[go: up one dir, main page]

 
 
Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (8,490)

Search Parameters:
Keywords = symmetries

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
9 pages, 2117 KiB  
Article
Positional Effects of a Fly’s Wing Vein in the Asymmetric Distribution of Hydraulic Resistances
by Kazuki Sugiyama, Yoshihiro Kubota and Osamu Mochizuki
Symmetry 2024, 16(9), 1212; https://doi.org/10.3390/sym16091212 (registering DOI) - 15 Sep 2024
Viewed by 124
Abstract
Insect wing vein networks facilitate blood transport with unknown haemodynamic effects on their structures. Fruit flies have the posterior cross vein (PCV) that disrupts the symmetry of the network topology and reduces the total pressure loss during blood transport; however, the impact of [...] Read more.
Insect wing vein networks facilitate blood transport with unknown haemodynamic effects on their structures. Fruit flies have the posterior cross vein (PCV) that disrupts the symmetry of the network topology and reduces the total pressure loss during blood transport; however, the impact of its various positions among species has not been examined. This study investigated the haemodynamic effects of this vein with various connecting positions. By analogising venous networks to hydraulic circuits, the flow rates and pressure losses within the veins were derived using Poiseuille’s and Kirchhoff’s laws. The results showed that the total pressure loss decreased for both PCV connections near the wing’s base. In an idealised circuit imitating the network topology, applied high hydraulic resistances as one-sided as those along the edge of the wing, the same pressure loss response as that in the actual network was demonstrated, but not within a symmetric resistance distribution. Therefore, the most proximal PCV minimises the pressure loss within the asymmetric resistance distribution, indicating an evolutionary adaptation to reducing the pressure loss in certain species with this vein near the base. Our findings highlight the possible optimisation of the flies’ wing morphology to maintain the functions of the liquid transport networks and flight devices simultaneously. Full article
(This article belongs to the Special Issue Symmetry in Biomechanics)
Show Figures

Figure 1

Figure 1
<p>Distribution of normalised hydraulic resistances across (<b>a</b>) wing vein network of fruit fly <span class="html-italic">D. melanogaster</span>, and (<b>b</b>) that projected on its topological network model. Resistance values of every wing vein, <span class="html-italic">r</span><sub>n</sub>, are normalised by the combined resistance of the entire network, <span class="html-italic">R</span>. Colour scale is logarithmic.</p>
Full article ">Figure 2
<p>Simplification of vein network in forewings of fruit fly. (<b>a</b>) Actual vein network. (<b>b</b>) Simplified network model. Base vein, V<sub>B</sub>6, anteriorly and posteriorly contiguous connecting veins, V<sub>C</sub>5 and V<sub>C</sub>6, and posterior cross vein (PCV) substituted by straight line segments coloured in light blue and dark blue respectively. Edge vein, V<sub>E</sub>6, substituted by arc. “Node A” and “Node P” are anterior and posterior connections of PCV, respectively. Physical quantities captioned <span class="html-italic">l</span><sub>n</sub> in (<b>b</b>) are lengths of simplified vein segments (a figure from [<a href="#B8-symmetry-16-01212" class="html-bibr">8</a>] was modified).</p>
Full article ">Figure 3
<p>Normalised total pressure loss corresponding to varied positions of connections of posterior cross vein (PCV). Vertical and horizontal axes show positions of anterior and posterior connections, Nodes A and P, respectively. Colour intensity in colormap indicates level of total pressure loss, <span class="html-italic">Δp</span><sub>total</sub>, normalised by pressure loss without the PCV, Δp<sub>total,NoPCV</sub>. Red circle represents actual connecting positions. Black and white circles represent positions where total pressure loss is maximum and minimum, respectively. Checkerboard-patterned regions were out of the present analysis.</p>
Full article ">Figure 4
<p>Normalised total pressure loss corresponding to position of posterior cross vein (PCV) resistor in idealised circuit models. (<b>a</b>) Basic dimension of circuit. Variation in total pressure loss demonstrated in circuit models with (<b>b</b>) no change in resistance distribution where all resistors, base vein resistors, r<sub>B</sub> series, edge vein resistors, r<sub>E</sub> series, and connecting vein resistors, r<sub>C</sub> series, share resistance values <span class="html-italic">r</span>; (<b>c</b>) twice larger resistances, 2<span class="html-italic">r</span>, of edge vein resistors; (<b>d</b>) 14 times larger resistances, 14<span class="html-italic">r</span>, of the edge vein resistors referring to the actual resistance balance between the edge and base veins. Each schematic at the bottom left of each colourmap represents resistance values of resistors. Variable resistor symbols, the rectangles with arrows in left panels, indicate that their resistance values vary with the positions of PCV resistor’s connections. Vertical and horizontal axes show the connection positions on the inlet- and outlet-side. Colour intensity in the colourmap corresponds to the level of normalised total pressure loss, <span class="html-italic">Δp</span><sub>total</sub>/<span class="html-italic">Δp</span><sub>total,initial</sub>, where Δp<sub>total</sub> is the total pressure loss with each PCV position, and <span class="html-italic">Δp</span><sub>total,initial</sub> is that with initial positions of PCV shown in (<b>a</b>). Red circle represents initial position. Black and white circles mark positions with minimum and maximum pressure losses, respectively.</p>
Full article ">
16 pages, 326 KiB  
Article
Three Weaker Forms of Soft Faint Continuity
by Samer Al-Ghour and Dina Abuzaid
Symmetry 2024, 16(9), 1211; https://doi.org/10.3390/sym16091211 (registering DOI) - 14 Sep 2024
Viewed by 186
Abstract
The authors of this paper introduce and discuss three weaker forms of soft faint continuity: soft faint semi-continuity, soft faint pre-continuity, and soft faint β-continuity. They characterize each of them in several ways. They also demonstrate how they are preserved under some [...] Read more.
The authors of this paper introduce and discuss three weaker forms of soft faint continuity: soft faint semi-continuity, soft faint pre-continuity, and soft faint β-continuity. They characterize each of them in several ways. They also demonstrate how they are preserved under some restrictions. Moreover, they prove that a soft function is also soft faint semi-continuous (resp. soft faint pre-continuous, soft faint β-continuous) if its soft graph function is also soft faint semi-continuous (resp. soft faint pre-continuous, soft faint β-continuous). Moreover, they show that a soft function is soft faint semi-continuous (resp. soft faint pre-continuous, soft faint β-continuous) iff it is soft semi-continuous provided that it has a soft regular codomain. Finally, the symmetry between our new ideas and their analogous topological ones is investigated. Full article
(This article belongs to the Section Mathematics)
19 pages, 1414 KiB  
Article
Numerical Modeling of Scholte Wave in Acoustic-Elastic Coupled TTI Anisotropic Media
by Yifei Chen and Deli Wang
Appl. Sci. 2024, 14(18), 8302; https://doi.org/10.3390/app14188302 (registering DOI) - 14 Sep 2024
Viewed by 192
Abstract
Numerical modeling of acoustic-elastic media is helpful for seismic exploration in the deepwater environment. We propose an algorithm based on the staggered grid finite difference to simulate wave propagation in the interface between fluid and transversely isotropic media, where the interface does not [...] Read more.
Numerical modeling of acoustic-elastic media is helpful for seismic exploration in the deepwater environment. We propose an algorithm based on the staggered grid finite difference to simulate wave propagation in the interface between fluid and transversely isotropic media, where the interface does not need to consider the boundary condition. We also derive the stability conditions of the proposed method. Scholte waves, which are generated at the seafloor, exhibit distinctly different propagation behaviors than body waves in ocean-bottom seismograms. Numerical examples are used to characterize the wavefield of Scholte waves and discuss the relationship between travel time and the Thomsen parameters. Thomsen parameters are assigned clear physical meanings, and the magnitude of their values directly indicates the strength of the anisotropy in the media. Numerical results show that the velocity of the Scholte wave is positively correlated with ε and negatively correlated with δ. And the curve of the arrival time of the Scholte wave as a whole is sinusoidal and has no symmetry in inclination. The velocity of the Scholte wave in azimuth is positively related to the polar angle. The energy of the Scholte wave is negatively correlated with the distance from the source to the fluid-solid interface. The above results provide a basis for studying oceanic Scholte waves and are beneficial for utilizing the information provided by Scholte waves. Full article
23 pages, 10301 KiB  
Article
The Effects of Layout Order on Interface Complexity: An Eye-Tracking Study for Dashboard Design
by Nuowen Zhang, Jing Zhang, Shangsong Jiang and Weijia Ge
Sensors 2024, 24(18), 5966; https://doi.org/10.3390/s24185966 (registering DOI) - 14 Sep 2024
Viewed by 188
Abstract
This study investigated the effect of layout order on the complexity of the dashboard interface based on screen-based eye trackers. By simplifying and abstracting dashboard interfaces and incorporating subjective ratings (symmetry and unity calculations), we successfully manipulated the levels of complexity and layout [...] Read more.
This study investigated the effect of layout order on the complexity of the dashboard interface based on screen-based eye trackers. By simplifying and abstracting dashboard interfaces and incorporating subjective ratings (symmetry and unity calculations), we successfully manipulated the levels of complexity and layout order of the interface materials. Using four types of eye movement data (total fixation count, total gaze duration, scanning paths, and hotspot maps) and behavioral data, we compared participants’ visual search behavior on interfaces with different layout orders and complexity levels. Experiment 1 revealed a significant interaction between layout order and interface complexity, with participants performing significantly better in the high-level layout order condition. Experiment 2 confirmed that the position of the core chart plays a crucial role in users’ visual search behavior and that the optimal layout order for the dashboard is to place the core chart on the left side of the interface’s horizontal axis, with partial symmetry in the no-core chart areas. This study highlights the effectiveness of eye-tracking techniques in user interface design research and provides valuable insights into optimizing dashboard interface design. Designers should adopt the design principle of “order is more” in addition to “less is more” and consider designing the core chart in the left-center position. Full article
(This article belongs to the Special Issue Vision Science and Technology in Human Computer Interaction Systems)
Show Figures

Figure 1

Figure 1
<p>Examples of the process of dashboard interface abstracting into experimental material.</p>
Full article ">Figure 2
<p>Examples of the experimental material on three different complexity levels and three different layout order levels.</p>
Full article ">Figure 3
<p>Examples of a mid-complexity and high-order interface and a mid-complexity and low-order interface in Experiment 1.</p>
Full article ">Figure 4
<p>Flow chart of Experiment 1.</p>
Full article ">Figure 5
<p>RTs of high-level and low-level order layouts at three different complexity levels.</p>
Full article ">Figure 6
<p>Hotspot maps of a mid-complexity and high-order interface and a mid-complexity and low-order interface in Experiment 1.</p>
Full article ">Figure 7
<p>Examples of mid-complexity and mid-order interfaces with the core charts in four positions in Experiment 2.</p>
Full article ">Figure 8
<p>RTs of high-level layout order and mid-level layout order at three different complexity levels.</p>
Full article ">Figure 9
<p>RTs of five different layout order level interfaces at three complexity levels.</p>
Full article ">Figure 10
<p>Eye movement data of five different layout order levels.</p>
Full article ">Figure 11
<p>Hotspot maps of the high-level layout order interface and mid-level layout order interface.</p>
Full article ">
16 pages, 1249 KiB  
Article
Charging and Discharging Modeling of Inertial Sensors Based on Ultraviolet Charge Management
by Zihan Zhao, Tao Yu, Shang Wang, Huadong Li and Zhi Wang
Symmetry 2024, 16(9), 1209; https://doi.org/10.3390/sym16091209 (registering DOI) - 14 Sep 2024
Viewed by 212
Abstract
Inertial sensors act as inertial references in space gravitational wave detection missions, necessitating that their internal test mass (TM) maintains minimal residual acceleration noise. High-energy particles and cosmic rays in space, along with ion pumps in ground-based torsion pendulum experiments, can cause charge [...] Read more.
Inertial sensors act as inertial references in space gravitational wave detection missions, necessitating that their internal test mass (TM) maintains minimal residual acceleration noise. High-energy particles and cosmic rays in space, along with ion pumps in ground-based torsion pendulum experiments, can cause charge accumulation on the TM surface, leading to increased residual acceleration noise. Consequently, a charge management system was introduced to control the TM’s charge. The complex light path propagation within the electrode housing (EH) makes the TM’s charging and discharging process difficult to theoretically calculate and fully simulate. To address this issue, we propose a simulation method for charging and discharging inertial sensors within ultraviolet (UV) charge management systems. This method innovatively considers the impact of photoelectron emission angle and the TM’s position offset from symmetry on performance. The method also simulates charging and discharging rates over time under conditions of symmetry and preliminarily examines factors affecting the TM’s equilibrium potential. Simulation results indicate that this method effectively models the charge management system’s operation, providing a valuable reference for system design. Full article
(This article belongs to the Section Engineering and Materials)
Show Figures

Figure 1

Figure 1
<p>(<b>a</b>) The spacing between the TM and the EH in the <span class="html-italic">x</span> and <span class="html-italic">y</span> directions. (<b>b</b>) The illumination method of the inertial sensor.</p>
Full article ">Figure 2
<p>The convergence process of UV light.</p>
Full article ">Figure 3
<p>Divergence angle calibration experiment of the optical fiber output port.</p>
Full article ">Figure 4
<p>The state of photoelectron escape.</p>
Full article ">Figure 5
<p>The angular distribution state of photoelectron emission.</p>
Full article ">Figure 6
<p>The initial and final positions of photoelectrons.</p>
Full article ">Figure 7
<p>The impact of position offset on the performance of the charge management system. The colors in the figure, ranging from yellow to blue, represent a decreasing TM discharge rate.</p>
Full article ">Figure 8
<p>Simulation results of charge management performance when the TM is negatively charged. (<b>a</b>) Change in potential difference. (<b>b</b>) Change in discharge rate of TM.</p>
Full article ">Figure 9
<p>Simulation results of charge management performance when the TM is positively charged. (<b>a</b>) Change in potential difference. (<b>b</b>) Change in charge rate of TM.</p>
Full article ">
9 pages, 3576 KiB  
Article
Efficient Study on Westervelt-Type Equations to Design Metamaterials via Symmetry Analysis
by Zehra Pinar Izgi, Pshtiwan Othman Mohammed, Ravi P. Agarwal, Majeed A. Yousif, Alina Alb Lupas and Mohamed Abdelwahed
Mathematics 2024, 12(18), 2855; https://doi.org/10.3390/math12182855 (registering DOI) - 13 Sep 2024
Viewed by 256
Abstract
Metamaterials have emerged as a focal point in contemporary science and technology due to their ability to drive significant innovations. These engineered materials are specifically designed to couple the phenomena of different physical natures, thereby influencing processes through mechanical or thermal effects. While [...] Read more.
Metamaterials have emerged as a focal point in contemporary science and technology due to their ability to drive significant innovations. These engineered materials are specifically designed to couple the phenomena of different physical natures, thereby influencing processes through mechanical or thermal effects. While much of the recent research has concentrated on frequency conversion into electromagnetic waves, the field of acoustic frequency conversion still faces considerable technical challenges. To overcome these hurdles, researchers are developing metamaterials with customized acoustic properties. A key equation for modeling nonlinear acoustic wave phenomena is the dissipative Westervelt equation. This study investigates analytical solutions using ansatz-based methods combined with Lie symmetries. The approach presented here provides a versatile framework that is applicable to a wide range of fields in metamaterial design. Full article
(This article belongs to the Special Issue Soliton Theory and Integrable Systems in Mathematical Physics)
Show Figures

Figure 1

Figure 1
<p>The 3D plots of the solution set for the Westervelt equation, (<b>a</b>) where <math display="inline"><semantics> <mrow> <mi>x</mi> <mo>=</mo> <mn>10</mn> </mrow> </semantics></math>, (<b>b</b>) where <math display="inline"><semantics> <mrow> <mi>y</mi> <mo>=</mo> <mn>10</mn> </mrow> </semantics></math>, and (<b>c</b>) where <math display="inline"><semantics> <mrow> <mi>t</mi> <mo>=</mo> <mn>10</mn> </mrow> </semantics></math>.</p>
Full article ">Figure 2
<p>The 3D plots of the solution set for the nonlinear acoustic equation with viscosity, (<b>a</b>) where <math display="inline"><semantics> <mrow> <mi>x</mi> <mo>=</mo> <mn>10</mn> </mrow> </semantics></math>, and (<b>b</b>) where <math display="inline"><semantics> <mrow> <mi>y</mi> <mo>=</mo> <mn>10</mn> </mrow> </semantics></math>.</p>
Full article ">
27 pages, 11927 KiB  
Article
Nature of Scapolite Color: Ab Initio Calculations, Spectroscopy, and Structural Study
by Roman Shendrik, Nikita V. Chukanov, Alexander Bogdanov, Alexandra Myasnikova, Elizaveta Pankrushina, Anatoly A. Zolotarev, Anastasiia Babkina, Ekaterina Popova, Marina F. Vigasina, Sergey M. Aksenov, Grigoriy Ilyin and Igor V. Pekov
Minerals 2024, 14(9), 937; https://doi.org/10.3390/min14090937 - 13 Sep 2024
Viewed by 301
Abstract
The article describes the results of a comprehensive study of the extra-framework components of scapolites using quantum–chemical calculations, electronic and vibrational spectroscopy, and single-crystal X-ray diffraction and crystal structure refinement. The ab initio calculations were performed using an embedded-cluster approach of extra-framework components [...] Read more.
The article describes the results of a comprehensive study of the extra-framework components of scapolites using quantum–chemical calculations, electronic and vibrational spectroscopy, and single-crystal X-ray diffraction and crystal structure refinement. The ab initio calculations were performed using an embedded-cluster approach of extra-framework components in various cation surroundings. As a result, through comparing the experimental and ab initio calculation results, the energies of the electronic and vibrational transitions of various extra-framework components (CO3)2−, (CO3)·, S3·, S2·—as well as the role of these components in the process of the lowering of the symmetry—were determined for scapolites belonging to the marialite–meionite solid–solution series. The nature of the various colors of the scapolites has also been established. Colors from purple to blue are a result of the presence of radiation-induced pairs of defects: carbonate radical anions (CO3)· and F-centers. However, polysulfide S3· radical anions are found in some violet scapolites. Full article
(This article belongs to the Special Issue Crystal Structure, Mineralogy, and Geochemistry of Scapolite)
Show Figures

Figure 1

Figure 1
<p>Samples 3614 (<b>a</b>), 2386 (<b>b</b>), 250 (<b>c</b>), 1366 (<b>d</b>), 418 (<b>e</b>), and 11/446 (<b>f</b>). The field of view (FOV) widths are 4.1, 1.3, 2.1, 6.3, 1.2, and 9.5 cm, respectively.</p>
Full article ">Figure 2
<p>Example of embedded cluster (<b>left</b> side): region I is quantum cluster, II is ECP region, III—point charge region—and configuration of different extra-framework centers (<b>right</b> side): (<b>a</b>) F-center; (<b>b</b>) (CO<sub>3</sub>)<sup><math display="inline"><semantics> <mrow> <mo>·</mo> <mo>−</mo> </mrow> </semantics></math></sup>; (<b>c</b>) <math display="inline"><semantics> <msubsup> <mi mathvariant="normal">S</mi> <mn>2</mn> <mrow> <mo>·</mo> <mo>−</mo> </mrow> </msubsup> </semantics></math>; (<b>d</b>) <math display="inline"><semantics> <msubsup> <mi mathvariant="normal">S</mi> <mn>3</mn> <mrow> <mo>·</mo> <mo>−</mo> </mrow> </msubsup> </semantics></math>.</p>
Full article ">Figure 3
<p>Calculated oscillator strengths for (CO<sub>3</sub>)<sup>2−</sup> (<b>a</b>) and (CO<sub>3</sub>)<sup><math display="inline"><semantics> <mrow> <mo>·</mo> <mo>−</mo> </mrow> </semantics></math></sup> (<b>b</b>) in scapolite. Irreducible representations of molecular orbitals are given with respect to <math display="inline"><semantics> <msub> <mi mathvariant="normal">C</mi> <mrow> <mn>2</mn> <mi>v</mi> </mrow> </msub> </semantics></math> point group.</p>
Full article ">Figure 4
<p>Crystal structure of Sample Sh-1. Positions of atoms belonging to the disordered (CO<sub>3</sub>)<sup>2−</sup> group around the <span class="html-italic">A</span> site are shown.</p>
Full article ">Figure 5
<p>Difference electron density map before (<b>a</b>) and after (<b>b</b>) the refinement of oxygen (red dots). The (CO<sub>3</sub>)<sup>2−</sup> group is disordered due to the action of the four-fold axis. Intervals between isolines are 0.05 e·Å<sup>−3</sup>.</p>
Full article ">Figure 6
<p>IR spectra of Samples 1366 (a), 2386 (b), 250 (c), and 3614 (d).</p>
Full article ">Figure 7
<p>Raman spectra of marialite Samples 250 (a), 2386 (b), and 3614 (c).</p>
Full article ">Figure 8
<p>Raman spectra of meionite Samples 1366 (a) and 54413 (b).</p>
Full article ">Figure 9
<p>Raman spectra of Sample S-22 measured at −190 °C: initial (a) and annealed during 3 h at 950 °C (b).</p>
Full article ">Figure 10
<p>Absorption spectra of scapolites 11/446 (1), 3614 (2), and 1366 (3). The dotted lines show the decomposition of spectrum (1) into components. Dashed lines show bands associated with (CO<sub>3</sub>)<sup><math display="inline"><semantics> <mrow> <mo>·</mo> <mo>−</mo> </mrow> </semantics></math></sup> dotted curve is a band associated with F centers.</p>
Full article ">Figure 11
<p>ESR spectra of the 1366 (<b>a</b>) and 3614 (<b>b</b>) samples.</p>
Full article ">Figure 12
<p>Absorption spectra of Sample S-22 (<b>a</b>): curve 1 is the initial sample, curve 2 is the absorption of the heated at 950 °C Sample S-22, and curve 3 is the heated Sample S-22 after irradiation of 256 nm UV lamp. In sub-figure (<b>b</b>), the ESR spectra of the heated (curve 1) and then irradiated (curve 2) for Sample S-22 are given.</p>
Full article ">Figure 13
<p>Luminescence (<b>a</b>) and excitation (<b>b</b>) spectra. Curves 1 and 2 in <a href="#minerals-14-00937-f013" class="html-fig">Figure 13</a>a correspond, respectively, to initial Sample 418 and Sample 2 heated at 950 °C and then irradiated with 256 nm UV lamp Sample S-22 under 3.3 eV excitation. The inset shows luminescence spectrum of Sample S-22 heated and then irradiated with 4.3 eV radiation. Curves 1, 2, and 3 in <a href="#minerals-14-00937-f013" class="html-fig">Figure 13</a>b correspond to initial Sample 412, Sample 1366 heated at 950 °C, and heated Sample S-22.</p>
Full article ">Figure 14
<p>Topological features of the tetrahedral framework in scapolite-group minerals.</p>
Full article ">Figure 15
<p>Color space chromaticity diagram for scapolite-group minerals from different sources (black symbols): 1—Sample 11/446; 2—Sample 3614; 3—Sample 1366; 4—Sample 2386; 5—scapolite from [<a href="#B14-minerals-14-00937" class="html-bibr">14</a>]; 6—scapolite from [<a href="#B15-minerals-14-00937" class="html-bibr">15</a>]; 7, 8, and 9—scapolites from [<a href="#B12-minerals-14-00937" class="html-bibr">12</a>]; 10—scapolite from [<a href="#B16-minerals-14-00937" class="html-bibr">16</a>]; 11—Sample S-22; 12—Sample S-22 annealed at 950 °C and then irradiated with 256 nm UV lamp. The white lines show the calculated trends for the different relationships between (CO<sub>3</sub>)<sup><math display="inline"><semantics> <mrow> <mo>·</mo> <mo>−</mo> </mrow> </semantics></math></sup> and F-centers, where 1:0 shows the color of the scapolite, containing only F-centers, and 1:1 indicates scapolites containing equal concentrations of (CO<sub>3</sub>)<sup><math display="inline"><semantics> <mrow> <mo>·</mo> <mo>−</mo> </mrow> </semantics></math></sup> and F-centers. The calculated color trend of the scapolites containing <math display="inline"><semantics> <msubsup> <mi mathvariant="normal">S</mi> <mn>3</mn> <mrow> <mo>·</mo> <mo>−</mo> </mrow> </msubsup> </semantics></math> radical anions in different Na/Ca coordinations is also shown.</p>
Full article ">
25 pages, 1113 KiB  
Article
Semi-Analytical Closed-Form Solutions of the Ball–Plate Problem
by Remus-Daniel Ene and Nicolina Pop
Processes 2024, 12(9), 1977; https://doi.org/10.3390/pr12091977 - 13 Sep 2024
Viewed by 207
Abstract
Mathematical models and numerical simulations are necessary to understand the dynamical behaviors of complex systems. The aim of this work is to investigate closed-form solutions for the ball–plate problem considering a system derived from an optimal control problem for ball–plate dynamics. The nonlinear [...] Read more.
Mathematical models and numerical simulations are necessary to understand the dynamical behaviors of complex systems. The aim of this work is to investigate closed-form solutions for the ball–plate problem considering a system derived from an optimal control problem for ball–plate dynamics. The nonlinear properties of ball and plate control system are presented in this work. To semi-analytically solve this system, we explored a second-order nonlinear differential equation. Consequently, we obtained the approximate closed-form solutions by the Optimal Parametric Iteration Method (OPIM) using only one iteration. A comparison between the analytical and corresponding numerical procedures reflects the advantages of the first one. The accordance between the obtained results and the numerical ones highlights that the procedure used is accurate, effective, and good to implement in applications such as sliding mode control to the ball-and-plate problem. Full article
(This article belongs to the Special Issue Advances in the Control of Complex Dynamic Systems)
Show Figures

Figure 1

Figure 1
<p>Difference between semi-analytical and numerical results: <math display="inline"><semantics> <mrow> <msub> <mi>ϵ</mi> <mi>w</mi> </msub> <mo>=</mo> <mrow> <mo>|</mo> <msub> <mi>w</mi> <mrow> <mi>n</mi> <mi>u</mi> <mi>m</mi> <mi>e</mi> <mi>r</mi> <mi>i</mi> <mi>c</mi> <mi>a</mi> <mi>l</mi> </mrow> </msub> <mo>−</mo> <msub> <mover accent="true"> <mi>w</mi> <mo stretchy="false">¯</mo> </mover> <mrow> <mi>O</mi> <mi>P</mi> <mi>I</mi> <mi>M</mi> </mrow> </msub> <mo>|</mo> </mrow> </mrow> </semantics></math> for the initial data: <math display="inline"><semantics> <mrow> <msub> <mi>x</mi> <mn>0</mn> </msub> <mo>=</mo> <mn>0.45</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <msub> <mi>y</mi> <mn>0</mn> </msub> <mo>=</mo> <mn>0.25</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <msub> <mi>z</mi> <mn>0</mn> </msub> <mo>=</mo> <mn>0.75</mn> </mrow> </semantics></math>, physical parameters: <math display="inline"><semantics> <mrow> <mi>k</mi> <mo>=</mo> <mn>0.85</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>l</mi> <mo>=</mo> <mn>0.5</mn> </mrow> </semantics></math> and index <math display="inline"><semantics> <mrow> <msub> <mi>N</mi> <mrow> <mi>m</mi> <mi>a</mi> <mi>x</mi> </mrow> </msub> <mo>=</mo> <mn>23</mn> </mrow> </semantics></math>; <math display="inline"><semantics> <mrow> <msub> <mover accent="true"> <mi>w</mi> <mo stretchy="false">¯</mo> </mover> <mrow> <mi>O</mi> <mi>P</mi> <mi>I</mi> <mi>M</mi> </mrow> </msub> <mo>∈</mo> <msub> <mi mathvariant="script">SA</mi> <mn>1</mn> </msub> </mrow> </semantics></math> using Equations (<a href="#FD27-processes-12-01977" class="html-disp-formula">27</a>) and (<a href="#FD54-processes-12-01977" class="html-disp-formula">A3</a>).</p>
Full article ">Figure 2
<p>The function <math display="inline"><semantics> <mrow> <msub> <mover accent="true"> <mi>w</mi> <mo stretchy="false">¯</mo> </mover> <mrow> <mi>O</mi> <mi>P</mi> <mi>I</mi> <mi>M</mi> </mrow> </msub> <mo>∈</mo> <msub> <mi mathvariant="script">SA</mi> <mn>1</mn> </msub> </mrow> </semantics></math> using Equations (<a href="#FD27-processes-12-01977" class="html-disp-formula">27</a>), (<a href="#FD28-processes-12-01977" class="html-disp-formula">28</a>) and (<a href="#FD54-processes-12-01977" class="html-disp-formula">A3</a>) for initial data: <math display="inline"><semantics> <mrow> <msub> <mi>x</mi> <mn>0</mn> </msub> <mo>=</mo> <mn>0.45</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <msub> <mi>y</mi> <mn>0</mn> </msub> <mo>=</mo> <mn>0.25</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <msub> <mi>z</mi> <mn>0</mn> </msub> <mo>=</mo> <mn>0.75</mn> </mrow> </semantics></math>, physical parameters: <math display="inline"><semantics> <mrow> <mi>k</mi> <mo>=</mo> <mn>0.85</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>l</mi> <mo>=</mo> <mn>0.5</mn> </mrow> </semantics></math> and index <math display="inline"><semantics> <mrow> <msub> <mi>N</mi> <mrow> <mi>m</mi> <mi>a</mi> <mi>x</mi> </mrow> </msub> <mo>=</mo> <mn>23</mn> </mrow> </semantics></math>: OPIM solution (dotted black line) and numerical results (solid green line), respectively.</p>
Full article ">Figure 3
<p>The functions <math display="inline"><semantics> <mrow> <mrow> <mo>(</mo> <msub> <mover accent="true"> <mi>x</mi> <mo stretchy="false">¯</mo> </mover> <mrow> <mi>O</mi> <mi>P</mi> <mi>I</mi> <mi>M</mi> </mrow> </msub> <mo>,</mo> <msub> <mover accent="true"> <mi>y</mi> <mo stretchy="false">¯</mo> </mover> <mrow> <mi>O</mi> <mi>P</mi> <mi>I</mi> <mi>M</mi> </mrow> </msub> <mo>,</mo> <msub> <mover accent="true"> <mi>z</mi> <mo stretchy="false">¯</mo> </mover> <mrow> <mi>O</mi> <mi>P</mi> <mi>I</mi> <mi>M</mi> </mrow> </msub> <mo>)</mo> </mrow> <mo>∈</mo> <msub> <mi mathvariant="script">CFS</mi> <mn>1</mn> </msub> </mrow> </semantics></math> using Equation (<a href="#FD54-processes-12-01977" class="html-disp-formula">A3</a>) for initial data: <math display="inline"><semantics> <mrow> <msub> <mi>x</mi> <mn>0</mn> </msub> <mo>=</mo> <mn>0.45</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <msub> <mi>y</mi> <mn>0</mn> </msub> <mo>=</mo> <mn>0.25</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <msub> <mi>z</mi> <mn>0</mn> </msub> <mo>=</mo> <mn>0.75</mn> </mrow> </semantics></math>, physical parameters: <math display="inline"><semantics> <mrow> <mi>k</mi> <mo>=</mo> <mn>0.85</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>l</mi> <mo>=</mo> <mn>0.5</mn> </mrow> </semantics></math> and index <math display="inline"><semantics> <mrow> <msub> <mi>N</mi> <mrow> <mi>m</mi> <mi>a</mi> <mi>x</mi> </mrow> </msub> <mo>=</mo> <mn>23</mn> </mrow> </semantics></math>: OPIM solution (dashing black line) and numerical results (solid color line: green line for <math display="inline"><semantics> <mrow> <mi>x</mi> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> </semantics></math>, red line for <math display="inline"><semantics> <mrow> <mi>y</mi> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> </semantics></math>, blue line for <math display="inline"><semantics> <mrow> <mi>z</mi> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> </semantics></math>), respectively.</p>
Full article ">Figure 4
<p>Difference between semi-analytical and numerical results: <math display="inline"><semantics> <mrow> <msub> <mi>ϵ</mi> <mi>w</mi> </msub> <mo>=</mo> <mrow> <mo>|</mo> <msub> <mi>w</mi> <mrow> <mi>n</mi> <mi>u</mi> <mi>m</mi> <mi>e</mi> <mi>r</mi> <mi>i</mi> <mi>c</mi> <mi>a</mi> <mi>l</mi> </mrow> </msub> <mo>−</mo> <msub> <mover accent="true"> <mi>w</mi> <mo stretchy="false">¯</mo> </mover> <mrow> <mi>O</mi> <mi>P</mi> <mi>I</mi> <mi>M</mi> </mrow> </msub> <mo>|</mo> </mrow> </mrow> </semantics></math> for the initial data: <math display="inline"><semantics> <mrow> <msub> <mi>x</mi> <mn>0</mn> </msub> <mo>=</mo> <mn>0.55</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <msub> <mi>y</mi> <mn>0</mn> </msub> <mo>=</mo> <mn>0.35</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <msub> <mi>z</mi> <mn>0</mn> </msub> <mo>=</mo> <mn>0.25</mn> </mrow> </semantics></math>, physical parameters: <math display="inline"><semantics> <mrow> <mi>k</mi> <mo>=</mo> <mo>−</mo> <mn>0.65</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>l</mi> <mo>=</mo> <mn>0.75</mn> </mrow> </semantics></math> and index <math display="inline"><semantics> <mrow> <msub> <mi>N</mi> <mrow> <mi>m</mi> <mi>a</mi> <mi>x</mi> </mrow> </msub> <mo>=</mo> <mn>23</mn> </mrow> </semantics></math>; <math display="inline"><semantics> <mrow> <msub> <mover accent="true"> <mi>w</mi> <mo stretchy="false">¯</mo> </mover> <mrow> <mi>O</mi> <mi>P</mi> <mi>I</mi> <mi>M</mi> </mrow> </msub> <mo>∈</mo> <msub> <mi mathvariant="script">SA</mi> <mn>2</mn> </msub> </mrow> </semantics></math> using Equations (<a href="#FD38-processes-12-01977" class="html-disp-formula">38</a>) and (<a href="#FD55-processes-12-01977" class="html-disp-formula">A4</a>).</p>
Full article ">Figure 5
<p>The function <math display="inline"><semantics> <mrow> <msub> <mover accent="true"> <mi>w</mi> <mo stretchy="false">¯</mo> </mover> <mrow> <mi>O</mi> <mi>P</mi> <mi>I</mi> <mi>M</mi> </mrow> </msub> <mo>∈</mo> <msub> <mi mathvariant="script">SA</mi> <mn>2</mn> </msub> </mrow> </semantics></math> using Equations (<a href="#FD38-processes-12-01977" class="html-disp-formula">38</a>), (<a href="#FD39-processes-12-01977" class="html-disp-formula">39</a>) and (<a href="#FD55-processes-12-01977" class="html-disp-formula">A4</a>) for initial data: <math display="inline"><semantics> <mrow> <msub> <mi>x</mi> <mn>0</mn> </msub> <mo>=</mo> <mn>0.55</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <msub> <mi>y</mi> <mn>0</mn> </msub> <mo>=</mo> <mn>0.35</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <msub> <mi>z</mi> <mn>0</mn> </msub> <mo>=</mo> <mn>0.25</mn> </mrow> </semantics></math>, physical parameters: <math display="inline"><semantics> <mrow> <mi>k</mi> <mo>=</mo> <mo>−</mo> <mn>0.65</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>l</mi> <mo>=</mo> <mn>0.75</mn> </mrow> </semantics></math> and index <math display="inline"><semantics> <mrow> <msub> <mi>N</mi> <mrow> <mi>m</mi> <mi>a</mi> <mi>x</mi> </mrow> </msub> <mo>=</mo> <mn>23</mn> </mrow> </semantics></math>: OPIM solution (dotted black line) and numerical results (solid green line), respectively.</p>
Full article ">Figure 6
<p>The functions <math display="inline"><semantics> <mrow> <mrow> <mo>(</mo> <msub> <mover accent="true"> <mi>x</mi> <mo stretchy="false">¯</mo> </mover> <mrow> <mi>O</mi> <mi>P</mi> <mi>I</mi> <mi>M</mi> </mrow> </msub> <mo>,</mo> <msub> <mover accent="true"> <mi>y</mi> <mo stretchy="false">¯</mo> </mover> <mrow> <mi>O</mi> <mi>P</mi> <mi>I</mi> <mi>M</mi> </mrow> </msub> <mo>,</mo> <msub> <mover accent="true"> <mi>z</mi> <mo stretchy="false">¯</mo> </mover> <mrow> <mi>O</mi> <mi>P</mi> <mi>I</mi> <mi>M</mi> </mrow> </msub> <mo>)</mo> </mrow> <mo>∈</mo> <msub> <mi mathvariant="script">CFS</mi> <mn>2</mn> </msub> </mrow> </semantics></math> using Equation (<a href="#FD55-processes-12-01977" class="html-disp-formula">A4</a>) for initial data: <math display="inline"><semantics> <mrow> <msub> <mi>x</mi> <mn>0</mn> </msub> <mo>=</mo> <mn>0.55</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <msub> <mi>y</mi> <mn>0</mn> </msub> <mo>=</mo> <mn>0.35</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <msub> <mi>z</mi> <mn>0</mn> </msub> <mo>=</mo> <mn>0.25</mn> </mrow> </semantics></math>, physical parameters: <math display="inline"><semantics> <mrow> <mi>k</mi> <mo>=</mo> <mo>−</mo> <mn>0.65</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>l</mi> <mo>=</mo> <mn>0.75</mn> </mrow> </semantics></math> and index <math display="inline"><semantics> <mrow> <msub> <mi>N</mi> <mrow> <mi>m</mi> <mi>a</mi> <mi>x</mi> </mrow> </msub> <mo>=</mo> <mn>23</mn> </mrow> </semantics></math>: OPIM solution (dashing black line) and numerical results (solid color line: green line for <math display="inline"><semantics> <mrow> <mi>x</mi> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> </semantics></math>, red line for <math display="inline"><semantics> <mrow> <mi>y</mi> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> </semantics></math>, blue line for <math display="inline"><semantics> <mrow> <mi>z</mi> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> </semantics></math>), respectively.</p>
Full article ">Figure 7
<p>Difference between semi-analytical and numerical results: <math display="inline"><semantics> <mrow> <msub> <mi>ϵ</mi> <mi>w</mi> </msub> <mo>=</mo> <mrow> <mo>|</mo> <msub> <mi>w</mi> <mrow> <mi>n</mi> <mi>u</mi> <mi>m</mi> <mi>e</mi> <mi>r</mi> <mi>i</mi> <mi>c</mi> <mi>a</mi> <mi>l</mi> </mrow> </msub> <mo>−</mo> <msub> <mover accent="true"> <mi>w</mi> <mo stretchy="false">¯</mo> </mover> <mrow> <mi>O</mi> <mi>P</mi> <mi>I</mi> <mi>M</mi> </mrow> </msub> <mo>|</mo> </mrow> </mrow> </semantics></math> for the initial data: <math display="inline"><semantics> <mrow> <msub> <mi>x</mi> <mn>0</mn> </msub> <mo>=</mo> <mn>0.55</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <msub> <mi>y</mi> <mn>0</mn> </msub> <mo>=</mo> <mn>0.35</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <msub> <mi>z</mi> <mn>0</mn> </msub> <mo>=</mo> <mn>0.25</mn> </mrow> </semantics></math>, physical parameters: <math display="inline"><semantics> <mrow> <mi>k</mi> <mo>=</mo> <mo>−</mo> <mn>0.450</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>l</mi> <mo>=</mo> <mo>−</mo> <mn>0.25</mn> </mrow> </semantics></math> and index <math display="inline"><semantics> <mrow> <msub> <mi>N</mi> <mrow> <mi>m</mi> <mi>a</mi> <mi>x</mi> </mrow> </msub> <mo>=</mo> <mn>16</mn> </mrow> </semantics></math>; <math display="inline"><semantics> <mrow> <msub> <mover accent="true"> <mi>w</mi> <mo stretchy="false">¯</mo> </mover> <mrow> <mi>O</mi> <mi>P</mi> <mi>I</mi> <mi>M</mi> </mrow> </msub> <mo>∈</mo> <msub> <mi mathvariant="script">SA</mi> <mn>3</mn> </msub> </mrow> </semantics></math> using Equations (<a href="#FD47-processes-12-01977" class="html-disp-formula">47</a>) and (<a href="#FD56-processes-12-01977" class="html-disp-formula">A5</a>).</p>
Full article ">Figure 8
<p>The function <math display="inline"><semantics> <mrow> <msub> <mover accent="true"> <mi>w</mi> <mo stretchy="false">¯</mo> </mover> <mrow> <mi>O</mi> <mi>P</mi> <mi>I</mi> <mi>M</mi> </mrow> </msub> <mo>∈</mo> <msub> <mi mathvariant="script">SA</mi> <mn>3</mn> </msub> </mrow> </semantics></math> using Equations (<a href="#FD47-processes-12-01977" class="html-disp-formula">47</a>), (<a href="#FD48-processes-12-01977" class="html-disp-formula">48</a>) and (<a href="#FD56-processes-12-01977" class="html-disp-formula">A5</a>) for initial data: <math display="inline"><semantics> <mrow> <msub> <mi>x</mi> <mn>0</mn> </msub> <mo>=</mo> <mn>0.55</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <msub> <mi>y</mi> <mn>0</mn> </msub> <mo>=</mo> <mn>0.35</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <msub> <mi>z</mi> <mn>0</mn> </msub> <mo>=</mo> <mn>0.25</mn> </mrow> </semantics></math>, physical parameters: <math display="inline"><semantics> <mrow> <mi>k</mi> <mo>=</mo> <mo>−</mo> <mn>0.450</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>l</mi> <mo>=</mo> <mo>−</mo> <mn>0.25</mn> </mrow> </semantics></math> and index <math display="inline"><semantics> <mrow> <msub> <mi>N</mi> <mrow> <mi>m</mi> <mi>a</mi> <mi>x</mi> </mrow> </msub> <mo>=</mo> <mn>23</mn> </mrow> </semantics></math>: OPIM solution (dotted black line) and numerical results (solid green line), respectively.</p>
Full article ">Figure 9
<p>The functions <math display="inline"><semantics> <mrow> <mrow> <mo>(</mo> <msub> <mover accent="true"> <mi>x</mi> <mo stretchy="false">¯</mo> </mover> <mrow> <mi>O</mi> <mi>P</mi> <mi>I</mi> <mi>M</mi> </mrow> </msub> <mo>,</mo> <msub> <mover accent="true"> <mi>y</mi> <mo stretchy="false">¯</mo> </mover> <mrow> <mi>O</mi> <mi>P</mi> <mi>I</mi> <mi>M</mi> </mrow> </msub> <mo>,</mo> <msub> <mover accent="true"> <mi>z</mi> <mo stretchy="false">¯</mo> </mover> <mrow> <mi>O</mi> <mi>P</mi> <mi>I</mi> <mi>M</mi> </mrow> </msub> <mo>)</mo> </mrow> <mo>∈</mo> <msub> <mi mathvariant="script">CFS</mi> <mn>3</mn> </msub> </mrow> </semantics></math> using Equation (<a href="#FD56-processes-12-01977" class="html-disp-formula">A5</a>) for initial data: <math display="inline"><semantics> <mrow> <msub> <mi>x</mi> <mn>0</mn> </msub> <mo>=</mo> <mn>0.55</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <msub> <mi>y</mi> <mn>0</mn> </msub> <mo>=</mo> <mn>0.35</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <msub> <mi>z</mi> <mn>0</mn> </msub> <mo>=</mo> <mn>0.25</mn> </mrow> </semantics></math>, physical parameters: <math display="inline"><semantics> <mrow> <mi>k</mi> <mo>=</mo> <mo>−</mo> <mn>0.450</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>l</mi> <mo>=</mo> <mo>−</mo> <mn>0.25</mn> </mrow> </semantics></math> and index <math display="inline"><semantics> <mrow> <msub> <mi>N</mi> <mrow> <mi>m</mi> <mi>a</mi> <mi>x</mi> </mrow> </msub> <mo>=</mo> <mn>16</mn> </mrow> </semantics></math>: OPIM solution (dashing black line) and numerical results (solid color line: green line for <math display="inline"><semantics> <mrow> <mi>x</mi> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> </semantics></math>, red line for <math display="inline"><semantics> <mrow> <mi>y</mi> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> </semantics></math>, blue line for <math display="inline"><semantics> <mrow> <mi>z</mi> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> </semantics></math>), respectively.</p>
Full article ">Figure 10
<p>Difference between semi-analytical and numerical results: <math display="inline"><semantics> <mrow> <msub> <mi>ϵ</mi> <mi>w</mi> </msub> <mo>=</mo> <mrow> <mo>|</mo> <msub> <mi>w</mi> <mrow> <mi>n</mi> <mi>u</mi> <mi>m</mi> <mi>e</mi> <mi>r</mi> <mi>i</mi> <mi>c</mi> <mi>a</mi> <mi>l</mi> </mrow> </msub> <mo>−</mo> <msub> <mover accent="true"> <mi>w</mi> <mo stretchy="false">¯</mo> </mover> <mrow> <mi>O</mi> <mi>P</mi> <mi>I</mi> <mi>M</mi> </mrow> </msub> <mo>|</mo> </mrow> </mrow> </semantics></math> for the initial data: <math display="inline"><semantics> <mrow> <msub> <mi>x</mi> <mn>0</mn> </msub> <mo>=</mo> <mn>0.85</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <msub> <mi>y</mi> <mn>0</mn> </msub> <mo>=</mo> <mn>0.95</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <msub> <mi>z</mi> <mn>0</mn> </msub> <mo>=</mo> <mn>0.35</mn> </mrow> </semantics></math>, physical parameters: <math display="inline"><semantics> <mrow> <mi>k</mi> <mo>=</mo> <mn>0.750</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>l</mi> <mo>=</mo> <mo>−</mo> <mn>0.45</mn> </mrow> </semantics></math> and index <math display="inline"><semantics> <mrow> <msub> <mi>N</mi> <mrow> <mi>m</mi> <mi>a</mi> <mi>x</mi> </mrow> </msub> <mo>=</mo> <mn>16</mn> </mrow> </semantics></math>; <math display="inline"><semantics> <mrow> <msub> <mover accent="true"> <mi>w</mi> <mo stretchy="false">¯</mo> </mover> <mrow> <mi>O</mi> <mi>P</mi> <mi>I</mi> <mi>M</mi> </mrow> </msub> <mo>∈</mo> <msub> <mi mathvariant="script">SA</mi> <mn>3</mn> </msub> </mrow> </semantics></math> using Equations (<a href="#FD47-processes-12-01977" class="html-disp-formula">47</a>) and (<a href="#FD57-processes-12-01977" class="html-disp-formula">A6</a>).</p>
Full article ">Figure 11
<p>The function <math display="inline"><semantics> <mrow> <msub> <mover accent="true"> <mi>w</mi> <mo stretchy="false">¯</mo> </mover> <mrow> <mi>O</mi> <mi>P</mi> <mi>I</mi> <mi>M</mi> </mrow> </msub> <mo>∈</mo> <msub> <mi mathvariant="script">SA</mi> <mn>3</mn> </msub> </mrow> </semantics></math> using Equations (<a href="#FD47-processes-12-01977" class="html-disp-formula">47</a>), (<a href="#FD48-processes-12-01977" class="html-disp-formula">48</a>) and (<a href="#FD57-processes-12-01977" class="html-disp-formula">A6</a>) for initial data: <math display="inline"><semantics> <mrow> <msub> <mi>x</mi> <mn>0</mn> </msub> <mo>=</mo> <mn>0.85</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <msub> <mi>y</mi> <mn>0</mn> </msub> <mo>=</mo> <mn>0.95</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <msub> <mi>z</mi> <mn>0</mn> </msub> <mo>=</mo> <mn>0.35</mn> </mrow> </semantics></math>, physical parameters: <math display="inline"><semantics> <mrow> <mi>k</mi> <mo>=</mo> <mn>0.750</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>l</mi> <mo>=</mo> <mo>−</mo> <mn>0.45</mn> </mrow> </semantics></math> and index <math display="inline"><semantics> <mrow> <msub> <mi>N</mi> <mrow> <mi>m</mi> <mi>a</mi> <mi>x</mi> </mrow> </msub> <mo>=</mo> <mn>23</mn> </mrow> </semantics></math>: OPIM solution (dotted black line) and numerical results (solid green line), respectively.</p>
Full article ">Figure 12
<p>The functions <math display="inline"><semantics> <mrow> <mrow> <mo>(</mo> <msub> <mover accent="true"> <mi>x</mi> <mo stretchy="false">¯</mo> </mover> <mrow> <mi>O</mi> <mi>P</mi> <mi>I</mi> <mi>M</mi> </mrow> </msub> <mo>,</mo> <msub> <mover accent="true"> <mi>y</mi> <mo stretchy="false">¯</mo> </mover> <mrow> <mi>O</mi> <mi>P</mi> <mi>I</mi> <mi>M</mi> </mrow> </msub> <mo>,</mo> <msub> <mover accent="true"> <mi>z</mi> <mo stretchy="false">¯</mo> </mover> <mrow> <mi>O</mi> <mi>P</mi> <mi>I</mi> <mi>M</mi> </mrow> </msub> <mo>)</mo> </mrow> <mo>∈</mo> <msub> <mi mathvariant="script">CFS</mi> <mn>3</mn> </msub> </mrow> </semantics></math> using Equations (<a href="#FD9-processes-12-01977" class="html-disp-formula">9</a>) and (<a href="#FD57-processes-12-01977" class="html-disp-formula">A6</a>) for initial data: <math display="inline"><semantics> <mrow> <msub> <mi>x</mi> <mn>0</mn> </msub> <mo>=</mo> <mn>0.85</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <msub> <mi>y</mi> <mn>0</mn> </msub> <mo>=</mo> <mn>0.95</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <msub> <mi>z</mi> <mn>0</mn> </msub> <mo>=</mo> <mn>0.35</mn> </mrow> </semantics></math>, physical parameters: <math display="inline"><semantics> <mrow> <mi>k</mi> <mo>=</mo> <mn>0.750</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>l</mi> <mo>=</mo> <mo>−</mo> <mn>0.45</mn> </mrow> </semantics></math> and index <math display="inline"><semantics> <mrow> <msub> <mi>N</mi> <mrow> <mi>m</mi> <mi>a</mi> <mi>x</mi> </mrow> </msub> <mo>=</mo> <mn>16</mn> </mrow> </semantics></math>: OPIM solution (dashing black line) and numerical results (solid color line: green line for <math display="inline"><semantics> <mrow> <mi>x</mi> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> </semantics></math>, red line for <math display="inline"><semantics> <mrow> <mi>y</mi> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> </semantics></math>, blue line for <math display="inline"><semantics> <mrow> <mi>z</mi> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> </semantics></math>), respectively.</p>
Full article ">Figure 13
<p>Approximate analytical solution <math display="inline"><semantics> <mrow> <msub> <mover accent="true"> <mi>x</mi> <mo stretchy="false">¯</mo> </mover> <mrow> <mi>O</mi> <mi>P</mi> <mi>I</mi> <mi>M</mi> </mrow> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> </mrow> </semantics></math> of the Equation (<a href="#FD1-processes-12-01977" class="html-disp-formula">1</a>) using Equation (<a href="#FD54-processes-12-01977" class="html-disp-formula">A3</a>), the iterative solution <math display="inline"><semantics> <mrow> <msub> <mi>x</mi> <mrow> <mi>i</mi> <mi>t</mi> <mi>e</mi> <mi>r</mi> </mrow> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> </mrow> </semantics></math> using Equation (<a href="#FD51-processes-12-01977" class="html-disp-formula">51</a>) and the corresponding numerical ones: OPIM solution (dashing black line), iterative solution (dotted red line) and numerical results (solid green line), respectively.</p>
Full article ">Figure 14
<p>Approximate analytical solution <math display="inline"><semantics> <mrow> <msub> <mover accent="true"> <mi>y</mi> <mo stretchy="false">¯</mo> </mover> <mrow> <mi>O</mi> <mi>P</mi> <mi>I</mi> <mi>M</mi> </mrow> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> </mrow> </semantics></math> of Equation (<a href="#FD1-processes-12-01977" class="html-disp-formula">1</a>) using Equation (<a href="#FD54-processes-12-01977" class="html-disp-formula">A3</a>), the iterative solution <math display="inline"><semantics> <mrow> <msub> <mi>y</mi> <mrow> <mi>i</mi> <mi>t</mi> <mi>e</mi> <mi>r</mi> </mrow> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> </mrow> </semantics></math> using Equation (<a href="#FD51-processes-12-01977" class="html-disp-formula">51</a>) and the corresponding numerical ones: OPIM solution (dashing black line), iterative solution (dotted red line) and numerical results (solid magenta line), respectively.</p>
Full article ">Figure 15
<p>Approximate analytical solution <math display="inline"><semantics> <mrow> <msub> <mover accent="true"> <mi>z</mi> <mo stretchy="false">¯</mo> </mover> <mrow> <mi>O</mi> <mi>P</mi> <mi>I</mi> <mi>M</mi> </mrow> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> </mrow> </semantics></math> of Equation (<a href="#FD1-processes-12-01977" class="html-disp-formula">1</a>) using Equation (<a href="#FD54-processes-12-01977" class="html-disp-formula">A3</a>), the iterative solution <math display="inline"><semantics> <mrow> <msub> <mi>z</mi> <mrow> <mi>i</mi> <mi>t</mi> <mi>e</mi> <mi>r</mi> </mrow> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> </mrow> </semantics></math> using Equation (<a href="#FD51-processes-12-01977" class="html-disp-formula">51</a>) and the corresponding numerical ones: OPIM solution (dashing black line), iterative solution (dotted red line) and numerical results (solid blue line), respectively.</p>
Full article ">
24 pages, 6976 KiB  
Article
Optimized Tool Motion Symmetry for Strip-Width-Max Mfg of Sculptured Surfaces with Non-Ball Tools Based on Envelope Approximation
by Kaihong Zhou, Haixu Liu and Shu Li
Symmetry 2024, 16(9), 1207; https://doi.org/10.3390/sym16091207 - 13 Sep 2024
Viewed by 220
Abstract
The problem of machining complex surfaces with non-ball-end cutters by strip-width-maximization machining is formulated as a kind of surface fitting problem in which the tool surface envelope feature line approximates the design surface under the movement transform. The theory of surface envelope−approximation is [...] Read more.
The problem of machining complex surfaces with non-ball-end cutters by strip-width-maximization machining is formulated as a kind of surface fitting problem in which the tool surface envelope feature line approximates the design surface under the movement transform. The theory of surface envelope−approximation is proposed as a general method for optimizing tool movement in single-contact strip-width-maximization machining of sculptured surfaces with non-ball-end cutters. Based on the surface moving frame, the velocity equations and transformation matrices for the tool motion relative to the workpiece, described by the motion-invariant parameters of the tool surface and design surface, are derived. A functional extremum model for optimizing the tool position ensures continuous and symmetrical motion relative to the workpiece to achieve the highest machining efficiency and accuracy. Finally, a Matlab-based simulation example verifies the machining efficiency and accuracy of the envelope approximation theory. Full article
(This article belongs to the Section Mathematics)
Show Figures

Figure 1

Figure 1
<p>Description of the motion of a moving frame along a surface.</p>
Full article ">Figure 2
<p>Description of the curved movement of a curved moving frame along a surface.</p>
Full article ">Figure 3
<p>Description of the relative motion of the tool surface along the tool contact point trajectory of the tool contact on the design surface under the surface moving frame.</p>
Full article ">Figure 4
<p>Coordinate transformation path from tool surface <math display="inline"><semantics> <mrow> <msub> <mrow> <mi>Σ</mi> </mrow> <mrow> <mi>t</mi> </mrow> </msub> </mrow> </semantics></math> to tool envelope surface <math display="inline"><semantics> <mrow> <msub> <mrow> <mi>Σ</mi> </mrow> <mrow> <mi mathvariant="normal">g</mi> </mrow> </msub> </mrow> </semantics></math>.</p>
Full article ">Figure 5
<p>Relationship between the position of the moving frame <math display="inline"><semantics> <mrow> <msub> <mrow> <mo> </mo> <mi>S</mi> </mrow> <mrow> <mi>f</mi> <mi>t</mi> </mrow> </msub> </mrow> </semantics></math> and the moving frame <math display="inline"><semantics> <mrow> <msub> <mrow> <mi>S</mi> </mrow> <mrow> <mi>f</mi> <mi>p</mi> </mrow> </msub> </mrow> </semantics></math>.</p>
Full article ">Figure 6
<p>Deviation of the tool envelope <math display="inline"><semantics> <mrow> <msub> <mrow> <mi>Σ</mi> </mrow> <mrow> <mi mathvariant="normal">g</mi> </mrow> </msub> </mrow> </semantics></math> from the surface <math display="inline"><semantics> <mrow> <msub> <mrow> <mi>Σ</mi> </mrow> <mrow> <mi>P</mi> </mrow> </msub> </mrow> </semantics></math> along the contact line <math display="inline"><semantics> <mrow> <msub> <mrow> <mi>L</mi> </mrow> <mrow> <mi mathvariant="normal">g</mi> </mrow> </msub> </mrow> </semantics></math>.</p>
Full article ">Figure 7
<p>Mathematical modeling of two types of problems in strip-width-maximization machining.</p>
Full article ">Figure 8
<p>Design surface <math display="inline"><semantics> <mrow> <msub> <mrow> <mo> </mo> <mi>Σ</mi> </mrow> <mrow> <mi>P</mi> </mrow> </msub> <mo> </mo> </mrow> </semantics></math> and tool contact point trajectory <math display="inline"><semantics> <mrow> <msub> <mrow> <mi>L</mi> </mrow> <mrow> <mi>p</mi> </mrow> </msub> </mrow> </semantics></math>, and the boundary lines <math display="inline"><semantics> <mrow> <msub> <mrow> <mi>L</mi> <mo> </mo> </mrow> <mrow> <mi>p</mi> <mn>1</mn> </mrow> </msub> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <mo> </mo> <msub> <mrow> <mi>L</mi> </mrow> <mrow> <mi>p</mi> <mn>2</mn> </mrow> </msub> <mo> </mo> </mrow> </semantics></math>of the selected processing area.</p>
Full article ">Figure 9
<p>Results of simulated machining.</p>
Full article ">Figure 10
<p>The situation near the tool contact point after zooming in.</p>
Full article ">Figure 11
<p>Error between tool envelope surface and design surface along <math display="inline"><semantics> <mrow> <msub> <mrow> <mi>L</mi> </mrow> <mrow> <mi>p</mi> <mn>1</mn> </mrow> </msub> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <msub> <mrow> <mi>L</mi> </mrow> <mrow> <mi>p</mi> <mn>2</mn> </mrow> </msub> </mrow> </semantics></math>.</p>
Full article ">Figure 12
<p>Topological map of error analysis of machined and designed surfaces by envelope approximation and second-order Taylor approximation methods.</p>
Full article ">Figure 13
<p>Comparison of line widths of two methods <math display="inline"><semantics> <mrow> <mi>ε</mi> </mrow> </semantics></math> = 0.01 mm.</p>
Full article ">Figure 14
<p>The design surface and its tool contact point trajectory and processing boundary.</p>
Full article ">Figure 15
<p>Tool position and posture in simulated machining.</p>
Full article ">Figure 16
<p>Error between tool envelope surface and design surface when <math display="inline"><semantics> <mrow> <mi>u</mi> </mrow> </semantics></math> is taken as −0.5 and −4.5.</p>
Full article ">
17 pages, 7243 KiB  
Article
Bi-Objective Circular Multi-Rail-Guided Vehicle Scheduling Optimization Considering Multi-Type Entry and Delivery Tasks: A Combined Genetic Algorithm and Symmetry Algorithm
by Xinlin Li, Xuzhen Wu, Peipei Wang, Yalu Xu, Yue Gao and Yiyang Chen
Symmetry 2024, 16(9), 1205; https://doi.org/10.3390/sym16091205 - 13 Sep 2024
Viewed by 248
Abstract
Circular rail-guided vehicles (RGVs) are widely used in automated warehouses, and their efficiency directly determines the transportation efficiency of the entire system. The congestion frequency of RGVs greatly increases when facing dense multi-type entry and delivery tasks, affecting overall transportation efficiency. This article [...] Read more.
Circular rail-guided vehicles (RGVs) are widely used in automated warehouses, and their efficiency directly determines the transportation efficiency of the entire system. The congestion frequency of RGVs greatly increases when facing dense multi-type entry and delivery tasks, affecting overall transportation efficiency. This article focuses on the RGV scheduling problem of multi-type parallel transportation tasks in a real-world automated warehouse, considering maximizing efficiency while reducing energy consumption and thus establishing the RGV scheduling optimization model. At the same time, an improved genetic algorithm (GA) based on symmetry selection function and offspring population structure symmetry is proposed to solve the above RGV scheduling problem, achieving the model solution. The case study demonstrates the superiority of the proposed method in breaking local optima and achieving bi-objective optimization in genetic algorithms. Full article
Show Figures

Figure 1

Figure 1
<p>The layout of task points for circular RGV system.</p>
Full article ">Figure 2
<p>Gene encoding structure of six RGVs.</p>
Full article ">Figure 3
<p>Select function graph.</p>
Full article ">Figure 4
<p>Multi -segment gene crossover.</p>
Full article ">Figure 5
<p>Multi-position semi-random mutation.</p>
Full article ">Figure 6
<p>Implementation procedure framework.</p>
Full article ">Figure 7
<p>The result of fitness changes over the number of iterations.</p>
Full article ">Figure 8
<p>The result of congestion occurrences varying with the number of iterations.</p>
Full article ">Figure 9
<p>Fitness-iteration result of speed optimization.</p>
Full article ">Figure 10
<p>Congestion-iteration result of speed optimization.</p>
Full article ">Figure 11
<p>The result of fitness varying with the number of RGVs.</p>
Full article ">Figure 12
<p>The result of congestion occurrences varying with the number of RGVs.</p>
Full article ">Figure 13
<p>The result of completion time varying with the number of RGVs.</p>
Full article ">Figure 14
<p>The result of energy consumption varying with the number of RGVs.</p>
Full article ">
1 pages, 128 KiB  
Retraction
RETRACTED: Abdelmalek, Z.; Abdollahzadeh Jamalabadi, M.Y. Numerical Simulation of Micromixing of Particles and Fluids with Galloping Cylinder. Symmetry 2020, 12, 580
by Zahra Abdelmalek and Mohammad Yaghoub Abdollahzadeh Jamalabadi
Symmetry 2024, 16(9), 1204; https://doi.org/10.3390/sym16091204 - 13 Sep 2024
Viewed by 127
Abstract
The journal retracts the article titled “Numerical Simulation of Micromixing of Particles and Fluids with Galloping Cylinder” [...] Full article
(This article belongs to the Section Computer)
1 pages, 130 KiB  
Retraction
RETRACTED: Zhou, H.; Davarpanah, A. Hybrid Chemical Enhanced Oil Recovery Techniques: A Simulation Study. Symmetry 2020, 12, 1086
by Haiyan Zhou and Afshin Davarpanah
Symmetry 2024, 16(9), 1203; https://doi.org/10.3390/sym16091203 - 13 Sep 2024
Viewed by 119
Abstract
The journal retracts the article titled “Hybrid Chemical Enhanced Oil Recovery Techniques: A Simulation Study” [...] Full article
13 pages, 1192 KiB  
Article
Miniband and Gap Evolution in Gauss Chains
by D. S. Citrin
Materials 2024, 17(18), 4488; https://doi.org/10.3390/ma17184488 - 12 Sep 2024
Viewed by 179
Abstract
The Gauss chain is a one-dimensional quasiperiodic lattice with sites at zj=jnd, where j{0, 1, 2, , N1}, [...] Read more.
The Gauss chain is a one-dimensional quasiperiodic lattice with sites at zj=jnd, where j{0, 1, 2, , N1}, n{2, 3, 4, }, and d is the underlying lattice constant. We numerically study the formation of a hierarchy of minibands and gaps as N increases using a Kronig–Penney model. Increasing n empirically results in a more fragmented miniband and gap structure due to the rapid increase in the number of minibands and gaps as n increases, in agreement with previous studies. We show that the Gauss chain zj=j2d and a specific generalized Gauss chain, zj=(j2±12j)d, are treatable by a real-space renormalization group approach. These appear to be the only Gauss chains treatable by this approach, suggesting a hidden symmetry for the quadratic cases. Full article
Show Figures

Figure 1

Figure 1
<p>Schematic diagram of a GC with <math display="inline"><semantics> <mrow> <mi>n</mi> <mo>=</mo> <mn>2</mn> </mrow> </semantics></math>. An <span class="html-italic">N</span>-site GC has Gauss sites (red) at <math display="inline"><semantics> <msub> <mi>z</mi> <mn>0</mn> </msub> </semantics></math> to <math display="inline"><semantics> <msub> <mi>z</mi> <mrow> <mi>N</mi> <mo>−</mo> <mn>1</mn> </mrow> </msub> </semantics></math>. The site for <math display="inline"><semantics> <mrow> <mi>j</mi> <mo>=</mo> <mn>0</mn> </mrow> </semantics></math>, shown in pink, has half the form factor as the other Gauss sites. In the present work, we employ a continuum Kronig–Penney model with Dirac <math display="inline"><semantics> <mi>δ</mi> </semantics></math>-function potentials on the Gauss sites and zero potential on the sites between them. The atomic form factor for the red sites is unity.</p>
Full article ">Figure 2
<p><math display="inline"><semantics> <mrow> <mi>N</mi> <mo>[</mo> <mo>|</mo> <msub> <mi>x</mi> <mi>N</mi> </msub> <mo>|</mo> <mo>≤</mo> <mn>1</mn> <mo>]</mo> </mrow> </semantics></math> as functions of <span class="html-italic">k</span> for various <span class="html-italic">N</span>. This gives the wavevectors <math display="inline"><semantics> <mrow> <mi>k</mi> <mo>=</mo> <msqrt> <mover accent="true"> <mi>E</mi> <mo>¯</mo> </mover> </msqrt> </mrow> </semantics></math> of delocalized states for various <span class="html-italic">N</span> here with <math display="inline"><semantics> <mrow> <mi>n</mi> <mo>=</mo> <mn>2</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>d</mi> <mo>=</mo> <mn>1</mn> </mrow> </semantics></math>, and <math display="inline"><semantics> <mrow> <mi>λ</mi> <mo>=</mo> <mn>5</mn> </mrow> </semantics></math>. <math display="inline"><semantics> <mrow> <mo>[</mo> <mi>P</mi> <mo>]</mo> </mrow> </semantics></math> is an Iverson bracket with <math display="inline"><semantics> <mrow> <mo>[</mo> <mi>P</mi> <mo>]</mo> <mo>=</mo> <mn>1</mn> </mrow> </semantics></math> if proposition <span class="html-italic">P</span> is true and <math display="inline"><semantics> <mrow> <mo>[</mo> <mi>P</mi> <mo>]</mo> <mo>=</mo> <mn>0</mn> </mrow> </semantics></math> if it is false.</p>
Full article ">Figure 3
<p><math display="inline"><semantics> <mrow> <mi>IDOS</mi> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> </semantics></math> for an <math display="inline"><semantics> <mrow> <mi>n</mi> <mo>=</mo> <mn>2</mn> </mrow> </semantics></math> GC for various <span class="html-italic">N</span> with <math display="inline"><semantics> <mrow> <mi>γ</mi> <mo>=</mo> <mstyle scriptlevel="0" displaystyle="false"> <mfrac> <mi>i</mi> <mn>2</mn> </mfrac> </mstyle> </mrow> </semantics></math>.</p>
Full article ">Figure 4
<p><math display="inline"><semantics> <mrow> <mi>IDOS</mi> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> </semantics></math> for an <math display="inline"><semantics> <mrow> <mi>n</mi> <mo>=</mo> <mn>3</mn> </mrow> </semantics></math> GC for various <span class="html-italic">N</span> with <math display="inline"><semantics> <mrow> <mi>γ</mi> <mo>=</mo> <mstyle scriptlevel="0" displaystyle="false"> <mfrac> <mi>i</mi> <mn>2</mn> </mfrac> </mstyle> </mrow> </semantics></math>.</p>
Full article ">Figure 5
<p><math display="inline"><semantics> <mrow> <mi>IDOS</mi> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> </semantics></math> for an GC with sites at <math display="inline"><semantics> <mrow> <msub> <mi>z</mi> <mi>j</mi> </msub> <mo>=</mo> <mrow> <mo>(</mo> <msup> <mi>j</mi> <mn>2</mn> </msup> <mo>±</mo> <mstyle scriptlevel="0" displaystyle="false"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mstyle> <mi>j</mi> <mo>)</mo> </mrow> <mi>d</mi> </mrow> </semantics></math> for various <span class="html-italic">N</span> with <math display="inline"><semantics> <mrow> <mi>γ</mi> <mo>=</mo> <mstyle scriptlevel="0" displaystyle="false"> <mfrac> <mi>i</mi> <mn>2</mn> </mfrac> </mstyle> </mrow> </semantics></math>, computed with <math display="inline"><semantics> <mrow> <mi>γ</mi> <mo>=</mo> <mstyle scriptlevel="0" displaystyle="false"> <mfrac> <mi>i</mi> <mn>2</mn> </mfrac> </mstyle> </mrow> </semantics></math>. This is a GC with sites at <math display="inline"><semantics> <mrow> <mo>(</mo> <msup> <mi>j</mi> <mn>2</mn> </msup> <mo>±</mo> <mstyle scriptlevel="0" displaystyle="false"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mstyle> <mi>j</mi> <mo>)</mo> <mi>d</mi> </mrow> </semantics></math>, but the sites are ordered from smallest <math display="inline"><semantics> <msub> <mi>z</mi> <mi>j</mi> </msub> </semantics></math> to largest. The period is <math display="inline"><semantics> <mrow> <mn>2</mn> <mi>π</mi> </mrow> </semantics></math>.</p>
Full article ">Figure 6
<p><math display="inline"><semantics> <mrow> <mi>N</mi> <mo>[</mo> <mo>|</mo> <msub> <mover accent="true"> <mi>x</mi> <mo>˜</mo> </mover> <mi>N</mi> </msub> <mo>|</mo> <mo>≤</mo> <mn>1</mn> <mo>]</mo> </mrow> </semantics></math> as functions of <span class="html-italic">k</span> for various <span class="html-italic">N</span>. This gives the wavevectors <math display="inline"><semantics> <mrow> <mi>k</mi> <mo>=</mo> <msqrt> <mover accent="true"> <mi>E</mi> <mo>¯</mo> </mover> </msqrt> </mrow> </semantics></math> of delocalized states for various <span class="html-italic">N</span> here with <math display="inline"><semantics> <mrow> <mi>n</mi> <mo>=</mo> <mn>2</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>d</mi> <mo>=</mo> <mn>1</mn> </mrow> </semantics></math>, and <math display="inline"><semantics> <mrow> <mi>γ</mi> <mo>=</mo> <mstyle scriptlevel="0" displaystyle="false"> <mfrac> <mi>i</mi> <mn>2</mn> </mfrac> </mstyle> </mrow> </semantics></math>. <math display="inline"><semantics> <mrow> <mo>[</mo> <mi>P</mi> <mo>]</mo> </mrow> </semantics></math> is an Iverson bracket with <math display="inline"><semantics> <mrow> <mo>[</mo> <mi>P</mi> <mo>]</mo> <mo>=</mo> <mn>1</mn> </mrow> </semantics></math> if proposition <span class="html-italic">P</span> is true and <math display="inline"><semantics> <mrow> <mo>[</mo> <mi>P</mi> <mo>]</mo> <mo>=</mo> <mn>0</mn> </mrow> </semantics></math> if it is false. (<b>a</b>) Global view; (<b>b</b>) data for <math display="inline"><semantics> <mrow> <mi>N</mi> <mo>=</mo> <mn>1</mn> </mrow> </semantics></math> to 10.</p>
Full article ">Figure 7
<p><math display="inline"><semantics> <mrow> <mi>N</mi> <mo>[</mo> <mo>|</mo> <msub> <mover accent="true"> <mi>x</mi> <mo>˜</mo> </mover> <mi>N</mi> </msub> <mo>|</mo> <mo>≤</mo> <mn>1</mn> <mo>]</mo> </mrow> </semantics></math> as functions of <span class="html-italic">k</span> for various <span class="html-italic">N</span>. This gives the wavevectors <math display="inline"><semantics> <mrow> <mi>k</mi> <mo>=</mo> <msqrt> <mover accent="true"> <mi>E</mi> <mo>¯</mo> </mover> </msqrt> </mrow> </semantics></math> of delocalized states for various <span class="html-italic">N</span> here with <math display="inline"><semantics> <mrow> <mi>n</mi> <mo>=</mo> <mn>3</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>d</mi> <mo>=</mo> <mn>1</mn> </mrow> </semantics></math>, and <math display="inline"><semantics> <mrow> <mi>γ</mi> <mo>=</mo> <mstyle scriptlevel="0" displaystyle="false"> <mfrac> <mi>i</mi> <mn>2</mn> </mfrac> </mstyle> </mrow> </semantics></math>. <math display="inline"><semantics> <mrow> <mo>[</mo> <mi>P</mi> <mo>]</mo> </mrow> </semantics></math> is an Iverson bracket with <math display="inline"><semantics> <mrow> <mo>[</mo> <mi>P</mi> <mo>]</mo> <mo>=</mo> <mn>1</mn> </mrow> </semantics></math> if proposition <span class="html-italic">P</span> is true and <math display="inline"><semantics> <mrow> <mo>[</mo> <mi>P</mi> <mo>]</mo> <mo>=</mo> <mn>0</mn> </mrow> </semantics></math> if it is false. (<b>a</b>) Global view; (<b>b</b>) data for <math display="inline"><semantics> <mrow> <mi>N</mi> <mo>=</mo> <mn>1</mn> </mrow> </semantics></math> to 10.</p>
Full article ">Figure 7 Cont.
<p><math display="inline"><semantics> <mrow> <mi>N</mi> <mo>[</mo> <mo>|</mo> <msub> <mover accent="true"> <mi>x</mi> <mo>˜</mo> </mover> <mi>N</mi> </msub> <mo>|</mo> <mo>≤</mo> <mn>1</mn> <mo>]</mo> </mrow> </semantics></math> as functions of <span class="html-italic">k</span> for various <span class="html-italic">N</span>. This gives the wavevectors <math display="inline"><semantics> <mrow> <mi>k</mi> <mo>=</mo> <msqrt> <mover accent="true"> <mi>E</mi> <mo>¯</mo> </mover> </msqrt> </mrow> </semantics></math> of delocalized states for various <span class="html-italic">N</span> here with <math display="inline"><semantics> <mrow> <mi>n</mi> <mo>=</mo> <mn>3</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>d</mi> <mo>=</mo> <mn>1</mn> </mrow> </semantics></math>, and <math display="inline"><semantics> <mrow> <mi>γ</mi> <mo>=</mo> <mstyle scriptlevel="0" displaystyle="false"> <mfrac> <mi>i</mi> <mn>2</mn> </mfrac> </mstyle> </mrow> </semantics></math>. <math display="inline"><semantics> <mrow> <mo>[</mo> <mi>P</mi> <mo>]</mo> </mrow> </semantics></math> is an Iverson bracket with <math display="inline"><semantics> <mrow> <mo>[</mo> <mi>P</mi> <mo>]</mo> <mo>=</mo> <mn>1</mn> </mrow> </semantics></math> if proposition <span class="html-italic">P</span> is true and <math display="inline"><semantics> <mrow> <mo>[</mo> <mi>P</mi> <mo>]</mo> <mo>=</mo> <mn>0</mn> </mrow> </semantics></math> if it is false. (<b>a</b>) Global view; (<b>b</b>) data for <math display="inline"><semantics> <mrow> <mi>N</mi> <mo>=</mo> <mn>1</mn> </mrow> </semantics></math> to 10.</p>
Full article ">Figure 8
<p><math display="inline"><semantics> <mrow> <mi>N</mi> <mo>[</mo> <mo>|</mo> <msub> <mover accent="true"> <mi>x</mi> <mo>˜</mo> </mover> <mi>N</mi> </msub> <mo>|</mo> <mo>≤</mo> <mn>1</mn> <mo>]</mo> </mrow> </semantics></math> as functions of <span class="html-italic">k</span> for various <span class="html-italic">N</span>. This gives the wavevectors <math display="inline"><semantics> <mrow> <mi>k</mi> <mo>=</mo> <msqrt> <mover accent="true"> <mi>E</mi> <mo>¯</mo> </mover> </msqrt> </mrow> </semantics></math> of delocalized states for various <span class="html-italic">N</span> here with sites at <math display="inline"><semantics> <mrow> <msub> <mi>z</mi> <mi>j</mi> </msub> <mo>=</mo> <mrow> <mo>(</mo> <msup> <mi>j</mi> <mn>2</mn> </msup> <mo>±</mo> <mstyle scriptlevel="0" displaystyle="false"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mstyle> <mi>j</mi> <mo>)</mo> </mrow> <mi>d</mi> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>d</mi> <mo>=</mo> <mn>1</mn> </mrow> </semantics></math>, and <math display="inline"><semantics> <mrow> <mi>γ</mi> <mo>=</mo> <mstyle scriptlevel="0" displaystyle="false"> <mfrac> <mi>i</mi> <mn>2</mn> </mfrac> </mstyle> </mrow> </semantics></math>. <math display="inline"><semantics> <mrow> <mo>[</mo> <mi>P</mi> <mo>]</mo> </mrow> </semantics></math> is an Iverson bracket with <math display="inline"><semantics> <mrow> <mo>[</mo> <mi>P</mi> <mo>]</mo> <mo>=</mo> <mn>1</mn> </mrow> </semantics></math> if proposition <span class="html-italic">P</span> is true and <math display="inline"><semantics> <mrow> <mo>[</mo> <mi>P</mi> <mo>]</mo> <mo>=</mo> <mn>0</mn> </mrow> </semantics></math> if it is false. (<b>a</b>) Global view; (<b>b</b>) data for <math display="inline"><semantics> <mrow> <mi>N</mi> <mo>=</mo> <mn>1</mn> </mrow> </semantics></math> to 10.</p>
Full article ">
19 pages, 292 KiB  
Article
Power Bounds for the Numerical Radius of the Off-Diagonal 2 × 2 Operator Matrix
by Najla Altwaijry, Silvestru Sever Dragomir and Kais Feki
Symmetry 2024, 16(9), 1199; https://doi.org/10.3390/sym16091199 - 12 Sep 2024
Viewed by 236
Abstract
In this paper, we employ a generalization of the Boas–Bellman inequality for inner products, as developed by Mitrinović–Pečarić–Fink, to derive several upper bounds for the 2p-th power with p1 of the numerical radius of the off-diagonal operator matrix [...] Read more.
In this paper, we employ a generalization of the Boas–Bellman inequality for inner products, as developed by Mitrinović–Pečarić–Fink, to derive several upper bounds for the 2p-th power with p1 of the numerical radius of the off-diagonal operator matrix 0AB*0 for any bounded linear operators A and B on a complex Hilbert space H. While the general matrix is not symmetric, a special case arises when B=A*, where the matrix becomes symmetric. This symmetry plays a crucial role in the derivation of our bounds, illustrating the importance of symmetric structures in operator theory. Full article
(This article belongs to the Special Issue Symmetry in Functional Equations and Inequalities: Volume 2)
21 pages, 1123 KiB  
Article
Hallucination Reduction and Optimization for Large Language Model-Based Autonomous Driving
by Jue Wang
Symmetry 2024, 16(9), 1196; https://doi.org/10.3390/sym16091196 - 11 Sep 2024
Viewed by 356
Abstract
Large language models (LLMs) are widely integrated into autonomous driving systems to enhance their operational intelligence and responsiveness and improve self-driving vehicles’ overall performance. Despite these advances, LLMs still struggle between hallucinations—when models either misinterpret the environment or generate imaginary parts for downstream [...] Read more.
Large language models (LLMs) are widely integrated into autonomous driving systems to enhance their operational intelligence and responsiveness and improve self-driving vehicles’ overall performance. Despite these advances, LLMs still struggle between hallucinations—when models either misinterpret the environment or generate imaginary parts for downstream use cases—and taxing computational overhead that relegates their performance to strictly non-real-time operations. These are essential problems to solve to make autonomous driving as safe and efficient as possible. This work is thus focused on symmetrical trade-offs between the reduction of hallucination and optimization, leading to a framework for these two combined and at least specifically motivated by these limitations. This framework intends to generate a symmetry of mapping between real and virtual worlds. It helps in minimizing hallucinations and optimizing computational resource consumption reasonably. In autonomous driving tasks, we use multimodal LLMs that combine an image-encoding Visual Transformer (ViT) and a decoding GPT-2 with responses generated by the powerful new sequence generator from OpenAI known as GPT4. Our hallucination reduction and optimization framework leverages iterative refinement loops, RLHF—reinforcement learning from human feedback (RLHF)—along with symmetric performance metrics, e.g., BLEU, ROUGE, and CIDEr similarity scores between machine-generated answers specific to other human reference answers. This ensures that improvements in model accuracy are not overused to the detriment of increased computational overhead. Experimental results show a twofold improvement in decision-maker error rate and processing efficiency, resulting in an overall decrease of 30% for the model and a 25% improvement in processing efficiency across diverse driving scenarios. Not only does this symmetrical approach reduce hallucination, but it also better aligns the virtual and real-world representations. Full article
Show Figures

Figure 1

Figure 1
<p>Hallucination reduction model framework. In this model, for the evaluation part, we use Visual Translator (ViT) as an encoder for image captioning and the GPT-2 model as a decoder. This encoder–decoder architecture enables the model to accurately capture the relationships between visual elements and their textual representations, thus minimizing the potential for misidentifications or erroneous outputs due to hallucination artifacts that can stem from limitations in sensory data interpretation. Then, we use the GPT-4 model to handle both text and image inputs, ensuring that the generated answer more closely aligns with the visual content presented to it. Meanwhile, in each iteration, we use RLFH to reduce the hallucination. By using RLHF, the model can learn to adjust its responses based on the inputs provided from human evaluations. This training loop not only strengthens the model’s ability to produce accurate outputs but also enhances its overall reasoning and understanding of complex queries. After that, we combine the old and new answers and use ChatGPT to evaluate.</p>
Full article ">Figure 2
<p>These examples show how the RLHF helps us reduce the hallucination for the text. All the pictures are from HAD [<a href="#B28-symmetry-16-01196" class="html-bibr">28</a>], and in the answer generated by our model, we use yellow color to highlight the hallucination part. Firstly, the question–answer pairs and pictures will be combined as inputs to send to our multi-model. Then, our model will generate an original answer. After that, based on this original answer, we use RLHF to reduce the hallucinations in the answer. Comparing these two answers, we find that the hallucination, highlighted in yellow, was reduced in the answer after applying RLHF.</p>
Full article ">Figure 3
<p>Example of hallucination reduction. This is an example to show the process of our model. Firstly, we initialize our model, creating the RewardModel class and the EvaluationSuit class. Secondly, we load the prediction and test files. Thirdly, process the evaluation and record the score. Finally, apply reinforcement learning optimization into each iteration and record the new score.</p>
Full article ">Figure 4
<p>Partial result of resource optimization.These are partial experiment results; these results are based on four evaluation metrics <math display="inline"><semantics> <mrow> <msub> <mi>BLEU</mi> <mn>2</mn> </msub> <mspace width="3.33333pt"/> <mo>(</mo> <mi mathvariant="bold">a</mi> <mo>)</mo> <mo>,</mo> <msub> <mi>BLEU</mi> <mn>1</mn> </msub> <mspace width="3.33333pt"/> <mo>(</mo> <mi mathvariant="bold">b</mi> <mo>)</mo> <mo>,</mo> <msub> <mi>ROUGE</mi> <mi>L</mi> </msub> <mspace width="3.33333pt"/> <mo>(</mo> <mi mathvariant="bold">c</mi> <mo>)</mo> <mo>,</mo> <mi>CIDEr</mi> <mspace width="3.33333pt"/> <mo>(</mo> <mi mathvariant="bold">d</mi> <mo>)</mo> </mrow> </semantics></math> from our hallucination reduction model. Optimal theta is the final model parameters, and Lambda and Mu are the final Lagrange multiplier parameters.</p>
Full article ">
Back to TopTop