. It implies that PDIR is 

already closer to gauge rainfall amounts, than GSMaP.  

 Table 5d shows the average rmse values (units of mm) for each rainfall category and 

time, in relation to gauge. Table 5d is depicted below: 

 

Table 5d: Average root mean square error (rmse) of hourly and daily rainfall by 

category. Brackets denote standard error of rmse.  

Time Category Slight Moderate Heavy Intense 

Hourly 

PDIR_C 1.3 (0.0) 5.1 (0.1) 16.6 (0.2) 55.2 (1.6) 

GSMaP_C 1.2 (0.0) 5.5 (0.1) 17.8 (0.2) 58.1 (1.4) 

PDIR 1.6 (0.1) 5.6 (0.1) 17.7 (0.2) 57.4 (1.5) 

GSMaP 1.5 (0.1) 6.7 (0.2) 19.5 (0.2) 61.9 (1.3) 

Daily 

PDIR_C 13.1 (0.4) 39.9 (1.1) 70.1 (3.5) 93.8 (7.4) 

GSMaP_C 12.9 (0.4) 50.8 (1.6) 83.0 (3.9) 109.2 (7.8) 

PDIR 17.4 (0.4) 47.9 (1.1) 81.0 (3.9) 119.8 (8.9) 

GSMaP 18.3 (0.6) 66.4 (2.5) 104.1 (5.6) 159.1 (9.6) 

 

The rmse values (mm) increases as rainfall intensity increases. In Table 5d, satellite 

rainfall  is not suitable for picking-up intense hourly rainfall. It is because, the lowest rmse 

(PDIR_C; intense) is more than 50mm per hour, and our definition of intense hourly rainfall 

is more than 50mm per hour (Table 4). A different measure of intense rainfall will be 

described. 
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Figure 4. The rmse of hourly rainfall by rainfall classification. Text underneath are average rmse and standard error of rmse (brackets). Refer to 

Table 4, for definition of slight, moderate, heavy, and intense rainfall. 
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Figure 5. The rmse of daily rainfall by rainfall classification. Text underneath is average rmse and standard error of rmse (brackets). Refer to 

Table 4. for definition of slight, moderate, heavy, and intense rainfall. 
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 The correlation coefficient of each rainfall category is shown in Figure 6. For intense 

rainfall, the correlation coefficient was not calculated because the criteria of having at least 

29 samples was not fulfilled. Meanwhile, for heavy rainfall events, PDIR has better 

correlation than GSMaP_NOW. This is obvious when the boxplot of PDIR is around one (1) 

quartile higher than GSMaP. It implies that PDIR is better than GSMaP, in terms of 

correlation relative to gauge, during heavy rainfall events recorded at gauge.  

 For moderate hourly rainfall (Figure 6), PDIR continued to show significantly higher 

correlation relative to gauge, compared to GSMaP. The 75th percentile (top of boxplot) for 

PDIR has nearly the same correlation as the maximum of GSMaP (top whisker). Meanwhile, 

the maximum correlation of PDIR (top whisker) is 0.54, which is around half again as high as 

GSMaP maximum correlation (0.35). The top whisker of the boxplot is the highest datum 

below the third quartile plus the interquartile range (IQR). Additionally, the median of PDIR 

is almost equivalent to the 75th percentile (3rd quartile) of GSMaP. It implies that PDIR is 

nearly one (1) quartile higher correlation, than GSMaP for moderate rainfall.  

 For slight hourly rainfall (Figure 6), there is a small improvement in PDIR 

(correlation relative to gauge), compared to GSMaP. In this case, the boxplot of PDIR is 

slightly higher by around 0.02 (correlation) compared to GSMaP. In the coming paragraphs, 

the impact of Barnes successive correction is discussed.  

 Barnes successive correction gave the most improvement for GSMaP_C relative to 

GSMaP. Figure 6 revealed that for each rainfall category, the boxplot of GSMaP (rightmost) 

goes up by one quartile when Barnes successive correction is applied (GSMaP_C). For 

example, in all three rainfall categories, the median GSMaP_C is close to the third quartile of 

GSMaP. Additionally, the third quartile of GSMaP_C is more than the maximum correlation 

of GSMaP in heavy and moderate rainfall.  

 Barnes successive correction also increase correlation for PDIR_C relative to PDIR. 

In slight rainfall, the correlation (relative to gauge) of PDIR increased by one quartile when 

Barnes successive correction is applied (PDIR_C). Based on Figure 6 (slight rainfall), the 

median of PDIR_C is equal to the third quartile of PDIR. Also, the third quartile of PDIR_C 

is higher than the third quartile of PDIR, in slight rainfall. Minor improvement of around 0.02 

correlation is seen in moderate rainfall, over each quartile of PDIR_C over PDIR. For heavy 

rainfall, Barnes successive correction increased the maximum, third quartile, and median 

correlation of PDIR_C over PDIR.  
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Figure 6. Pearson correlation for hourly rainfall for each category. Average correlation is at the bottom of boxplot and standard error in brackets. 

Reference for the definition of slight, moderate, heavy, and intense rainfall is in Table 4.   
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3.2 Analysis of Rainfall Amount and Percentile 

 The rainfall amount is a crucial input for issuing flood warning. Diakakis (2010) 

studied rainfall amount observed by a gauge network and proposed that rainfall threshold can 

be defined above which flooding is highly probable. Huang et al., (2019) reported that 

rainfall amount (mm) is the primary input for rainfall-runoff models.  

 Although rainfall amount (mm) in a unit of time (hour or day) is crucial for 

hydrologists, satellites might not be able to capture the exact rainfall amount as gauge. This is 

because of error from satellite measurement. A possible source of error in GSMaP include 

inconsistencies in 0.5h-forward cloud motion with rain motion, in areas of strong wind shear 

(Kubota et al., 2020).  

 Satellite cannot capture the exact hourly rainfall amount as gauge. For instance, as 

clearly depicted in Figure 8, the 95th percentile rainfall amount is 16.2 mm per hour (gauge), 

but for satellite, it is 6.4 mm per hour (PDIR) and 5.7 mm per hour (GSMaP). To solve this 

issue, the rainfall percentile (%) rather than amount (mm) is used for validation. For example, 

if gauge showed 50mm of rainfall corresponding to 95th percentile, and satellite measurement 

at gauge showed 25mm of rainfall corresponding to 95th percentile, then it is considered a hit. 

The probability of detection (POD) measures the ‘hit’. The POD is the proportion of gauge 

rainfall picked up by satellite (refer to Section 2.5 for more details on POD).  

 Figure 9 depicts validation of hourly rainfall using percentile (%). The probability of 

detecting (POD) gauge rainfall corresponding to the 95th percentile rainfall is just around 0.10 

(PDIR_C). Refer to Figure 9 for a clear illustration. . This indicates that only 10% of gauge 

rainfall of at least 95th percentile is successfully picked-up by satellite. Without Barnes 

successive correction, the POD drops to 0.03 (PDIR).The GSMaP showed negligible POD for 

the 95th percentile rainfall. This implies that satellite performed rather poorly in detecting 

hourly extreme events.  

One reason for poor performance is due to cross-validation. Here, gauges that are 

used in validation is not involved in correction of the satellite data. The number of gauges to 

correct satellite data is reduced, leading to lower validation scores. The performance without 

cross-validation (where gauges used in correction is also involved in validation) is 

substantially better (not shown). However, cross-validation is important because it represents 

actual grid points without or in-between gauges.  

 Consequently, we infer that the inability of satellite measurements to pick up hourly 

rainfall is not solely because of rainfall amount mismatch between gauge and satellite. 

Otherwise, the POD for hourly rainfall (in units of percentiles) would not be so poor.  
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The satellite rainfall may miss rainfall at gauge location. To an extent, Barnes successive 

correction can alleviate this issue, as indicated by POD tripling to 0.10 for PDIR_C (Figure 

9).  

  On the other hand, Figure 10. showed that satellite can pick up daily rainfall 

reasonably well. The probability of detecting (POD) rainfall corresponding to the 95th 

percentile is around 0.90 (0.65) for PDIR_C (PDIR). The GSMaP fared worse, whereby POD 

is just 0.35. The satellite performed better for daily rainfall. For example, if satellite missed 

rainfall at gauge X in hour Y1, the satellite may hit in gauge X in future times of Y1 – Y24. 

On the other hand, for hourly rainfall, if satellite missed gauge X in hour Y1, it will be 

counted as a miss, no second chances.  

 Meanwhile, the False Alarm Ratio (FAR) is proportion of satellite detected rainfall 

while gauge showed no rainfall. The FAR for daily rainfall is shown in Figure 11, which 

shows considerable false alarms. For example, if there are 15 gauges reporting extreme 

rainfall (95th percentile), PDIR_C can successfully detect 14 of them (around 90%). However, 

the PDIR_C also detected extreme rainfall events at 70 gauges, out of which only 14 are true 

(20% are true; 80% false alarms). This implies that PDIR_C (and other satellite datasets 

which have high FAR as well) may consistently overestimate higher rainfall, as described 

above.  
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Figure 8. Ranked percentiles of hourly rainfall amount based on 304 gauges from 01 November 2022 – 01 March 2023.  

95th Percentile of Gauge: 16.2mm 

95th Percentile of PDIR: 6.4mm 

95th Percentile of GSMaP: 5.7mm 

95 
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Figure 9. Probability of detection (POD) of satellite hourly rainfall in relation to hourly gauge rainfall; categorized by percentile (%). 

95th percentile POD of PDIR_C = 0.10 

95th percentile POD of PDIR = 0.03 

95 
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Figure 10. Probability of detection (POD) for satellite daily rainfall in relation to daily gauge rainfall; categorized by percentile (%).  

POD for Daily PDIR_C is nearly 0.90.  

95 

POD for Daily PDIR is nearly 0.65.  

POD for Daily PDIR is nearly 0.35.  
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Figure 11. The false alarm ratio (FAR) of satellite daily rainfall in relation to daily gauge rainfall; categorized by percentile.  

95 

FAR of PDIR_C for daily rainfall is around 0.80. 
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4. Conclusion 

 In this study, two satellite rainfall estimation datasets, namely PDIR and GSMaP are 

evaluated with respect to hourly and daily accumulated rainfall measured by rainfall gauges. 

The impact of applying Barnes successive correction is also evaluated. The method of 

evaluation used is ten-fold cross-validation and the metrics of evaluation used are the root-

mean-square-error, Pearson correlation coefficient, probability of detection (POD), and false 

alarm ratio (FAR).  

 Validation is performed for the overall season (01 Nov 2022 – 01 Mar 2023). 

Subsequent validation is performed for slight, moderate, heavy, and intense rainfall for the 

overall season, to determine how well the gridded satellite performs in various types of 

rainfall. In the overall season and subsequent rainfall categories, it was generally observed 

that the PDIR has lower rmse compared to GSMaP. Additionally, PDIR has higher co-

variability with rainfall gauges because it has higher correlation in relation to gauge, 

compared to GSMaP. Application of Barnes successive correction further reduces the rmse 

and increases the correlation of satellite rainfall with respect to gauge.  

 However, the relatively high rmse for both daily and hourly rainfall confirms that 

satellite may not necessarily detect the exact amount of rainfall observed by gauges. This may 

be due to biases in rainfall amount because of satellite errors. To remove the impact of biases 

in rainfall amount, the rainfall amounts of gauge and satellite are converted to percentiles for 

categorical validation.  

 The probability of detection (POD) for hourly rainfall is still low (0.10 for 95th 

percentile rainfall). It implies that satellite performs poorly in detecting hourly extreme 

rainfall. A possible cause of error is geometric error (Janowiak et al., 2001) where satellite 

line of sight is obscured by other clouds. This issue is more acute the further away from the 

satellite nadir. A possible method of investigating this issue in a future study, is by measuring 

the POD of extreme rainfall events at gauge, as a function of distance from satellite nadir. It 

is also important to note if the POD decreases when there are heavy rainfall events between 

the event and the satellite nadir.  

Nevertheless, the POD for daily rainfall is high (around 0.90 detecting for the 95th 

percentile rainfall gauge rainfall), using PDIR_C. Therefore, the PDIR_C may be more suited 

for monitoring extreme rainfall (95th percentile) daily rather than hourly basis. It is more 

suitable for daily climate indices using the 95th percentile daily rainfall. 

 In addition, the false alarm ratio (FAR) of hourly and daily rainfall is high in PDIR_C, 

GSMaP_C, GSMaP, and PDIR. A possible cause of higher FAR could be as follows: the 
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further away from the satellite nadir, the viewing angle is bigger, and clouds are more spread 

out than if viewed overhead (Janowiak et al., 2001). This may cause larger area of cloud 

cover than actual. In addition, Infra-red rays suffer more attenuation as the atmospheric 

optical depth is deeper (Janowiak et al., 2001). It is possible that larger apparent cloud 

coverage and attenuation of IR, leads to cooler IR temperatures for areas far away from the 

satellite nadir. This corresponds to satellite measuring rainfall that is more intense and 

widespread than actual, leading to false alarms. This hypothesis can be analysed in further 

studies. A possible experiment is to measure the false alarm ratio (FAR), rate of change with 

respect to distance from satellite nadir.   

 To improve the performance of satellite rainfall measurement, the gauge density can 

be increased, which allows satellite data to be adjusted with respect to more gauges, via 

Barnes successive correction. In addition, enhancing the resolution of satellite datasets helps 

increase detectability of rainfall events. The SEMDP is moving in this direction, for example, 

the upcoming CMORPH2 near-real-time dataset has 0.05 degrees in resolution, which is 

about 5km by 5km. This is an improvement from the 8km-by-8km resolution of CMORPH 

(Xie et al., 2022).   

 It was shown that for purposes of rainfall monitoring, using PDIR gives higher 

accuracy in relation to gauges rainfall than GSMaP. Furthermore, applying Barnes successive 

correction adds to the accuracy (in relation to gauge rainfall), of PDIR and GSMaP. In the 

case of daily rainfall (rmse, correlation), and hourly rainfall (correlation), the rmse 

(correlation) is reduced (increased) by nearly one quartile, when Barnes successive correction 

is applied.  

Nonetheless, the accuracy of satellite hourly rainfall amounts in relation to gauges 

leaves much to be desired, as shown by the high rmse, and low probability of detection 

(POD). This is true, even when Barnes successive correction is applied. In addition, the 

satellite tends to overestimate extreme daily rainfall. Further improvements from the present 

state, such as by increasing the size of the gauge network, and efforts by satellite providers to 

increase resolution, may close the gap between gauges and satellite rainfall.   
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