[go: up one dir, main page]

 
 
Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (1)

Search Parameters:
Keywords = extended sharp Stam inequality

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
489 KiB  
Article
On Generalized Stam Inequalities and Fisher–Rényi Complexity Measures
by Steeve Zozor, David Puertas-Centeno and Jesús S. Dehesa
Entropy 2017, 19(9), 493; https://doi.org/10.3390/e19090493 - 14 Sep 2017
Cited by 9 | Viewed by 3862
Abstract
Information-theoretic inequalities play a fundamental role in numerous scientific and technological areas (e.g., estimation and communication theories, signal and information processing, quantum physics, …) as they generally express the impossibility to have a complete description of a system via a finite number of [...] Read more.
Information-theoretic inequalities play a fundamental role in numerous scientific and technological areas (e.g., estimation and communication theories, signal and information processing, quantum physics, …) as they generally express the impossibility to have a complete description of a system via a finite number of information measures. In particular, they gave rise to the design of various quantifiers (statistical complexity measures) of the internal complexity of a (quantum) system. In this paper, we introduce a three-parametric Fisher–Rényi complexity, named ( p , β , λ ) -Fisher–Rényi complexity, based on both a two-parametic extension of the Fisher information and the Rényi entropies of a probability density function ρ characteristic of the system. This complexity measure quantifies the combined balance of the spreading and the gradient contents of ρ , and has the three main properties of a statistical complexity: the invariance under translation and scaling transformations, and a universal bounding from below. The latter is proved by generalizing the Stam inequality, which lowerbounds the product of the Shannon entropy power and the Fisher information of a probability density function. An extension of this inequality was already proposed by Bercher and Lutwak, a particular case of the general one, where the three parameters are linked, allowing to determine the sharp lower bound and the associated probability density with minimal complexity. Using the notion of differential-escort deformation, we are able to determine the sharp bound of the complexity measure even when the three parameters are decoupled (in a certain range). We determine as well the distribution that saturates the inequality: the ( p , β , λ ) -Gaussian distribution, which involves an inverse incomplete beta function. Finally, the complexity measure is calculated for various quantum-mechanical states of the harmonic and hydrogenic systems, which are the two main prototypes of physical systems subject to a central potential. Full article
(This article belongs to the Special Issue Foundations of Quantum Mechanics)
Show Figures

Figure 1

Figure 1
<p>(<b>a</b>) the domain <math display="inline"> <semantics> <msub> <mi mathvariant="script">D</mi> <mi>p</mi> </msub> </semantics> </math> for a given <span class="html-italic">p</span> is represented by the gray area (here <math display="inline"> <semantics> <mrow> <mi>p</mi> <mo>&gt;</mo> <mn>2</mn> </mrow> </semantics> </math>). The thick line belongs to <math display="inline"> <semantics> <msub> <mi mathvariant="script">D</mi> <mi>p</mi> </msub> </semantics> </math>. The dashed line represents <math display="inline"> <semantics> <msub> <mi mathvariant="script">L</mi> <mi>p</mi> </msub> </semantics> </math>, corresponding to the Lutwak situation of <a href="#sec2dot3dot1-entropy-19-00493" class="html-sec">Section 2.3.1</a>, where the relation holds and the minimizers are explicitly known (stretched deformed Gaussian distributions), whereas <math display="inline"> <semantics> <msub> <mover> <mi mathvariant="script">L</mi> <mo stretchy="false">¯</mo> </mover> <mi>p</mi> </msub> </semantics> </math> corresponds to <a href="#sec2dot3dot2-entropy-19-00493" class="html-sec">Section 2.3.2</a> (<math display="inline"> <semantics> <msub> <mi mathvariant="script">B</mi> <mi>p</mi> </msub> </semantics> </math> and <math display="inline"> <semantics> <msub> <mover> <mi mathvariant="script">B</mi> <mo stretchy="false">¯</mo> </mover> <mi>p</mi> </msub> </semantics> </math> obtained by the Gagliardo–Nirenberg inequality are their restrictions to <math display="inline"> <semantics> <msub> <mi mathvariant="script">D</mi> <mi>p</mi> </msub> </semantics> </math>); (<b>b</b>) same situation for <math display="inline"> <semantics> <mrow> <mi>p</mi> <mo>=</mo> <mn>2</mn> </mrow> </semantics> </math>, with the domains <math display="inline"> <semantics> <msub> <mi mathvariant="script">A</mi> <mn>2</mn> </msub> </semantics> </math> and <math display="inline"> <semantics> <msub> <mover> <mi mathvariant="script">A</mi> <mo stretchy="false">¯</mo> </mover> <mn>2</mn> </msub> </semantics> </math> (dashed lines) that correspond to the situations of <a href="#sec2dot3dot3-entropy-19-00493" class="html-sec">Section 2.3.3</a> and <a href="#sec2dot3dot4-entropy-19-00493" class="html-sec">Section 2.3.4</a>, respectively, (<math display="inline"> <semantics> <msub> <mi mathvariant="script">L</mi> <mn>2</mn> </msub> </semantics> </math> and <math display="inline"> <semantics> <msub> <mover> <mi mathvariant="script">L</mi> <mo stretchy="false">¯</mo> </mover> <mn>2</mn> </msub> </semantics> </math> are not represented for the clarity of the figure).</p>
Full article ">Figure 2
<p>Given a <span class="html-italic">p</span>, the domain in gray represents <math display="inline"> <semantics> <msub> <mover accent="true"> <mi mathvariant="script">D</mi> <mo stretchy="false">˜</mo> </mover> <mi>p</mi> </msub> </semantics> </math>, where we know that the <math display="inline"> <semantics> <mrow> <mo>(</mo> <mi>p</mi> <mo>,</mo> <mi>β</mi> <mo>,</mo> <mi>λ</mi> <mo>)</mo> </mrow> </semantics> </math>-Fisher–Rényi complexity is optimally lower bounded and where the minimizers can be deduced from proposition 2. (<b>a</b>) the domain in dark gray represents <math display="inline"> <semantics> <msub> <mi mathvariant="script">D</mi> <mi>p</mi> </msub> </semantics> </math>, which is obviously included in <math display="inline"> <semantics> <msub> <mover accent="true"> <mi mathvariant="script">D</mi> <mo stretchy="false">˜</mo> </mover> <mi>p</mi> </msub> </semantics> </math>; the dot is a particular point <math display="inline"> <semantics> <mrow> <mrow> <mo>(</mo> <mi>β</mi> <mo>,</mo> <mi>λ</mi> <mo>)</mo> </mrow> <mo>∈</mo> <msub> <mi mathvariant="script">D</mi> <mi>p</mi> </msub> </mrow> </semantics> </math> and the dotted line represents its transform by <math display="inline"> <semantics> <mi mathvariant="fraktur">A</mi> </semantics> </math>; (<b>b</b>) the domain in dark gray represents <math display="inline"> <semantics> <mrow> <mi mathvariant="fraktur">A</mi> <mrow> <mo>(</mo> <msub> <mi mathvariant="script">L</mi> <mi>p</mi> </msub> <mo>)</mo> </mrow> <mo>⊂</mo> <msub> <mover accent="true"> <mi mathvariant="script">D</mi> <mo stretchy="false">˜</mo> </mover> <mi>p</mi> </msub> </mrow> </semantics> </math>, which obviously contains <math display="inline"> <semantics> <msub> <mi mathvariant="script">L</mi> <mi>p</mi> </msub> </semantics> </math> represented by the dashed line; (<b>c</b>) same as (<b>b</b>) with <math display="inline"> <semantics> <msub> <mover> <mi mathvariant="script">L</mi> <mo stretchy="false">¯</mo> </mover> <mi>p</mi> </msub> </semantics> </math> and <math display="inline"> <semantics> <mrow> <mi mathvariant="fraktur">A</mi> <mrow> <mo>(</mo> <msub> <mover> <mi mathvariant="script">L</mi> <mo stretchy="false">¯</mo> </mover> <mi>p</mi> </msub> <mo>)</mo> </mrow> <mo>⊂</mo> <msub> <mover accent="true"> <mi mathvariant="script">D</mi> <mo stretchy="false">˜</mo> </mover> <mi>p</mi> </msub> </mrow> </semantics> </math>. This illustrates that <math display="inline"> <semantics> <mrow> <msub> <mover accent="true"> <mi mathvariant="script">D</mi> <mo stretchy="false">˜</mo> </mover> <mi>p</mi> </msub> <mo>=</mo> <mi mathvariant="fraktur">A</mi> <mrow> <mo>(</mo> <msub> <mi mathvariant="script">L</mi> <mi>p</mi> </msub> <mo>)</mo> </mrow> <mo>∪</mo> <mi mathvariant="fraktur">A</mi> <mrow> <mo>(</mo> <msub> <mover> <mi mathvariant="script">L</mi> <mo stretchy="false">¯</mo> </mover> <mi>p</mi> </msub> <mo>)</mo> </mrow> </mrow> </semantics> </math>.</p>
Full article ">Figure 3
<p>Fisher information <math display="inline"> <semantics> <msub> <mi>F</mi> <mrow> <mi>p</mi> <mo>,</mo> <mi>β</mi> </mrow> </msub> </semantics> </math> (left graph), Rényi entropy power <math display="inline"> <semantics> <msub> <mi>N</mi> <mi>λ</mi> </msub> </semantics> </math> (center graph), and <math display="inline"> <semantics> <mrow> <mo>(</mo> <mi>p</mi> <mo>,</mo> <mi>β</mi> <mo>,</mo> <mi>λ</mi> <mo>)</mo> </mrow> </semantics> </math>-Fisher–Rényi complexity <math display="inline"> <semantics> <msub> <mi>C</mi> <mrow> <mi>p</mi> <mo>,</mo> <mi>β</mi> <mo>,</mo> <mi>λ</mi> </mrow> </msub> </semantics> </math> (right graph) of the radial hydrogenic distribution in position space with dimensions <math display="inline"> <semantics> <mrow> <mi>d</mi> <mo>=</mo> <mn>3</mn> <mo>(</mo> <mo>∘</mo> <mo>)</mo> <mo>,</mo> <mspace width="0.222222em"/> <mn>12</mn> <mo>(</mo> <mo>*</mo> <mo>)</mo> </mrow> </semantics> </math> versus the quantum numbers <span class="html-italic">n</span> and <span class="html-italic">l</span>. The complexity parameters are <math display="inline"> <semantics> <mrow> <mi>p</mi> <mo>=</mo> <mn>2</mn> <mo>,</mo> <mspace width="0.166667em"/> <mi>β</mi> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mspace width="0.166667em"/> <mi>λ</mi> <mo>=</mo> <mn>7</mn> </mrow> </semantics> </math>.</p>
Full article ">Figure 4
<p><math display="inline"> <semantics> <mrow> <mo>(</mo> <mi>p</mi> <mo>,</mo> <mi>β</mi> <mo>,</mo> <mi>λ</mi> <mo>)</mo> </mrow> </semantics> </math>-Fisher–Rényi complexity (normalized to its lower bound), <math display="inline"> <semantics> <msub> <mi>C</mi> <mrow> <mi>p</mi> <mo>,</mo> <mi>β</mi> <mo>,</mo> <mi>λ</mi> </mrow> </msub> </semantics> </math>, with <math display="inline"> <semantics> <mrow> <mo>(</mo> <mi>p</mi> <mo>,</mo> <mi>λ</mi> <mo>,</mo> <mi>β</mi> <mo>)</mo> <mo>=</mo> <mo>(</mo> <mn>2</mn> <mo>,</mo> <mn>0.8</mn> <mo>,</mo> <mn>7</mn> <mo>)</mo> <mo>,</mo> <mo>(</mo> <mn>2</mn> <mo>,</mo> <mn>1</mn> <mo>,</mo> <mn>1</mn> <mo>)</mo> <mo>,</mo> <mo>(</mo> <mn>5</mn> <mo>,</mo> <mn>2</mn> <mo>,</mo> <mn>7</mn> <mo>)</mo> </mrow> </semantics> </math> for the radial hydrogenic distribution in the position space with dimensions <math display="inline"> <semantics> <mrow> <mi>d</mi> <mo>=</mo> <mn>3</mn> <mo>(</mo> <mo>∘</mo> <mo>)</mo> </mrow> </semantics> </math> and <math display="inline"> <semantics> <mrow> <mn>12</mn> <mo>(</mo> <mo>*</mo> <mo>)</mo> </mrow> </semantics> </math>.</p>
Full article ">Figure 5
<p>Fisher information <math display="inline"> <semantics> <msub> <mi>F</mi> <mrow> <mi>p</mi> <mo>,</mo> <mi>β</mi> </mrow> </msub> </semantics> </math> (left graph), Rényi entropy power <math display="inline"> <semantics> <msub> <mi>N</mi> <mi>λ</mi> </msub> </semantics> </math> (center graph), and <math display="inline"> <semantics> <mrow> <mo>(</mo> <mi>p</mi> <mo>,</mo> <mi>β</mi> <mo>,</mo> <mi>λ</mi> <mo>)</mo> </mrow> </semantics> </math>-Fisher–Rényi complexity <math display="inline"> <semantics> <msub> <mi>C</mi> <mrow> <mi>p</mi> <mo>,</mo> <mi>β</mi> <mo>,</mo> <mi>λ</mi> </mrow> </msub> </semantics> </math> (right graph) of the radial hydrogenic distribution in momentum space with dimensions <math display="inline"> <semantics> <mrow> <mi>d</mi> <mo>=</mo> <mn>3</mn> <mo>(</mo> <mo>∘</mo> <mo>)</mo> <mo>,</mo> <mspace width="0.222222em"/> <mn>12</mn> <mo>(</mo> <mo>*</mo> <mo>)</mo> </mrow> </semantics> </math> versus the quantum numbers <span class="html-italic">n</span> and <span class="html-italic">l</span>. The complexity parameters are <math display="inline"> <semantics> <mrow> <mi>p</mi> <mo>=</mo> <mn>2</mn> <mo>,</mo> <mspace width="0.166667em"/> <mi>β</mi> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mspace width="0.166667em"/> <mi>λ</mi> <mo>=</mo> <mn>7</mn> </mrow> </semantics> </math>.</p>
Full article ">Figure 6
<p><math display="inline"> <semantics> <mrow> <mo>(</mo> <mi>p</mi> <mo>,</mo> <mi>β</mi> <mo>,</mo> <mi>λ</mi> <mo>)</mo> </mrow> </semantics> </math>-Fisher–Rényi complexity (normalized to its lower bound), <math display="inline"> <semantics> <msub> <mi>C</mi> <mrow> <mi>p</mi> <mo>,</mo> <mi>β</mi> <mo>,</mo> <mi>λ</mi> </mrow> </msub> </semantics> </math>, with <math display="inline"> <semantics> <mrow> <mo>(</mo> <mi>p</mi> <mo>,</mo> <mi>λ</mi> <mo>,</mo> <mi>β</mi> <mo>)</mo> <mo>=</mo> <mo>(</mo> <mn>2</mn> <mo>,</mo> <mn>0.8</mn> <mo>,</mo> <mn>7</mn> <mo>)</mo> <mo>,</mo> <mspace width="0.222222em"/> <mo>(</mo> <mn>2</mn> <mo>,</mo> <mn>1</mn> <mo>,</mo> <mn>1</mn> <mo>)</mo> <mo>,</mo> <mspace width="0.222222em"/> <mo>(</mo> <mn>5</mn> <mo>,</mo> <mn>2</mn> <mo>,</mo> <mn>7</mn> <mo>)</mo> </mrow> </semantics> </math> for the radial hydrogenic distribution in the momentum space with dimensions <math display="inline"> <semantics> <mrow> <mi>d</mi> <mo>=</mo> <mn>3</mn> <mo>(</mo> <mo>∘</mo> <mo>)</mo> </mrow> </semantics> </math> and <math display="inline"> <semantics> <mrow> <mn>12</mn> <mo>(</mo> <mo>*</mo> <mo>)</mo> </mrow> </semantics> </math>.</p>
Full article ">Figure 7
<p>Fisher information <math display="inline"> <semantics> <msub> <mi>F</mi> <mrow> <mi>p</mi> <mo>,</mo> <mi>β</mi> </mrow> </msub> </semantics> </math> (left graph), Rényi entropy power <math display="inline"> <semantics> <msub> <mi>N</mi> <mi>λ</mi> </msub> </semantics> </math> (center graph), and <math display="inline"> <semantics> <mrow> <mo>(</mo> <mi>p</mi> <mo>,</mo> <mi>β</mi> <mo>,</mo> <mi>λ</mi> <mo>)</mo> </mrow> </semantics> </math>-Fisher–Rényi complexity <math display="inline"> <semantics> <msub> <mi>C</mi> <mrow> <mi>p</mi> <mo>,</mo> <mi>β</mi> <mo>,</mo> <mi>λ</mi> </mrow> </msub> </semantics> </math> (right graph) versus <span class="html-italic">n</span> and <span class="html-italic">l</span> for the radial harmonic system in position space with dimensions <math display="inline"> <semantics> <mrow> <mi>d</mi> <mo>=</mo> <mn>3</mn> <mo>(</mo> <mo>∘</mo> <mo>)</mo> <mo>,</mo> <mspace width="4pt"/> <mn>12</mn> <mo>(</mo> <mo>*</mo> <mo>)</mo> </mrow> </semantics> </math>. The informational parameters are <math display="inline"> <semantics> <mrow> <mi>p</mi> <mo>=</mo> <mn>2</mn> <mo>,</mo> <mspace width="0.166667em"/> <mi>β</mi> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mspace width="0.166667em"/> <mi>λ</mi> <mo>=</mo> <mn>7</mn> </mrow> </semantics> </math>.</p>
Full article ">Figure 8
<p><math display="inline"> <semantics> <mrow> <mo>(</mo> <mi>p</mi> <mo>,</mo> <mi>β</mi> <mo>,</mo> <mi>λ</mi> <mo>)</mo> </mrow> </semantics> </math>-Fisher–Rényi complexity (normalized to its lower bound) <math display="inline"> <semantics> <msub> <mi>C</mi> <mrow> <mi>p</mi> <mo>,</mo> <mi>β</mi> <mo>,</mo> <mi>λ</mi> </mrow> </msub> </semantics> </math> with <math display="inline"> <semantics> <mrow> <mo>(</mo> <mi>p</mi> <mo>,</mo> <mi>λ</mi> <mo>,</mo> <mi>β</mi> <mo>)</mo> <mo>=</mo> <mo>(</mo> <mn>2</mn> <mo>,</mo> <mn>0.8</mn> <mo>,</mo> <mn>7</mn> <mo>)</mo> <mo>,</mo> <mspace width="0.166667em"/> <mo>(</mo> <mn>2</mn> <mo>,</mo> <mn>1</mn> <mo>,</mo> <mn>1</mn> <mo>)</mo> <mo>,</mo> <mspace width="0.166667em"/> <mo>(</mo> <mn>5</mn> <mo>,</mo> <mn>2</mn> <mo>,</mo> <mn>7</mn> <mo>)</mo> </mrow> </semantics> </math> for the oscillator system in the position space with dimensions <math display="inline"> <semantics> <mrow> <mi>d</mi> <mo>=</mo> <mn>3</mn> <mo>(</mo> <mo>∘</mo> <mo>)</mo> <mo>,</mo> <mn>12</mn> <mo>(</mo> <mo>*</mo> <mo>)</mo> </mrow> </semantics> </math>.</p>
Full article ">
Back to TopTop