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Abstract
It is hypothesized that there are inter-individual differences in biological aging; however,
differences in aging among (heart images vs. electrophysiology) and across (e.g., brain vs
heart) physiological dimensions have not been systematically evaluated and compared. We
analyzed 676,787 samples from 502,211 UK Biobank participants aged 37-82 years with deep
learning approaches to build a total of 331 chronological age predictors on different data
modalities such as videos (e.g. heart magnetic resonance imaging [MRI]), images (e.g. brain,
liver and pancreas MRIs), time-series (e.g. electrocardiograms [ECGs], wrist accelerometer
data) and scalar data (e.g. blood biomarkers) to characterize the multiple dimensions of aging.
We combined these age predictors into 11 main aging dimensions, 31 subdimensions and 84
sub-subdimensions ensemble models based on specific organ systems. Heart dimension
features predict chronological age with a testing root mean squared error (RMSE) and standard
error of 2.83±0.04 years and musculoskeletal dimension features predict age with a RMSE of
2.65±0.04 years. We defined “accelerated” agers as participants whose predicted age was
greater than their chronological age and computed the correlation between these different
definitions of accelerated aging. We found that most aging dimensions are modestly correlated
(average correlation=.139±.090) but that dimensions that are biologically related tend to be
more positively correlated. For example, we found that heart anatomical (from MRI) accelerated
aging and heart electrical (from ECG) accelerated aging are correlated (average Pearson of
.249±.005). Overall, most dimensions of aging are complex traits with both genetic and
non-genetic correlates. We identified 9,697 SNPs in 3,318 genes associated with accelerated
aging and found an average GWAS-based heritability for accelerated aging of 26.1±7.42% (e.g.
heart aging: 35.2±1.6%). We used GWAS summary statistics to estimate genetic correlation
between aging dimensions and we found that most aging dimensions are genetically not
correlated (average correlation=.104±.149). However, on the other hand, specific dimensions
were genetically correlated, such as heart anatomical and electrical accelerated aging (Pearson
rho .508±.089 correlated [r_g]). Finally, we identified biomarkers, clinical phenotypes, diseases,
family history, environmental variables and socioeconomic variables associated with accelerated
aging in each aging dimension and computed the correlation between the different aging
dimensions in terms of these associations. We found that environmental and socioeconomic
variables are similarly associated with accelerated aging across aging dimensions (average
correlations of respectively .639±.180 and .607±.309). Dimensions are weakly correlated with
each other, highlighting the multidimensionality of the aging process. Our results can be
interactively explored on the following website: https://www.multidimensionality-of-aging.net/
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Background

The United Kingdom population is aging because of low fertility rate and improved healthcare

during the last century1. The same trend can be observed in the US2 and worldwide3–15. For

example, the number of Americans older than 85 years is expected to triple before 205016.

Because a large number of diseases such as cardiovascular disease [CVD], hypertension,

cancer, osteoarthritis, type 2 diabetes, osteoporosis, dementia, depression, Parkinson’s disease

and Alzheimer’s disease are associated with age16–21, it is expected that their prevalence will

increase. The burden of these diseases negatively impacts the quality of life of the elderly22–24,

limits the gains in life expectancy23,25,26, and strongly affects healthcare costs, which are

therefore projected to starkly increase in the coming decades 1,27,28.

To reduce the burden of age-related diseases, two strategies can be undertaken in parallel. The

first is to develop treatments for the different diseases, and the second is to target their common

root by slowing aging29–34. To better explain what slowing aging entails, we introduce the concept

of biological age. When we casually refer to age, we refer to what will be described in this paper

as “chronological age” [CA]. CA is simply the measure of how much time has passed since an

individual was born and is not, in and of itself, the cause of age-related diseases. In contrast,

biological age is the measure of how much damage and wear and tear the body has

accumulated over time and is the true underlying cause of age-related diseases35. Accelerated

agers are individuals whose biological age is higher than their CA. While biological age is an

intuitive concept, accurately defining it and measuring it is a challenging task35.
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Several aging biomarkers such as telomere length36–44 have already been identified45–64, and

biological age predictors such as the DNA methylation clock65–68 have been built from them. We

discuss these existing biological age predictors more in detail in the supplemental.

Aging may be a “multidimensional” process whose manifestation may be organ- or

tissue-specific69. As the number of biological age predictors have increased, it became clear that

the predictors were not all capturing the same facets of aging35. If they were, being an

accelerated ager in terms of telomere length would be highly correlated with being an

accelerated ager in terms of DNA methylation, for example. Instead, these two aging

dimensions seem to be largely uncorrelated70. More generally, it seems that most aging

dimensions evaluated so far are either uncorrelated, weakly positively correlated, or even

weakly negatively correlated71,72. While studying the multidimensionality of aging is a rapidly

emerging field71–82, extensively studying the multidimensionality of aging is, however, a

challenging task because most datasets only provide data from a specific organ system.

Second, the analytic models required to build biological predictors of age are complex and

training some of the models such as the convolutional neural networks requires expertise 83,84

and use of large computational resources for extended periods of time.

In the following, we leveraged 676,787 samples from 502,211 UK Biobank85 [UKB] participants

aged 37-82 years old to investigate the multidimensionality of aging. We built 331 age predictors

that we then hierarchically ensembled into 11 aging main dimensions and 17 subdimensions,

based on the organ system to which we assigned the predictive biomarkers. Then, we

investigated the genetic and environmental components of these 28 aging dimensions by
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performing a Genome Wide Association Study [GWAS] and X-Wide Association Study [XWAS]86

on the 28 accelerated aging phenotypes, respectively. Finally, we evaluated how these different

aging dimensions correlate. We computed the correlation between the 28 accelerated aging

phenotypes before computing the genetic correlation, and the environmental correlation

between these phenotypes.
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Results

Overview of the dataset

We leveraged the UK Biobank [UKB], a dataset of 676,787 samples covering 502,211

participants, with an age range of 37 to 82 years (Supplementary Figure 1). We hierarchically

classified the biological data modalities collected from these participants (Figure 1) into 11 main

aging dimensions, 31 subdimensions and 84 sub-subdimensions (Table 1). The general

philosophy behind this three-level hierarchy is that the main dimensions represent aging of

different organ systems, such as the brain, eyes, arteries, heart and bones. The sub-dimensions

represent different facets of aging for one of the main dimensions. For example, heart aging

encompasses both anatomical aging, captured by MRI videos, and electrical aging, captured by

ECGs. Finally, the sub-sub dimensions represent different views or data preprocessing of the

same subdimension. For example, heart anatomical aging is captured by MRI videos taken

under three different views (two-chamber, three-chamber and four-chamber views) and using

two different preprocessing methods (raw images and contrasted images). We tried to stick to

this organization as much as possible, but we had to make exceptions for some of the datasets.

For example, brain cognitive is a subdimension for which a large number of different measures

were collected by UKB, such as reaction time tests, memory tests and fluid intelligence tests.

Therefore, we treated these different facets of cognitive performance as sub-subdimensions,

even though they are not different views and preprocessing of the cognitive subdimension.
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The datasets can also be classified into four different data modalities: (1) scalar features

(non-dimensional variables such as laboratory results), (2) time-series (one-dimensional

variables such as ECGs), (3) images (two-dimensional variables such as Liver MRI) and (4)

videos (three-dimensional predictors such as heart MRI videos).

Figure 1: Overview of the different UK Biobank data modalities leveraged to build

chronological age predictors

Table 1: Hierarchy between the different aging dimensions, subdimensions and

sub-subdimensions
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Legend: Green - Scalar biomarkers; Red - Time Series; Blue - Images; Purple - Videos; Gray -

Mixed types

Main dimension Subdimension Sub-subdimension Sample sizes

Brain

All Scalars 25,267

*Cognitive

AllScalars 34,055

ReactionTime 561,530

MatrixPatternCompletion 35,717

TowerRearranging 35,423

SymbolDigitSubstitution 35,705

PairedAssociativeLearning 36,139

ProspectiveMemory 240,536

NumericMemory 86,809

FluidIntelligence 226,649

TrailMaking 36,139

PairsMatching 566,898

*MRI

AllScalars 38,926

dMRIWeightedMeans 38,932

SubcorticalVolumes 41,182

GreyMatterVolumes 41,194

SagittalRaw 38,840

SagittalReference 39,690

CoronalRaw 38,840

CoronalReference 39,690

TransverseRaw 38,840

TransverseReference 39,690

Eyes

All Scalars 93,651

Autorefraction Scalars 97,863

Acuity Scalars 134,881

IntraocularPressure Scalars 130,209

*Fundus Raw 84,468

*OCT Raw 87,669

Hearing HearingTest Scalars 229,410

Lungs Spirometry Scalars 425,467
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Arterial

All Scalars 40,122

BloodPressure Scalars 565,926

*PulseWaveAnalysis
Scalars 233,388

TimeSeries 234,837

*Carotids

Scalars 47,846

Mixed 8,660

LongAxis 8,689

CIMT120 8,947

CIMT150 8,950

ShortAxis 8,701

Heart

All Scalars 17,028

*ECG
Scalars 21,800

TimeSeries 44,417

*MRI

AllScalars 35,490

Function 40,601

PulseWaveAnalysis 42,156

2chambersRaw 46,087

2chambersContrast 46,087

3chambersRaw 46,087

3chambersContrast 46,087

4chambersRaw 46,087

4chambersContrast 46,087

3chambersRawVideo 45,898

4chambersRawVideo 45,921

34chambersRawVideo 45,875

Abdomen

*Liver
Raw 45,552

Contrast 45,552

*Pancreas
Raw 36,784

Contrast 36,784

Musculoskeletal

*Spine
Sagittal 40,976

Coronal 41,058

*Hips DXA 42,146

*Knees DXA 39,809

*FullBody
Mixed 42,164
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Figure 42,164

Skeleton 42,164

Flesh 42,164

*Scalars

AllScalars 486,642

Anthropometry 565,714

Impedance 561,408

HeelBoneDensitometry 495,664

HandGripStrength 568,286

PhysicalActivity
FullWeek

Scalars 99,862

Acceleration 78,661

TimeSeriesFeatures 98,222

GramianAngularField1minDiff
erence

99,456

GramianAngularField1minSu
mmation

99,456

MarkovTransitionField1min 99,456

RecurrencePlots1min 99,456

Walking 3D 98,215

Biochemistry

All Scalars 74,573

*Urine Scalars 158,381

*Blood Scalars 245,147

BloodCells BloodCount Scalars 489,079

Definition of biological aging and accelerated aging

We used machine learning algorithms to predict chronological age [CA] from each of the 84

sub-subdimensions. We analyzed scalar features with elastic nets [ENs], gradient boosted

machines [GBMs] and neural networks [NNs]. We analyzed time series, images and videos with

respectively one-dimensional, two-dimensional and three-dimensional convolutional neural

networks [CNNs]. We hierarchically ensembled the predictions to build CA predictors for each
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biological dimension, subdimension, and sub-subdimension. We used a 10-folds

cross-validation to generate an unbiased testing prediction for each sample.

For each aging dimension, we estimated each participant’s biological age in this dimension as

the testing prediction outputted by the corresponding ensemble model. Similarly, we calculated

the accelerated aging for each participant in each aging dimension by taking the difference

between the participant’s chronological age and biological age (the prediction residuals

computed on the testing set). For example, we estimated the heart age for a participant as the

testing prediction generated by the ensemble model built on all the heart data modalities. A

participant with a chronological age of 50 years and a biological heart age of 60 years has an

accelerated heart age of ten years. We observed a bias in the residuals as a function of

chronological age. Young participants are on average predicted older than they are, whereas old

participants are on average predicted younger than they are. We corrected both the biological

ages and the accelerated aging phenotypes for the bias.

In total, we estimated 331 dimensions or definitions of biological age made available as

phenotypes to other researchers through the UK Biobank.

Phenotypic, genetic and environmental correlation between the

different aging dimensions

Phenotypic correlation between aging dimensions

We estimated the phenotypic correlation structure between the 331 aging dimensions by

computing the correlation matrix between the different accelerated aging phenotypes (Figure 2).
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The correlation matrix between the 11 aging main dimensions and 17 selected aging

subdimensions along its hierarchical structure can be found in Figure 3. The average Pearson

correlation between the 331 aging dimensions is .156±.149, based on 54,615 correlations

(min=-.185; max = 1.000; median=.095; interquartile range=.116). The minimum correlation is

-.185, the maxThis average number does not capture the structure within and between the

hierarchy of the dimensions. We identified six levels in the hierarchy of the models: the main

biological dimensions (mean correlation .139±.090; 55 correlations), the biological

subdimensions (mean correlation .247±.135; 22 correlations), the biological sub-subdimensions

(mean correlation .387±.094; 51 correlations), the different views of the same dimension (mean

correlation .541±.161; 59 correlations), the images preprocessing methods (mean correlation

.658±.083; 18 correlations) and the algorithms (mean correlation .838±.120; 158 correlations). In

general, the correlation between the accelerated aging dimensions increases as one goes down

the hierarchy, since the models on which the predictors were built become more and more

similar. This hierarchy in terms of correlation between the different models can for example

clearly be observed for the brain accelerated aging dimensions (Supplementary Figure 2).
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Figure 2: Phenotypic correlation between accelerated aging as defined by each of the 331

models

The correlation heatmap displays the Pearson correlation between accelerated aging for each

pair of aging dimensions. The x and y axes are hierarchically organised to display the aging

main dimensions at the higher level, then the aging subdimensions, and finally the aging

sub-subdimensions. Each aging subdimension corresponds to several rows and columns
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because of the different algorithms that were trained to predict chronological age from this

dataset. For the sake of readability, these are not displayed.

Figure 3: Phenotypic correlation between accelerated aging in the main aging

dimensions and 17 selected aging subdimensions
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The gray box highlights the correlation between accelerated heart aging and accelerated eye

aging. The black box highlights the correlation between accelerated heart aging and accelerated

arterial aging.

The first level is the correlation between the 11 main aging dimensions, such as accelerated

brain aging, eye aging, heart aging, arterial aging and musculoskeletal aging. We found that the

11 aging main dimensions are weakly correlated with an average correlation of .139±.090 (55

correlations). For example, eye accelerated aging and heart accelerated aging are .100±.012

correlated (see gray box in Figure 3). We found that accelerated aging dimensions built on

biologically similar datasets tend to be more correlated. For example, arterial accelerated aging

and heart accelerated aging are .260±.160 correlated (see black box in Figure 3).

The second level is the correlation between biologically driven subdimensions. For example,

brain aging encompasses both cognitive aging and anatomically measured (MRI-based) aging.

We found that the average correlation between biologically driven aging subdimensions is

.247±.135 (22 correlations). Specifically, brain subdimensions (cognitive and anatomical, one

correlation) are .113 correlated, eye subdimensions (fundus, OCT, intraocular pressure,

autorefraction and acuity) are .211±.119 correlated (10 correlations), arterial subdimensions

(carotids ultrasounds and pulse wave analysis recorded on the finger) are .203 correlated (one

correlation), heart subdimensions (anatomical and electrical) are .248 correlated (one

correlation), abdomen subdimensions (liver and pancreas) are .539 correlated (one correlation),

musculoskeletal subdimensions (spine, hips, knees, full body and scalar predictors) are

.272±.130 correlated (10 correlations), physical activity subdimensions (full week and walking)
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are .309 correlated (one pair) and biochemistry subdimensions (blood and urine) are .090

correlated.

The third level is the correlation between biologically related sub-subdimensions. For example,

brain cognitive is a subdimension of brain aging that encompasses ten sub-subdimensions such

as reaction time and fluid intelligence. We found that the average correlation between

biologically driven aging sub-subdimensions is .387±.094 (51 correlations). Specifically, brain

cognitive sub-subdimensions (reaction time, matrix pattern completion, tower rearranging,

symbol digit substitution, paired associative learning, prospective memory, numeric memory,

fluid intelligence, trail making and paris matching) are .391±0.098 correlated (45 correlations)

and musculoskeletal sub-subdimensions (anthropometry, impedance, heel bone densitometry

and hand grip strength) are .345±.092 correlated (6 correlations).

The fourth level is the correlation between different views of the same aging dimensions. For

example, we used brain MRI images from the sagittal, the coronal and the transverse planes,

and the information contained in the 3D MRI images were also summarized by UKB in three

sets of scalar features: diffusion MRI weighted means, subcortical volumes and gray matter

volumes. We found that the average correlation between different views of the same dimension

is .541±.161 (59 correlations). Specifically, brain MRI-based views (sagittal plane, coronal plane,

transverse plane, diffusion MRI weighted means, subcortical volumes and gray matter volumes)

are .499±.062 correlated (18 correlations), arterial pulse wave analysis views (raw time series

and scalar features extracted from these time series) are .634 correlated (one correlation),

carotid ultrasound views (short axis, long axis, CIMT120, CIMT150) are .392±.167 correlated

(10 correlations), heart ECG views (time series and scalar features extracted from these time
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series) are .439 correlated (one correlation), heart MRI views (two-chamber, three-chamber and

four-chamber views) are .542±.067 correlated (six correlations), musculoskeletal spine views

(sagittal and coronal) are .487 correlated (one pair), musculoskeletal full body views (flesh and

figure) are .543 correlated (one correlation) and physical activity full week views (raw

acceleration times series, features time series, scalar features extracted from the time series,

Gramian angular field (difference and summation) generated from the time series, Markov

transition field generated from the time-series and recurrence plot generated from the time

series) are .693±.111 correlated (21 correlations).

The fifth level is the correlation between different preprocessings on the same data. For

example, we used both raw heart MRI images, and the same images on which we applied a

contrast filter. We found that the average correlation between image preprocessing is .658±.083

(18 pairs). Specifically, we found that raw and “reference” (the video is summarized into a single

time frame) brain MRI images are .547±.026 correlated (six correlations), raw and contrasted

images are .714±.021 correlated (10 correlations) and full body “figure” and skeleton (figure

images with the silhouette around the skeleton removed) images are .714±.004 correlated (two

correlations).

The sixth (and last) level is the correlation between different algorithms trained on the same

dataset. We found that the average correlation between algorithms is .838±.120 (158

correlations). Specifically, elastic net and light GBM are .837±.113 correlated (41 correlations),

elastic net and neural network are .859±.11 correlated (41 correlations), light GBM and neural

network are .908±.075 correlated (41 correlations) and InceptionV3 and InceptionResNetV2 are

.731±.111 correlated (35 correlations).
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We did not identify any negative correlations between the 28 selected aging dimensions. When

considering the 331 aging dimensions, we found that 2.1% (116 out of 54,615) of the pairwise

correlations were negative. These low correlations tend to be driven by small sample size

and/or poor prediction performance by at least one of the two models. For example, the lowest

correlation (-0.234, between the ensemble model built on datasets from UKB’s first instance and

a full week physical activity-based predictors) has a sample size of 97 (mean sample size for the

correlations: 42,371). If we discard this cluster of negative correlations, the next lowest

correlation is -.136 (correlation between accelerated aging as defined by the elastic net built on

heart function scalar data (R2=0.9±0.1%) and accelerated aging as defined by the elastic net

built on blood counts (R2=5.8±0.1%)).

Genetic correlation between aging dimensions

We computed genetic correlations between the aging dimensions and hierarchically clustered

them (Figure 4). After filtering out the correlations for which the sample size was smaller than

15,000 participants, we found that the average genetic correlation between the 11 main

dimensions is .104±.149 (18 correlations). The highest genetic correlation is between

musculoskeletal aging and abdominal aging (.573±.042). The next three highest correlations are

approximately .2 (heart and blood cells: .200±.105; hearing and physical activity: .189±.09;

musculoskeletal and brain: .186±.062). The remaining correlations are lower than .15. We found

four negative correlations, none of them being significantly negative. For example, the genetic

correlation between accelerated eye aging and accelerated hearing aging is -.035±.044.
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Figure 4: Genetic correlation between the main aging dimensions and 17 selected aging

subdimensions.

*instances23 and *instances1.5x models denote ensemble models built across several main

aging dimensions. For example, *instances23 refers to the model that we built on datasets

primarily issued from instances 2 and 3 of the UKB dataset. See Methods for more detail.
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We then computed the genetic correlations between the different subdimensions of each main

dimension, and we found an average correlation of .338±.255 (15 correlations). We found that

the subdimensions of the main dimensions brain and biochemistry are uncorrelated (brain:

anatomical and cognitive accelerated aging are .019±.056 correlated; biochemistry: blood and

urine accelerated aging are -.080±.043 correlated). In contrast, we found that the

subdimensions of abdominal aging are strongly correlated (liver and pancreas: .863±.036),

along with the subdimensions of heart aging (anatomical and electrical: .508±.089) and the

subdimensions of eye aging (OCT-based and fundus-based: .299±.025). Finally, we found that

the image-based subdimensions of musculoskeletal aging (full body, spine, hip and knee) are

.494±.064 correlated (six correlations), whereas the scalar features-based musculoskeletal

subdimension (anthropometry, impedance, heel bone densitometry and hand grip strength) is

only .126±.098 correlated (four correlations) with the images-based musculoskeletal

subdimension.

Comparison between phenotypic and genetic correlations between aging dimensions

For each pair of aging dimensions, we compared the genetic correlation with the phenotypic

correlation (computed using the corrected chronological age prediction residuals). After filtering

out the correlations for which the sample size was lower than 15,000 samples (because of the

associated high standard deviation on the genetic correlation measure), we found that the

Pearson correlation between the genetic and the phenotypic correlations is .781 for the main

aging dimensions and .936 for the aging subdimensions. The correlation between aging

dimensions for which the difference between phenotypic correlation and genetic correlation is

the highest in absolute value is the correlation between brain cognitive aging and hearing aging

(difference: -.392±.070; phenotypic correlation: .351±.005; genetic correlation: .743±.070).
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Correlation between aging dimensions in terms of association with

biomarkers, clinical phenotypes, diseases, family history, environmental

variables and socioeconomics

We use “X” to refer to all nongenetic variables measured in the UK Biobank (biomarkers, clinical

phenotypes, diseases, family history, environmental and socioeconomic variables). We

performed an X-Wide Association Study [XWAS] to identify which of the 4,372 biomarkers

classified in 21 subcategories (Supplementary Table 6), 187 clinical phenotypes classified in 11

subcategories (Supplementary Table 11), 2,073 diseases classified in 26 subcategories

(Supplementary Table 16), 92 family history variables (Supplementary Table 21), 265

environmental variables classified in nine categories (Supplementary Table 24), and 91

socioeconomic variables classified in five categories (Supplementary Table 29) are associated

(p-value threshold of 0.05 and Bonferroni correction) with accelerated aging in the selected 28

dimensions. The XWAS results are described further below under Results - Identification of

nongenetic factors associated with accelerated aging.

We compared these associations across the different aging dimensions to understand if

X-variables associated with accelerated aging in one aging dimension are also associated with

accelerated aging in another aging dimension. For example, in terms of environmental

variables, are the diets that protect against heart aging the same as the diets that protect

against brain aging?

We found that the average correlation between main aging dimensions is .359±.229 in terms of

biomarkers, .643±.142 in terms of associated clinical phenotypes, .488±.198 in terms of
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diseases, .030±.519 in terms of family history, .639±.180 in terms of environmental variables

and .607±.309 in terms of socioeconomics.

We found that the average correlations between the aging main dimensions are higher than the

average correlations between the aging subdimensions (Supplementary Figure 3 and

Supplementary Table 1). For a greater level of detail, the average correlation between the aging

main dimensions and between the aging subdimensions for each of the six main X-categories

and their associated 73 X-subcategories can respectively be found in Figure 5 and

Supplementary Figure 4. We summarize the key result for each of the six main X-categories

below. Finally, the website can be used to display these different correlations between each

specific pair of aging dimensions. For the sake of the example, we provide the correlations

between brain aging and heart aging in terms of the different X-associations in

Supplementary Figure 5.

Figure 5: XWAS Summary - Average correlation between aging main dimensions for each

X-subcategory

 . CC-BY-NC 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted April 26, 2021. ; https://doi.org/10.1101/2021.04.25.21255767doi: medRxiv preprint 

https://doi.org/10.1101/2021.04.25.21255767
http://creativecommons.org/licenses/by-nc/4.0/


Finally, we predicted accelerated aging in the different aging dimensions from the non-genetic

variables, as reported under Results - Predicting accelerated aging from biomarkers, clinical

phenotypes, diseases, environmental variables and socioeconomic variables. We computed the

correlation between the different aging dimensions in terms of feature importance

(Supplementary Figure 6). The detailed results can be found on the website.

Biomarkers

We found that the average correlation between accelerated aging main dimensions and

between accelerated aging subdimensions in terms of associated biomarkers are respectively

.359±.229 and .656±.309 (Supplementary Figure 7). We found that the three biomarker

categories with the highest average correlation between aging main dimensions are cognitive

fluid intelligence (.729±.319), cognitive paired associative learning (.640±.449) and brain MRI

weighted means (.628±.301). Conversely, we found that the three biomarker categories with the

lowest average correlation between aging main dimensions are cognitive symbol digits

substitution (-.154±.998), cognitive reaction time (-.091±1.005) and hand grip strength

(-.091±1.005).

Clinical phenotypes

We found that the average correlation between accelerated aging main dimensions and

between accelerated aging subdimensions in terms of associated clinical phenotypes are

respectively .643±.142 and .668±.336 (Supplementary Figure 8). We found that the three clinical

phenotypes categories with the highest average correlation between aging main dimensions are

general health (.820±.169), claudication (.799±.186) and mouth (.614 ±.507). Conversely, we

found that the three clinical phenotypes categories with the lowest average correlation between
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aging main dimensions are hearing (.283±.346), breathing (.345±.947) and cancer screening

(.371±.650).

Diseases

We found that the average correlation between accelerated aging main dimensions and

between accelerated aging subdimensions in terms of associated diseases are respectively

.488±.198 and .585±.187 (Supplementary Figure 9). We found that the three disease categories

with the highest average correlation between aging main dimensions are medical diagnoses F -

mental diseases (.756±.130), medical diagnoses Z - diverse diseases (.646±.251) and medical

diagnoses I - cardiovascular diseases (.612±.327). Conversely, we found that the three disease

categories with the lowest average correlation between aging main dimensions are medical

diagnoses X - diseases linked to exposure, poisoning, assault and others (-.194±.592), medical

diagnoses B - infectious diseases (-.053±.593) and medical diagnoses U - drug resistance and

others (.123±.509).

Family history

We found that the average correlation between accelerated aging main dimensions and

between accelerated aging subdimensions in terms of associated family history are respectively

.030±.519 and .728±.397.

Environmental variables

We found that the average correlation between accelerated aging main dimensions and

between accelerated aging subdimensions in terms of associated environmental variables are

respectively .639±.180 and .624±.321 (Figure 6). We found that the average correlation

between aging main dimensions in terms of association with environmental variables from
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different subcategories is, in decreasing order, .787±.272 for smoking, .644±.339 for medication,

.635±.251 for sun exposure, .626±.183 for physical activity - questionnaire, .565±.288 for

alcohol, .558±.209 for diet, .482±.381 for sleep, .267±.514 for electronic devices and .179±.490

for early life factors.
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Figure 6: Correlation between the main aging dimensions and 17 selected aging

subdimensions in terms of associated environmental variables

*instances23 and *instances1.5x models denote ensemble models built across several main

aging dimensions. For example, *instances23 refers to the model that we built on datasets

primarily issued from instances 2 and 3 of the UKB dataset. See Methods for more detail.

Socioeconomics

We found that the average correlation between accelerated aging main dimensions and

between accelerated aging subdimensions in terms of associated socioeconomic variables are

respectively .607±.309 and .639±.421 (Supplementary Figure 10). We found that the average

correlation between aging main dimensions in terms of association with socioeconomic

variables from different subcategories is, in decreasing order, .903±.151 for “other

sociodemographics”, .814±.304 for education, .683±.351 for household, .663±.333 for social

support and .609±.334 for employment.

Performance in predicting chronological age from different aging

dimensions

The testing performance obtained on the main biological dimensions and selected

subdimensions can be found in Figure 7, and the details of the performances obtained on the

different models can be found in Supplementary Figure 11.
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Figure 7: Chronological age prediction accuracy for the main aging dimensions and

selected aging subdimensions

*instances23 and *instances1.5x models denote ensemble models built across several main

aging dimensions. For example, *instances23 refers to the model that we built on datasets

primarily issued from instances 2 and 3 of the UKB dataset. See Methods for more detail.

We found that the ensemble model built on the data collected during instances two and three of

the UKB protocol (focused on collecting medical imaging data) predicted CA with a testing

R-Squared [R2] of 90.1±0.4% and a root mean squared error [RMSE] of 2.26±0.04 years. Five of

the 11 biological dimensions accurately predicted CA with a R2 higher than 75%.

Musculoskeletal measures (e.g. spine, hips, knees and full body X-ray images) predicted CA
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with a R2 of 87.6%±0.1%, heart data (e.g. MRI videos and ECGs) predicted CA with a R2 of

85.3±0.1%, eyes data (e.g. eye fundus and OCT images) predicted CA with a R2 of 83.6±0.1%,

brain data (functional brain resting MRI and cognitive tests) predicted CA with a R2 of

76.4±0.3%, and abdomen images (liver and pancreas MRIs) predicted CA with a R2 of

76.3±0.2%. Three of the 11 biological dimensions predicted CA with moderate accuracy with R2

values between 50% and 75%. Arterial data (carotid ultrasounds and pulse wave analysis data)

predicted age with a R2 of 73.3±0.2%, physical activity measurements (wrist accelerometer

records) predicted age with a R2 of 63.5±0.2%, and biochemistry laboratory values (blood and

urine biochemistry) predicted age with a R2 of 50.7±0.3%. Finally, three of the 11 biological

dimensions poorly predicted CA, with R2 values lower than 50%. Hearing tests predicted CA

with a R2 of 31.4±0.2%, lung function data(spirometry) predicted CA with a R2 of 25.6±0.1%, and

blood cells data (blood count) predicted age with a R2 of 12.5±0.1%.

In total, we report the results for 331 chronological age predictors with an average R2 of 41.0%,

a standard deviation of 25%, a maximum R2 of 90.1% and a minimum R2 of -0.1%. The detail of

the performance of the different machine learning algorithms and architectures on the 84 aging

sub-dimensions, as well as the performance of the ensemble models can be found on the

website. We provide more detail, as well as the results of survival prediction in our

supplementary.

Identification of the features driving biological aging predictions

For scalar-based age predictors, we interpreted the models based on the absolute values of the

coefficients of the elastic nets, the feature importances of the gradient boosted machines, and

the effect on the prediction accuracy of a random permutation between the values of the tested
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feature for the neural network. The best performing algorithm was most often the GBM (36 out

of 41 models), but we also relied on the signed coefficient of the elastic net to identify whether

the features selected by the GBM were associated with accelerated young or old age in a linear

context. The detailed importance of the features for each scalar data-based model can be found

on the website under Model interpretation - Scalar data.

For the models built on time series, images, or videos we used saliency maps to identify the

predictive features. For models built on images, we also used the Grad-RAM algorithm to

generate a second set of attention maps. For each biological age dimension, we generated ten

attention maps samples for the intersection of the three following categories: sex (male and

female), age category (younger participants, older participants and participants in the middle of

the age distribution), and for different aging rates (accelerated agers, normal agers and

decelerated agers). An example of these attention maps can be found in Figure 8, and the rest

can be found on the website under Model interpretation - Time series/Images/Videos. We

provide a summary of our findings for each aging dimension in the Supplemental.
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Figure 8: Attention maps for full body X-ray images

Warm colors highlight regions of high importance according to the Grad-RAM map.
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Heritability and SNPs associated with the different accelerated

aging dimensions

We performed 30 genome wide association studies [GWASs] on each of the 11 aging main

dimensions, the selected 17 aging subdimensions and two general aging dimensions. We

computed the variance of accelerated aging explained by GWAS variants (h2g) for each of the

28 accelerated aging dimensions (Figure 9A). The average GWAS-based heritability (h2g)

across the 28 accelerated aging dimensions was 26.1%, and the standard deviation was 7.42%.

We found that five main accelerated aging dimensions had h2g greater than 30% (Brain:

35.9±2.6%, Arterial: 32.6±7.3%, Heart: 35.6±3.6%, Musculoskeletal: 34.9±1.7%, Lungs:

30.3±0.2%). Two of the associated accelerated aging subdimensions showed higher GWAS

heritability (Brain MRI: 39.1±1.7%, Heart MRI: 37.9±1.9%). In contrast, we found that two main

accelerated aging dimensions had h2g less than 15% (Hearing: 14.1±3.9%, Physical activity:

12.0±0.9%). We found that the remaining four main accelerated aging dimensions had h2g

between 15% and 30% (Eyes: 28.2±1.2%, Abdomen: 26.3±1.9%, Biochemistry: 25.5±1.0%,

Blood cells: 18.1±0.2%).

We identified 9,697 single nucleotide polymorphisms [SNPs] in 3,318 genes significantly

associated (p-value < 5e-8) with accelerated aging in at least one of the 28 dimensions

(Figure 9B), with most of these significant associations being driven by datasets with large

sample sizes such as lungs (measured with spirometry; sample size: 381,162; 4,286 SNPs) or

blood cells (measured with blood count; sample size: 471,001; 2,636 SNPs)

(Supplementary Table 5). The Manhattan plots and their associated volcano plots, along with
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the QQ-plots can be found on the website. We provide a summary of our findings for each of the

aging dimensions in the Supplemental.

Figure 9: GWAS Summary
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A - Heritability of accelerated aging for the 28 aging main and sub-dimensions on which a

GWAS was performed. B - Union of the GWASs results over the 28 aging main and

sub-dimensions on which it was performed. The x axis shows the 23 human chromosomes,

with 23 being the X chromosome. The y axis shows the negative log-p-value for each of the

SNPs. Data points above the dotted line represent SNPs that are associated with at least one

aging dimension after statistical correction.

Identification of biomarkers, clinical phenotypes, diseases, family

history, environmental variables and sociodemographics

associated with accelerated aging

As described under Results - Correlations between aging dimensions - Correlation between

aging dimensions in terms of association with biomarkers, clinical phenotypes, diseases, family

history, environmental variables and socioeconomics, we performed an XWAS to identify

non-genetic correlates of accelerated aging in the main again dimensions and selected

subdimensions. The full results can interactively be explored on the website. A summary of our

findings for each X-category can be found in the Supplemental.
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Predicting accelerated aging from biomarkers, clinical

phenotypes, diseases, environmental variables and

socioeconomic variables

We predicted accelerated aging in the different aging dimensions using the different X-datasets

categories (biomarkers, clinical phenotypes, diseases, environmental variables and

socioeconomic variables) and their respective subcategories.

We found that accelerated aging in one aging dimension could not be efficiently predicted from

biomarkers from another aging dimension (Supplementary Figure 42). The average testing R2

over all pairs of aging dimensions and biomarkers subcategories is 6.2±9.5%.

Similarly, we found that accelerated aging could not be efficiently predicted from clinical

phenotypes (Supplementary Figure 43). The average testing R2 over all pairs of aging

dimensions and clinical phenotype subcategories is 4.8±4.2%.

We found that diseases, environmental variables and socioeconomic variables are poor

predictors of accelerated aging in all dimensions, with respective average testing R2 values of

4.6±4.1%, 4.9±4.1%, and 4.9±4.2% (Supplementary Figure 44, Supplementary Figure 45 and

Supplementary Figure 46).
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Discussion

Correlations

Phenotypic correlation between accelerated aging dimensions

We found that the main aging dimensions are weakly correlated on average (mean correlation

.139±.090) but that this correlation tends to increase when the two aging dimensions being

correlated are biologically similar (e.g the cognitive sub-subdimensions are .391±0.098

correlated on average). We observed notable exceptions to this general trend. Some

accelerated aging dimensions are only averagely correlated despite being biologically similar,

such as biochemical blood and urine aging (.090±.004), blood biochemistry and blood count

(.151±.002) and brain anatomical and cognitive aging (.113±.007).

We discuss possible reasons for the low average phenotypic correlation in the Supplemental,

along with the reasons for the high correlation between accelerated liver and pancreas aging, as

well as the importance to correct for the bias in the model’s residuals to define biological aging.

Genetic correlation between accelerated aging dimensions

We found that the main aging dimensions are genetically .104±.149 correlated on average and

that their associated subdimensions are genetically .338±.255 correlated on average, which

shows that biologically similar aging dimensions tend to be more correlated. For example, heart

anatomical and electrical aging are .508±.089 correlated, whereas brain cognitive and
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musculoskeletal aging are uncorrelated (.067±.079). The highest significant genetic correlation

was between abdominal liver aging and abdominal pancreas aging. We hypothesize that this

larger than average correlation can be explained by the similarity of liver and pancreas

abdominal MRI images in terms of the surrounding anatomical features they display and that the

aging phenotypes learned from them rely more on the shared surrounding tissue than on the

actual organs. Brain anatomical aging and brain cognitive aging are genetically uncorrelated

(.019±.056) and similarly for arterial aging and musculoskeletal aging (-.031±.158), lung aging

and musculoskeletal aging (-.026±.040), and physical activity aging and musculoskeletal aging

(.044±.227). Scalar data-based musculoskeletal aging (anthropometry, impedance, heel bone

densitometry and hand grip strength) is also less genetically correlated with the four

X-rays-based musculoskeletal agings (full body, spine, hip and knee) than we expected

(.126±.098).

We compared the genetic correlations to the phenotypic correlations and found that they were

highly correlated (.781 for the correlations between the aging main dimensions and .936 for the

aging subdimensions). We claim that this high correlation suggests that the phenotypic

correlation between the different accelerated aging dimensions can be partly explained by the

genetic correlation between these phenotypes. We observed exceptions. For example,

accelerated brain cognitive aging and accelerated hearing aging are significantly more

genetically correlated (.743±.070) than they are phenotypically correlated (.351±.005). These

genetic correlations could help identify causal links between the different aging dimensions87.
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Correlation between aging dimensions in terms of association with

biomarkers, clinical phenotypes, diseases, family history, environmental

variables and socioeconomics

We computed the average correlation between main aging dimensions in terms of associated

clinical phenotypes (.643±.142), environmental variables (.639±.180), socioeconomics

(.607±.309), diseases (.488±.198), biomarkers (.359±.229) and family history (.030±.519). For

each X-category, we found that the average correlation between accelerated aging

subdimensions is larger than the average correlation between accelerated aging main

dimensions, showing that biologically similar aging dimensions tend to be similarly associated

with non-genetic factors. The results of the XWAS support both the existence of a general aging

process, as well as the multidimensionality of aging, which we discuss below. We discuss the

limitations of the XWAS in the Supplemental.

XWAS results highlighting general aging factors

We found a large number of non-genetic factors associated with accelerated aging across aging

dimensions, suggesting that there are common environmental and disease factors associated

(both forward and reverse causality) with all aging dimensions.

For example, we found that general health, and in particular general health rating and suffering

from a long-standing illness, disability or infirmity, are two X-variables among the most strongly

associated with accelerated aging across aging dimensions (average correlations of

respectively .099±.036 and .073±.032)). The causality of this association likely goes both ways:

accelerated agers probably suffer from lower general health, since aging is associated with the

onset of numerous age-related diseases. Conversely, it is plausible that suffering from
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long-standing illness is taxing for the body and leads to accelerated aging across most aging

dimensions.

This hypothesis is supported by our finding that poor cardiovascular health is associated with

accelerated aging across aging dimensions. For example, on average and across aging

dimensions, 66.7% of blood pressure biomarkers (e.g. systolic blood pressure, average

correlation=.093±.083) and 40.5% of arterial stiffness biomarkers (e.g. position of the shoulder

on the pulse waveform, average correlation=.073±.065) are associated with accelerated aging.

Similarly, on average and across aging dimensions, 81.8% of breathing clinical phenotypes (e.g.

shortness of breath walking on level ground, average correlation=.062±.029) and 59.8% of

chest pain clinical phenotypes (e.g. chest pain due to walking ceases when standing still,

average correlation=.041±.018) are associated with accelerated aging. Finally, on average and

across aging dimensions, the disease category most associated with accelerated aging is

cardiovascular disease (e.g. hypertension, average correlation=.074±.031). Others have found

that hypertension is associated with MRI-observable changes in the brain88,89. Sun et al. also

reported that participants who suffered from hypertension and diabetes had a brain biological

age 3.5 years higher on average90.

We found that looking younger than one’s actual chronological age is associated with

decelerated heart aging, musculoskeletal aging and physical activity aging. Perceived age is an

ageing biomarker that is informally but widely used in clinical practice and has been shown to

predict survival and to be associated with aging biomarkers such as physical functioning,

cognitive functioning and leukocyte telomere length91–93. A GWAS was also performed on
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perceived age found that it is 14% GWAS-based heritable and genetically associated with 75

traits such as adiposity94.

Environmental exposure variables, or variables not measured on a GWAS array, tend to be

similarly correlated with accelerated aging across aging main dimensions (average

correlation=.639±.180). However, it remains elusive how environmental exposure influences

individual tissues. We found factors that are likely causal for chronic disease prominently

associated with accelerated aging, such as smoking, alcohol consumption, and physical activity.

For example, smoking is the environmental subcategory most associated with accelerated aging

across aging dimensions and affects not only lungs95, but also blood vessels96,97, heart98–100,

brain101, eyes102,103, hearing104, abdominal organs105 (such as liver106, pancreas107,108 and

intestines109,110), musculoskeletal system111, blood112 and urine. Mamoshina et al. showed that

smoking is associated with accelerated aging112. Similarly, alcohol consumption113 affects the

brain114–116, lungs117,118, blood vessels119, heart119–122, liver123–125, pancreas126,127, bones128,129,

muscles130, blood131–133 and kidneys134. There is limited evidence that alcohol consumption

affects the eyes in the long term according to the literature135–137, but we found significant

associations between accelerated eye aging and alcohol consumption variables (e.g. average

weekly beer plus cider weekly, correlation=0.031, p-value=1.1e-13, see websites for other

examples). Similarly, we found significant associations between accelerated hearing aging and

alcohol consumption (e.g. alcohol intake frequency, correlation=0.07, p-value=1.2e-292),

despite limited evidence of this phenomenon in the literature138,139. Likewise, physical activity

affects the brain, eyes, lungs, blood vessels, heart140, abdomen (liver, pancreas),

musculoskeletal system, blood and urine. Likewise, sleep quality141, physical activity142 and

diet143 affect health across different biological dimensions.
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Socioeconomic variables (social support, education, household, employment and other

sociodemographics (e.g. receiving an allowance)) tend to be similarly correlated with

accelerated aging across aging main dimensions (average correlation=.607±.309). This is

coherent with the discrepancies in life-expectancy between socio-economic classes. In the US,

the richest 1% males live on average 14.6±0.2 years longer than the poorest 1% males, and the

richest 1% females live on average 10.1±0.2 years longer than the poorest 1% females144, which

suggests that wealth is associated with decelerated aging and poverty is associated with

accelerated aging. We found education to be more strongly associated with

accelerated/decelerated aging than employment and household, possibly suggesting health

literacy145 as a key factor to explain the link between socio-economic status and aging rate.

XWAS results highlighting the multidimensionality of aging

The average correlation between aging main dimensions for each X-category and

X-subcategories is far from being one, and the distribution of X-correlations is wide (large

standard deviation). This suggests that, although there are general aging factors associated

with accelerated aging in main dimensions as described above, there are also aging dimension

specific factors, which affect most strongly a specific aging dimension. For example,

hypertension is the disease most significantly associated with accelerated aging across aging

dimensions, but accelerated eye aging is “enriched” in associations with eye related diseases

such as cataract, retinal disorders and glaucoma, compared to other aging dimensions.

Similarly, accelerated knee aging is associated with knee diseases such as knee arthrosis and

internal derangement of the knee.
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Furthermore, we found that some X-variables are associated with accelerated aging in one

aging dimension and associated with decelerated aging in another. For example, playing

computer games is associated with accelerated eye aging (correlation=-0.38) and with

decelerated brain cognitive aging (correlation=.125). Others have provocatively suggested that

screen time can strain the eye (computer vision syndrome)146. Further, there is an emerging

literature that video games can possibly slow age-related cognitive decline147,148. Similarly, we

found that being shorter in one’s youth is significantly associated with accelerated aging in five

aging dimensions (eye, hearing, lung, PWA-based arterial and musculoskeletal (scalars

biomarkers-based)), whereas being taller in one’s youth is significantly associated with

accelerated aging in 11 other aging dimensions (heart anatomical (MRI-based), heart electrical

(ECG-based), abdomen, liver, pancreas, musculoskeletal, spine X-rays, hip X-rays, knee

X-rays, physical activity and blood cells). Finally, we found discrepancies between aging

dimensions in terms of association with weight change over the last year. A stable weight during

the last year was exclusively associated with decelerated aging, in six aging dimensions (eye

(OCT-based), lung, arterial, musculoskeletal (scalar biomarkers-based)). Gaining weight was

mostly associated with decelerated aging (four dimensions: musculoskeletal, full body X-rays,

knee X-rays, and urine biochemistry), but also with accelerated aging in two dimensions (lung

and arterial (PWA-based)). In contrast, weight loss was mostly associated with accelerated

aging (ten dimensions: heart anatomical (MRI-based), abdomen, liver, pancreas,

musculoskeletal, full body X-rays, spine X-rays, hip X-rays, knee X-rays and urine biochemistry),

but also with decelerated aging in two dimensions (hearing and lung). One plausible explanation

for this perhaps surprising observation can be found in the obesity paradox149. Alternatively, it is

also possible that while being overweight is associated with poor general health, losing a

significant amount of weight within a year is often caused by a serious disease. Wannamethee
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et al. for example reported that, in contrast to intentional weight loss, unintentional weight loss

was associated with increased all-cause mortality150, which can often be explained by

disease151.

Finally, we found that accelerated aging in a particular aging dimension could not be

successfully predicted by biomarkers from a different dimension, highlighting the

multidimensionality of aging. We observed a similar trend when predicting accelerated aging

from clinical phenotypes: clinical phenotypes related to an aging dimension could more

successfully predict accelerated aging in this dimension than other clinical phenotypes. For

example, eyesight clinical phenotypes predicted accelerated eye aging (based on all

biomarkers) with a R2 of 13.1%, and breathing clinical phenotypes predicted accelerated lung

aging with a R2 of 10.3%, contrasting with the low average R2 (4.8±4.2%) over all aging

dimensions and clinical phenotypes categories.

Performances

Complementarity of the aging subdimensions

For some biological dimensions, we found that the different subdimensions contained redundant

information about aging. For example, the ensemble model built on full body X-ray images

predicted CA with a R2 of 85.7±0.1%, but building an ensemble model on full body X-ray

images, spine X-ray images (R2=74.6±0.2%), hip X-ray images (R2 = 69.0±0.3%) and knee

X-ray images (R2=69.0±0.2%) only improved the R2 value by 2.1% (R2=87.6%±0.1%). This

suggests that the bone X-ray images capture similar facets of aging. Likewise, the ensemble

model built on heart MRI images and videos predicted CA with a R2 of 85.3±0.1% but building
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an ensemble model on heart MRIs and on ECGs (R2 of 37.6±0.4%) only improved the R2 value

by 0.3% (R2=85.6%±0.2%). The same phenomenon can be observed for the brain. Brain

images predicted CA with a R2 of 75.3±0.2% but adding cognitive tests (R2=37.9±0.4%) to the

ensemble only increased the R2 value by 1.1% (R2=76.4±0.3%). Finally, carotid ultrasound

images predicted CA with a R2 value of 64.8±0.6%, but adding other artery-based CA predictors

such as pulse wave analysis (R2=41.3±0.2%) and blood pressure (R2=22.3±0.1%) only

increased the R2 value by 2.3% (R2=67.1±0.6% for the arterial model).

In contrast, eye fundus (R2=76.6±0.2%) and OCT images (R2=70.8±0.2%) along with scalar

eyes measures (R2=35.9±0.2%) increased the R2 value by 7.0% when combined

(R2=83.6±0.1% for the eye model), suggesting that these three data modalities might capture

different facets of aging. Similarly, liver (R2=71.5±0.2%) and pancreas (R2=70.3±0.3%) MRI

images increased the R2 value by 5.1% when combined (R2=76.3±0.1% for the abdomen

model).

Comparison between our models and the literature in terms of prediction

accuracy

Novelty

We are, to our knowledge, the first to build a chronological age predictor on eye OCT images

(R2=70.1±0.2%; RMSE=4.44±0.01 years), hearing tests (R2=31.4±0.2%; RMSE=7.10±0.01

years), spirometry (R2=25.6±0.1; RMSE=7.16±0.01 years), heart MRI images and videos

(R2=85.6±0.2%; RMSE=2.89±0.01 years), liver MRI images, (R2=71.5±0.2%; RMSE=4.08±0.01

years), pancreas MRI images (R2=70.3±0.3%; RMSE=4.15±0.02 years), spine X-rays
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(R2=74.6±0.2%; RMSE=3.81±0.01 years), musculoskeletal measurements (R2=25.9±0.01%;

RMSE=7.10±0.01 years) and blood count (R2=12.5±0.01%; RMSE=7.59±0.01 years).

We also outperformed the best chronological age predictors in the literature for full body MRIs

(R2=85.7±0.1%; RMSE=2.85±0.01 years), hip X-rays (R2=69.0±0.3%; RMSE=4.20±0.02 years),

adult knee X-rays, (R2=69.0±0.3%; RMSE=4.20±0.02 years), eye fundus images

(R2=76.6±0.2%; RMSE=3.97±0.01 years), arterial health (R2=67.1%±0.6%; RMSE=4.29±0.04

years), cognitive tests (R2=37.9±0.4%; RMSE=5.95±0.02 years) and physical activity

(R2=63.5±0.2%; RMSE=4.71±0.1 years).

A summary of the comparison between our models and the models reported in the literature can

be found in Table 2. We describe and discuss these comparisons more in detail in the

Supplemental.

Table 2: Comparison between our age predictors and the literature in terms of prediction

performance

Aging dimensions Our model Model(s) in the literature

Main
dimensi

on

Subdim
ension

R-Squar
ed (%)

RMSE
(years)

Sample
size

Age
range
(years)

R-Squa
red (%)

RMSE
(years) Algorithm Sampl

e size

Age
range
(years)

Authors

Brain

Cognitiv
e

37.9±0.
4

5.95±0
.02 34,055 47.0-82

.7 9 4.77 XGBoost 537

N/A.
69.75±
5.08

(mean
age)

Anatürk et
al.

MRI 76.4±0.
3

3.73±0
.01 38,815 45.1-82

.5
92;
61.4

5.31;
3.63

(MAE)
3D CNN; 3D CNN 2,001;

12,395
18-90;
46-79

Cole et al.;
Jonsson et

al.

EEG N/A 67.24;
37±6

7.6
(MAE);
8.46±0

.59

Linear regression (after
feature engineering);

SVR with radial kernel

18-80;
18-58

4506;
468

Sun et al.;
Zoubi et al.

Eyes Fundus 76.6±0.
2

3.97±0
.01

160,03
8

39.2-79
.1 74±1 3.26

(MAE) CNN (InceptionV3) 48000;
85

N/A.
56.9 ±

8.2
Poplin et al.
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(mean
age)

OCT 70.1±0.
2

4.44±0
.01

173,69
5

39.2-73
.7 N/A

Iris N/A

64%
(Classification

accuracy); 75%
(Classification
accuracy); 5-7

(MAE)

Random forest;
Ensemble; CNNs

(AlexNet, GoogLeNet)

596;
596;
2,130

22-25
vs.

35+;
24- vs.
25-60

vs.
61+;
3-74

Sgroi et al.;
Erbilek et
al.; Rajput
and Sable

Corner N/A 90.25 2.3
(MAE) CNN (Xception) 8,414 20-80 Bobrov et

al.

Facial features N/A N/A 2.68
(MAE) CNN (VGG16) 523,05

1 16-77 Rothe et al.

Hearing 31.4±0.
2

7.10±0
.01

229,41
0

39.2-82
.7 N/A

Lungs 25.6±0.
01

7.16±0
.01

425,46
7

39.2-82
.7 N/A

Arterial
PWA 41.3±0.

2
6.53±0

.01
233,38

8
39.2-82

.7
55-69

5.87-6.
91

(MAE)
Linear regression 303 23-91 Fedintsev

et al.
Carotids 64.8±0.

6
4.44±0

.04 8,279 40.2-81
.7

Heart
ECG 37.5±0.

6
5.9±0.

02 44,417 44.6-82
.7 70

6.9±5.
6

(MAE)
1D CNN 499,72

7 18-100 Attia et al.

MRI 85.6±0.
2

2.89±0
.01 34,792 45.5-82

.5 N/A

Abdome
n

Liver 71.5±0.
2

4.08±0
.01 45,552 44.6-82

.5 N/A

Pancrea
s

70.3±0.
3

4.15±0
.02 36,784 46.6-82

.5 N/A

Musculo
skeletal

Spine 74.6±0.
2

3.81±0
.01 40,951 45.1-82

.5 N/A

Hips 69.0±0.
3

4.20±0
.02 83,234 45.1-82

.5 38 1.91 Linear regression 643 10-30 Wittschiebe
r et al.

Knees 69.0±0.
3

4.20±0
.02 79,477 45.1-82

.5

77.5-81
.5;

88-90;
44.1-65

.4

N/A;
N/A;
N/A

Linear regression; Linear
regression; Linear

regression

221;
503;
322

9-19;
6-19;
11-32

O'Connor
et al.; Tang
et al.; Fan

et al.

Full
body

85.7±0.
1

2.85±0
.01 42,164 45.1-82

.5 82
2.47±1

.91
(MAE)

CNN (VGG16) 32,323 44-82 Langner et
al.

Hand N/A N/A 1.01
(MAE) CNN (Xception) 12,811 0-19 Westerberg

Scalars 25.9±0.
01

7.10±0
.01

486,64
2

37.4-82
.3 N/A

Physical
activity

Daily
life

63.5±0.
2

4.71±0
.01 77,269 43.5-79

.0
56;
38.4

14;
15.74 CNN; CNN-LSTM 7,454;

4,268
6-84;
18-84

Pyrkov et
al.;

Rahman
and

Adjeroh
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Gait 32.3±0.
2

5.69±0
.01 98,215 43.5-79

.0

N/A;
N/A;
N/A;

88.82%
(classifi
cation
accura

cy);
37.21;

N/A

3.02;
8.2;
N/A;

14.73;
6.78
(all

MAEs)

Feature engineering;
Feature engineering;

Random forest; Neural
network; Support vector

machine

1,870;
1,728;

26;
142;

63,846

20-30;
2-94;
NA

(mean:
48.1,
std:

12.7);
13-82;
2-90

Lu and Tan;
Makihara et
al.; Riaz et

al.;
Hoffmann
et al.; Li et

al.

Bioche
mistry

Urine 10.4±0.
1

7.72±0
.01

158,38
1

39.9-79
.1 56-61 11.2-1

0.37 Non-linear regression 5,000 20-79 Hertel et al.

Blood 48.6±0.
1

5.92±0
.01 245147 37.4-79

.1 59 N/A Stepwise linear
regression 6,055 17-85 Menni et al.

Blood cells 12.5±0.
01

7.59±0
.01

489,07
9

37.4-79
.4 10±5 N/A Survival 135 40-90 Alpert et al.

DNA methylation N/A 96 2.04 Linear regression 13,661 2-104 Zhang et al.

Transcriptomics N/A
82; 83;

95
(AUC)

7.7
(MAE);

6.19
(MAE);

N/A

Linear discriminant
analysis; Neural network;

Logistic regression

133;
545;
698

1-94;
19-89;
60-79

Fleischer et
al.;

Mamoshina
et al;

Harries et
al.

Proteomics N/A 92 2.44 Linear regression
(LASSO) 3,301 18-76 Lehallier et

al.

Microbiome N/A 29±9 5.91
(MAE) Neural network 1,165 20-90 Galkin et al.

Identifying genetic variants associated with aging dimensions:

heritability and genes linked to accelerated aging

We found that, on average, 25.6±7.7% of the variance of accelerated aging in the thirty aging

dimensions on which we performed a GWAS could be explained by genetic factors. Heritability

was as low as 12.3±0.9% for accelerated urine biochemistry aging and as high as 39.1±1.7% for

accelerated heart anatomical aging. This difference in heritability was in great part driven by the

difference in chronological age prediction performances for the different dimensions (correlation

between R2 values obtained when predicting chronological age and h2_g values: .664), which

suggests that improving the chronological age predictors would lead to an increase of the
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estimated genetic heritability of the associated accelerated aging dimensions. We discuss our

findings in more detail in the Supplemental.

Strengths and limitations

Strengths

We leveraged a large dataset to build what is, to the best of our knowledge, the most exhaustive

correlation map between the different aging dimensions. In doing so, we built several new

accurate chronological age predictors and outperformed the prediction accuracy of some of the

pre-existing predictors. We also performed GWASs and XWASs to estimate not only the

phenotypic correlation between the aging dimensions, but also the genetic and the

environmental correlations. These GWASs and XWASs allowed us to identify genetic, biological

and environmental factors associated with accelerated aging in the different dimensions.

Limitations

Despite the breadth of the biomarkers collected by UKB, we were unable to correlate our new

biological age definitions to the gold standards such as DNA methylation clock152 and telomere

length43 (among others). Therefore, we are unable to estimate how DNA methylation age would

correlate with the other aging dimensions presented in this paper. Other datasets currently

unavailable in UKB include proteomics, microbiome and saliva, but they are expected to soon

be available.

Some of our predictors predicted chronological age with high accuracy (e.g musculoskeletal

features: RMSE=2.65±0.04; heart: RMSE=2.83±0.04), and it has been suggested that, as
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chronological age prediction accuracy increases, the associated biological age predictors lose

their clinical significance153,154. A model that perfectly predicts chronological age only outputs

chronological age, not biological age.

For the images-based age predictors, we did not perform image segmentation to isolate the

organ of interest from its surrounding tissue. For example, heart MRI videos and images include

the full thoracic cavity. As a consequence, and as shown by the attention maps, the predictions

are therefore not exclusively driven by the heart, which reduces the interpretability and the utility

of the predictor as an estimator of heart health.

Most biological age predictors do not significantly outperform chronological age as survival

predictors.

In terms of associations between accelerated aging and non-genetic variables such as

environmental exposures, UKB is an observational study, which means that observing these

correlations does not allow us to infer causality. Each correlation could potentially be explained

by direct causality (e.g not exercising leads to accelerated heart aging), reverse causality (e.g

having poor heart function incites limits physical activity) or confounding factors (e.g exposure to

a chemical could lead to both decreased heart function and lung function, the later leading to

decreased physical activity).

We discuss our future directions in the Supplemental, as well as the potential for biological age

predictors to be used to monitor the clinical trials of rejuvenating therapies and to detect new

anti-aging target candidates.
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Methods

Hardware and software

We performed the computation for this project on Harvard Medical School’s compute cluster,

with access to both central processing units [CPUs] and general processing units [GPUs]

(Tesla-M40, Tesla-K80, Tesla-V100) via a Simple Linux Utility for Resource Management

[SLURM] scheduler. We coded the project in Python155 and used the following libraries:

NumPy156,157, Pandas158, Matplotlib159, Plotly160, Python Imaging Library161, SciPy162–164,

Scikit-learn165, LightGBM166, XGBoost167, Hyperopt168, TensorFlow 2169, Keras170, Keras-vis171,

iNNvestigate172. We used Dash173 to code the website on which we shared the results. We set

the seed for the os library, the numpy library, the random library and the tensorflow library to

zero. For the genetics analysis, we used the BOLT-LMM174,175 and BOLT-REML176 softwares. We

coded the parallel submission of the jobs in Bash177. Our code can be found at

https://github.com/alanlegoallec/Multidimensionality_of_Aging.

Cohort Dataset: Participants of the UK Biobank

For this project, we leveraged the UK Biobank85 cohort (project ID: 52887). The UKB cohort

consists of data originating from a large biobank collected from 502,211 de-identified

participants in the United Kingdom that were aged between 40 years and 74 years at enrollment

(starting in 2006). The Harvard internal review board (IRB) deemed the research as non human

subjects research(IRB: IRB16-2145).
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The initial data collection at enrollment is described as “instance 0”, and some of the

participants were followed up with, so more data was collected in later instances (instances 1, 2,

and 3). For example, the majority of scalar biomarkers such as blood biomarkers,

anthropometrics, hearing test or lung function were collected during instance 0 and sometimes

repeated during instance 1. In contrast, the majority of medical images (e.g. brain MRI) were

collected during instance 2 and repeated during instance 3. Data was also collected during

specific programs, such as the collection of physical activity recorded by wrist accelerometers

during one week, which we refer to this paper as instance 1.5x. The instance 1.50 refers to the

bulk of the 103,688 participants who took part in the main study, while the instances 1.51, 1.52,

1.53 and 1.54 refer to the four smaller seasonal repeats that involved only 2,633-3,094 of the

participants. Because some participants were recruited for more than one instance, the total

number of samples available is 676,787, with an age range of 37 to 82 years old. The number of

samples available in each instance for each dataset can be found in Table 1.

The UKB dataset contains not only biomarkers (e.g. blood biomarkers, anthropometrics, ECGs,

medical images, accelerometer data) but also genetic data178, pathologies and environmental

data (e.g. socioeconomic status, diet, physical activity). Each scalar variable’s distribution and

correlation with age for different demographics can be interactively explored on the website

under the tab “Biomarkers” and the subtab “Scalars”.

Definition of the different aging dimensions

We defined our 11 aging main dimensions by hierarchically grouping the different datasets

(Table 1) at three different levels: we call the first level “aging main dimensions”, the second

level “aging subdimensions” and the third level “aging sub-subdimensions”. The complete
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hierarchy between the 11 aging main dimensions, the 31 subdimensions and the 84

sub-subdimensions is described in Table 1. For example, one of the aging main dimensions we

investigated was “Heart age”. This main dimension consists of three subdimensions: “ECG”,

“MRI”, and “All”. “ECG” encompasses two “sub-subdimensions”: (1) the scalar features (the

length of the different intervals, such as PP, PQ and QT), and (2) the time series (the raw 12

leads ECG signal recorded for 600 timesteps). Similarly, “MRI” encompasses 12

sub-subdimensions that include three based on scalar data (e.g., Size, Pulse Wave Analysis),

six of them based on MRI images (e.g., 2chambersContrast, and three of them based on MRI

videos (e.g. 3chambersRawVideo). Finally, the “All” dimension has a single sub-subdimensions

that encompasses all the scalar biomarkers from both the ECG and the MRI subdimensions.

Data types and Preprocessing

The data preprocessing step is different for the different data modalities: demographic variables,

scalar predictors, time series, images and videos. We define scalar predictors as predictors

whose information can be encoded in a single number, such as height, as opposed to data with

a higher number of dimensions such as time series (one dimension, which is time), images (two

dimensions, which are the height and the width of the image) and videos (three dimensions,

which are the height and width of the video, along with time). The data extracted and

preprocessed from the wrist accelerometer is described separately under “Physical Activity”, as

both scalar features, time series and images were generated from it. The preprocessing is

described in the Supplemental.
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Machine learning algorithms

For scalar datasets, we used elastic nets, gradient boosted machines [GBMs] and fully

connected neural networks. For times series, images and videos we used one-dimensional,

two-dimensional, and three-dimensional convolutional neural networks, respectively. We

describe these models in detail in the Supplemental.

Training, tuning and predictions

We split the entire dataset into ten data folds. We then tune the models built on scalar data, on

time series, on images and on videos using four different pipelines. For scalar data-based

models, we performed a nested-cross validation. For time series-based, images-based and

video-based models, we manually tuned some of the hyperparameters before performing a

simple cross-validation. We describe the splitting of the data into different folds and the tuning

procedures in greater detail in the Supplemental.

Interpretability of the predictions

To interpret the models, we used the regression coefficients for the elastic nets, the feature

importances for the GBMs, a permutation test for the fully connected neural networks, and

attention maps (saliency and Grad-RAM) for the convolutional neural networks. We provide

more detail in the Supplemental.
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Models ensembling

We built a four-levels hierarchy of ensemble models to improve prediction accuracies. At the

lowest level, we combined the predictions from different algorithms on the same aging

sub-subdimension. For example, we combined the predictions generated by the elastic net, the

gradient boosted machine and the neural network on the brain (dimension) cognitive test

(subdimension) “TowerRearranging” (sub-subdimension). At the second lowest level, we

combined the predictions from different sub-subdimensions of a unique subdimension. For

example, we combined the predictions from the different cognitive tests (e.g. ReactionTime,

MatrixPatternCompletion and TowerRearranging) into an ensemble prediction for the “Cognitive”

subdimension. At the third level, we combined the predictions from different subdimensions of a

unique dimension. For example, we combined the brain subdimensions “All”, “Cognitive” and

“MRI” into an ensemble prediction for the dimension “Brain”. Finally, at the fourth and highest

level, we combined the predictions from the different aging main dimensions into general

chronological age predictions. The ensemble models from the lower levels are hierarchically

used as components of the ensemble models of the higher models. For example, the ensemble

models built by combining the algorithms at the lowest level for each of the cognitive

sub-subdimensions are leveraged when building the “Cognitive” ensemble model at the second

lowest level. We provide more detail about the ensembling process in the Supplemental.

Performance evaluation

We evaluated the performance of the models using two different metrics: R-Squared [R2] and

root mean squared error [RMSE]. We computed a confidence interval on the performance
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metrics in two different ways. First, we computed the standard deviation between the different

data folds. The test predictions on each of the ten data folds are generated by ten different

models, so this measure of standard deviation captures both model variability and the variability

in prediction accuracy between samples. Second, we computed the standard deviation by

bootstrapping the computation of the performance metrics 1,000 times. This second measure of

variation does not capture model variability but evaluates the variance in the prediction accuracy

between samples.

Biological age definition

We defined the biological age of participants as the prediction generated by the model

corresponding to the aging main dimension, aging subdimension or aging sub-subdimension,

after correcting for the bias in the residuals.

We indeed observed a bias in the residuals. For each model, participants on the older end of the

chronological age distribution tend to be predicted younger than they are. Symmetrically,

participants on the younger end of the chronological age distribution tend to be predicted older

than they are. This bias does not seem to be biologically driven. Rather it seems to be

statistically driven, as the same 60-year-old individual will tend to be predicted younger in a

cohort with an age range of 60-80 years, and to be predicted older in a cohort with an age range

of 60-80. We ran a linear regression on the residuals as a function of age for each model and

used it to correct each prediction for this statistical bias.

After defining biological age as the corrected prediction, we defined accelerated aging as the

corrected residuals. For example, a 60-year-old whose brain data predicted an age of 70 years

 . CC-BY-NC 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted April 26, 2021. ; https://doi.org/10.1101/2021.04.25.21255767doi: medRxiv preprint 

https://doi.org/10.1101/2021.04.25.21255767
http://creativecommons.org/licenses/by-nc/4.0/


old after correction for the bias in the residuals is estimated to have a biological brain age of 70

years, and an accelerated brain aging of ten years.

It is important to understand that this step of correction of the predictions and the residuals

takes place after the evaluation of the performance of the models but precedes the analysis of

the biological ages properties.

Survival prediction

UKB collects mortality data from its 502,492 participants, 30,263 of which (6%) are already

dead. We highlight the fact that these death events are surprisingly unevenly distributed

between data modalities. For example, out of the 207,932 participants for whom pulse wave

analysis data was recorded, only 6,000 were already dead when we performed this analysis,

half less than the 12,500 death events we would have observed if the death events were evenly

distributed between the different datasets.

We leveraged the mortality data to compute the Concordance Index [CI] associated with each of

the 331 biological age definitions. The CI measures whether the predictor successfully predicts

which participants will die first by computing the percentage of participant pairs for which the

participant with the higher biological age dies before the participant with a lower biological age.

Accordingly, CI values are usually between 0.5 (useless survival predictor) and 1.0 (perfect

survival predictor, at least in terms of ranking the death events). CA is an effective survival

predictor, so for each biological age dimension we computed the difference between the CI

obtained using biological and the CI obtained using CA to estimate the added value contributed

by the biomarkers used to define the biological age dimension. We computed the CA-based
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control CI separately for each biological age dimension, because CA yields different CI values

depending on the age range and distribution of the cohort on which it was used as a predictor.

For example, larger CI values can be obtained when the cohort includes a large number of

young participants, since it is safe to predict that a young (e.g. 35 years old) participant is

unlikely to die before an old (e.g. 80 years old) participant. As the number of such pairs of

participants in the cohort increases, obtaining higher CI values using CA as a predictor

becomes easier.

We computed the standard deviations for the CI values using the same protocol as the one

described under “Methods - Performance evaluation”. We computed an associated two-tailed

p-value for each CI difference between the biological age dimension and chronological age

assuming a Gaussian distribution and using the associated z-value.

Correlation between aging dimensions

To compute the correlation between the different aging main dimensions, subdimensions and

sub-subdimensions, we computed the Pearson correlation between each pair of accelerated

aging phenotypes as defined under Methods - Biological age definition, and we bootstrapped

this calculation 1,000 times to obtain confidence intervals.

The average correlation between the 331 accelerated aging phenotypes can be misleading as

some correlations are not driven by biology. For example, ensemble models tend to be

correlated with the models on which they are built, and the models trained on the same datasets

using different algorithms tend to be correlated. To distinguish between the different types of

correlations, we hierarchically organized the models into six levels. The first level is for the main
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biological dimensions, the second level is for the biological subdimensions, the third level is for

the biological sub-subdimensions, the fourth level is for the views or features of the same

biological dimension, the fifth level is for the image preprocessing methods and the sixth level is

for the different algorithms trained on the same dataset.

We describe the computation of the correlations at the different levels in the Supplemental.

Hierarchical clustering

We hierarchically clustered the different accelerated aging dimensions using complete-linkage

clustering and one minus the correlation between two dimensions as the distance, which we did

by adapting the dendrogram function from the plotly library160.

Genome-wide association of accelerated aging

The UKB contains genome-wide genetic data for 488,251 of the 502,492 participants178 under

the hg19/GRCh37 build. We used the v3 imputed genetic data to increase the power of the

GWAS, and we corrected all of them for the following covariates: age, sex, ethnicity, the

assessment center that the participant attended when their DNA was collected, and the 20

genetic principal components precomputed by the UKB. We used the linkage disequilibrium [LD]

scores from the 1,000 Human Genomes Project179. To avoid population stratification, we

performed our GWAS on individuals with White ethnicity.

Since the DNA of an individual does not significantly change over their lifetime, for each

participant and for each aging dimension, we used the average accelerated aging value over
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the different samples collected over time (see Models ensembling - Generating average

predictions for each participant). Next, we performed genome wide association studies [GWASs]

to identify single-nucleotide polymorphisms [SNPs] associated with the different accelerated

aging dimensions using BOLT-LMM174,175. Finally, we computed the heritability for each of our

biological age phenotypes, and we calculated their genetic pairwise correlations using

BOLT-REML176. We describe these analyzes in further detail below.

We selected the 11 aging main dimensions and 17 out of the 31 aging subdimensions for the

GWAS. These 17 subdimensions were selected based on their prediction performance and their

scientific interest and are noted with a “*” in Table 1. For example, we selected the two eyes

subdimensions that predicted CA with high accuracy (fundus images: R2=76.6±0.2%; OCT

images: R2=70.8±0.2%) and discarded the four subdimensions with low predictive accuracy (all

scalar predictors: R2=35.9±0.2%; autorefraction: R2=29.0±0.2%; visual acuity: R2=15.5±0.2%;

intraocular pressure: R2=6.9±0.1%). For the brain subdimensions, we selected the brain

anatomical subdimension (MRI: R2=75.3±0.2%) and the functional brain subdimension

(cognitive: R2=37.9±0.4%) but we did not select the model built on all the scalar predictors (all:

R2=67.3±0.3%) because of its redundancy, since the predictors included in this model are the

union between the scalar predictors included in the first two models. We refer to the 28 selected

phenotypes as accelerated aging dimensions in the context of the genetic and environmental

analyses.

Identification of SNPs associated with accelerated aging

We identified the SNPs associated with each of the 28 selected accelerated aging main

dimensions and subdimensions using the BOLT-LMM174,175 software. The sample size for the

 . CC-BY-NC 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted April 26, 2021. ; https://doi.org/10.1101/2021.04.25.21255767doi: medRxiv preprint 

https://paperpile.com/c/1sjGf6/Qhknq+AGo6M
https://paperpile.com/c/1sjGf6/gSrKP
https://paperpile.com/c/1sjGf6/Qhknq+AGo6M
https://doi.org/10.1101/2021.04.25.21255767
http://creativecommons.org/licenses/by-nc/4.0/


genotyping of the X chromosome is one thousand samples smaller than for the autosomal

chromosomes. We therefore performed two GWASs for each aging dimension. (1) excluding the

X chromosome, to leverage the full autosomal sample size when identifying the SNPs on the

autosome. (2) including the X chromosome, to identify the SNPs on this sex chromosome. We

then concatenated the results from the two GWASs to cover the entire genome, at the exception

of the Y chromosome. We used a threshold for significance of 5e-8 for the p-values to correct

for the false discovery rate.

We annotated the significant SNPs with their matching genes using the following four steps

pipeline. (1) We annotated the SNPs based on the rs number using SNPnexus180–184. When the

SNPs was between two genes, we annotated it with the nearest gene. (2) We used SNPnexus

to annotate the SNPs that did not match during the first step, this time using their genomic

coordinates. After these two first steps, 30 out of the 9,697 significant SNPs did not find a

match. (3) We annotated these SNPs using LocusZoom185. Unlike SNPnexus, LocusZoom does

not provide the gene types, so we filled this information with GeneCards186. After this third step,

four genes were not matched. (4) We used RCSB Protein Data Bank 187 to annotate three of the

four missing genes. One gene on the X chromosome did not find a match (position 56,640,134).

We plotted the results using a Manhattan plot and a volcano plot. We used the bioinfokit188

python package to generate the Manhattan plots. We generated quantile-quantile plots [Q-Q

plots] to estimate the p-value inflation as well.
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Heritability and genetic correlation

We estimated the heritability of the accelerated aging dimensions using the BOLT-REML176

software. We included the X chromosome in the analysis and corrected for the same covariates

as we did for the GWAS.

Using the same software and parameters, we computed the pairwise genetic correlations

between the 28 aging dimensions.

Correlation between phenotypic correlation and genetic correlation

We computed the correlation between phenotypic correlations and genetic correlations

separately for aging main dimensions and subdimensions because the main dimensions are

built on the subdimensions, and some of the main dimensions tend to strongly rely on a single

of their subdimensions. For example, heart aging is based on MRI-based anatomical aging and

ECG-based electrical aging, but because chronological age is significantly better predicted by

MRI images than by ECGs, general heart aging is very similar to heart anatomical aging

(correlation: .991±.000). Therefore, the correlations involving heart age are statistically linked to

the correlations involving heart anatomical age. To estimate the correlation between phenotypic

and genetic correlations, we used sets of aging dimensions for which these statistical artifacts

were minimized: the aging main dimensions on one hand, and the aging subdimensions on the

other hand.
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Non-genetic correlates of accelerated aging

We identified non-genetically measured (i.e factors not measured on a GWAS array) correlates

of each aging dimension, which we classified in six categories: biomarkers, clinical phenotypes,

diseases, family history, environmental, and socioeconomic variables. We refer to the union of

these association analyses as an X-Wide Association Study [XWAS]. (1) We define as

biomarkers the scalar variables measured on the participant, which we initially leveraged to

predict age (e.g. blood pressure). We refer to this segment of the XWAS as a Biomarkers Wide

Association Study [BWAS]. See Supplementary Table 6 for an exhaustive list of the BWAS

variables. (2) We define clinical phenotypes as other biological factors not directly measured on

the participant, but instead collected by the questionnaire, and which we did not use to predict

chronological age. For example, one of the clinical phenotypes categories is eyesight, which

contains variables such as “wears glasses or contact lenses”, which is different from the direct

refractive error measurements performed on the patients, which are considered “biomarkers”.

We refer to this segment of the XWAS as a Clinical Phenotypes Wide Association Study

[CWAS]. See Supplementary Table 11 for an exhaustive list of the CWAS variables. (3)

Diseases include the different medical diagnoses categories listed by UKB. We refer to this

segment of the XWAS as a Diseases Wide Association Study [DWAS]. See

Supplementary Table 16 for an exhaustive list of the DWAS variables. (4) Family history

variables include illnesses of family members. We refer to this segment of the XWAS as a

Family History Wide Association Study [FWAS]. See Supplementary Table 21 for an exhaustive

list of the FWAS variables. (5) Environmental variables include alcohol, diet, electronic devices,

medication, sun exposure, early life factors, medication, sun exposure, sleep, smoking, and

physical activity variables collected from the questionnaire. We refer to this segment of the
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XWAS as an Environmental Wide Association Study [EWAS]. See Supplementary Table 24 for

an exhaustive list of the EWAS variables. (6) Socioeconomic variables include education,

employment, household, social support and other sociodemographics. We refer to this segment

of the XWAS as a Socioeconomics Wide Association Study [SWAS]. See Supplementary Table

29 for an exhaustive list of the SWAS variables.

We provide information about the preprocessing of the XWAS in the Supplementary Methods.

X-Wide Association Studies

First, we tested for associations in an univariate context by computing the partial correlation

between each X-variable and each of the 28 accelerated aging dimensions. To compute the

partial correlation between an X-variable and an aging, we followed a three steps process. (1)

We ran a linear regression on each of the two variables, using age, sex and ethnicity as

predictors. (2) We computed the residuals for the two variables. (3) We computed the

correlation between the two residuals and the associated p-value if their intersection had a

sample size of at least ten samples. We used a threshold for significance of 0.05 and corrected

the p-values for multiple testing using the Bonferroni correction. We plotted the results using a

volcano plot. We refer to this pipeline as an X-Wide Association study [XWAS].

For each aging dimension, we list the biomarkers and phenotypes and environmental variables

categories that are significantly associated with both accelerated aging and decelerating aging

after Bonferroni correction for multiple testing. We order these X-categories by increasing

p-value of their most significantly associated representative, and we provide up to three

examples by category. If more than three variables were significantly associated with
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accelerated aging, we only list the first three and precede the list by “e.g”. If the same variable is

present in several X-categories (e.g. heart rate can be found in heart function, ECG, pulse wave

analysis and blood pressure), we only report it for the first category listed. For the sake of

brevity, we shorten the name of the variables when possible and we do not report highly similar

features such as features for paired organs (e.g. left arm and right arm impedance) or brain MRI

weighted means highlighting the same region (e.g. weighted mean ICVF in tract anterior

thalamic radiation and weighted mean OD in tract anterior thalamic radiation are reported as

“anterior thalamic radiation”).

Prediction of accelerated aging

We leveraged the pipeline we built to predict chronological age as a function of scalar

biomarkers (see Methods - Machine learning algorithms - Scalar data; and Methods - Training,

tuning and predictions - Scalar data) to predict accelerated aging for the 28 aging dimensions as

a function of the biomarkers, the pathologies and the environmental variables. We leveraged the

pipeline to identify which features were driving the predictions, as well (see Methods - Training,

tuning and predictions - Interpretability of the predictions - Scalar data-based predictors).

We built a model for each X-variables category (Supplementary Table 6, Supplementary Table

11, Supplementary Table 16, Supplementary Table 21, Supplementary Table 24,

Supplementary Table 29). In doing so, we encountered the same difficulty as described under

Methods - Data types and Preprocessing - Scalar data - Hierarchical clustering of the predictors:

taking the intersection of all the variables yielded small sample sizes. To mitigate this issue and

find a compromise between the number of variables included in the model and the sample size
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of their intersection, we leveraged the hierarchical clustering algorithm described under Methods

- Data types and Preprocessing - Scalar data - Hierarchical clustering of the predictors.

X-Correlations between the accelerated aging dimensions

We estimated the X-correlations between each pair of aging dimensions, for each X-variables

category in two different ways. (1) By computing the correlation between the partial correlations

generated during the XWAS, that is in a univariate context. (2) By computing the correlation

between the feature importances of the models built to predict accelerated aging, that is in a

multivariate context.

X-Correlations based on the XWAS results

For the sake of clarity, let us walk through an example. Let us say we want to compute the

lifestyle correlation between accelerated brain aging and heart aging. The XWAS generates a

vector whose components are the partial correlations between the accelerated aging phenotype

and each lifestyle variable, for both accelerated aging and heart aging. We compute three

different Pearson correlations between these two partial correlation vectors. (1) The “All”

correlation, using all the components of the two vectors. This correlation tends to be inflated by

the large number of X-variables whose correlation with both accelerated aging dimensions is

close to zero. (2) The “Intersection” correlation, using only the lifestyle variables that were

significantly associated with both of the accelerated aging dimensions. Because the cardinality

of the intersection can be small, a small number of X-variables can yield very high or very low

correlations. (3) The “Union” correlation, using only the lifestyle variables that were significantly

associated with at least one of the two accelerated aging dimensions. The “Union” correlation

represents a compromise between the “All” and the “Intersection” correlations. The figures in
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this paper were generated using the “Union” correlation, but all three correlations can be

explored on the website.

X-Correlations based on the feature importances

We then computed the correlations between the feature importances for different accelerated

aging dimensions to estimate the X-correlation between the different dimensions. We used the

same method as described above under “X-Correlations based on the XWAS results”, replacing

the coefficient obtained for each X-variable in a univariate context (using partial correlation with

accelerated aging) with the coefficient obtained in a multivariate context (as an accelerated

aging predictor in a multivariate model).
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Abbreviations

UKB: UK Biobank

NHANES: National Health and Nutrition Examination Survey

ECG: electrocardiogram

EEG: Brain electroencephalography

MRI: magnetic resonance image

OCT: optical coherence tomography

DXA: dual-energy X-ray absorptiometry

PWA: pulse wave analysis

CA: chronological age

BA: biological age

AA: accelerated aging

CPU: central processing unit

GPU: graphics processing unit

SLURM: Simple Linux Utility for Resource Management

CV: cross-validation

OCV: outer cross-validation

ICV: inner cross-validation

NCV: nested cross-validation

EN: elastic net

GBM: gradient-boosted machine

NN: neural network

DNN: deep neural network
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CNN: convolutional neural network

1D CNN: one-dimensional convolutional neural network

2D CNN: convolutional neural network

3D CNN: convolutional neural network

RNN: recurrent neural network

LSTM: long short-term memory neural network

GRU: gated recurrent units neural network

ReLU: rectified linear unit

SELU: scaled exponential linear unit

CAM: class activation mapping

RAM: regression activation mapping

Grad-CAM: gradient-weighted class activation mapping

Grad-RAM: gradient-weighted regression activation mapping

TPE: Tree-structured Parzen Estimator Approach

R2: R-Squared

MSE: mean squared error

RMSE: root mean squared error

MAE: mean absolute error

GWAS: genome wide association study

SNP: single-nucleotide polymorphism

LD: linkage disequilibrium

Q-Q plot: quantile-quantile plot

BWAS: biomarkers wide association study

EWAS: environmental wide association study
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PEWAS: phenotypic and environmental wide association study

XWAS: X-wide association study

CVD: cardiovascular disease
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