[go: up one dir, main page]

 
 
Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (11)

Search Parameters:
Keywords = confinement–deconfinement transition

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 3922 KiB  
Article
Towards a Warm Holographic Equation of State by an Einstein–Maxwell-Dilaton Model
by Rico Zöllner and Burkhard Kämpfer
Symmetry 2024, 16(8), 999; https://doi.org/10.3390/sym16080999 - 6 Aug 2024
Cited by 1 | Viewed by 698
Abstract
The holographic Einstein–Maxwell-dilaton model is employed to map state-of-the-art lattice QCD thermodynamics data from the temperature (T) axis towards the baryon–chemical potential (μB) axis and aims to gain a warm equation of state (EoS) of deconfined QCD matter [...] Read more.
The holographic Einstein–Maxwell-dilaton model is employed to map state-of-the-art lattice QCD thermodynamics data from the temperature (T) axis towards the baryon–chemical potential (μB) axis and aims to gain a warm equation of state (EoS) of deconfined QCD matter which can be supplemented with a cool and confined part suitable for subsequent compact (neutron) star (merger) investigations. The model exhibits a critical end point (CEP) at TCEP=O(100) MeV and μBCEP=500700 MeV with an emerging first-order phase transition (FOPT) curve which extends to large values of μB without approaching the μB axis. We consider the impact and peculiarities of the related phase structure on the EoS for the employed dilaton potential and dynamical coupling parameterizations. These seem to prevent the design of an overall trustable EoS without recourse to hybrid constructions. Full article
(This article belongs to the Section Physics)
Show Figures

Figure 1

Figure 1
<p>Comparison of the EMd model results with lattice data [<a href="#B24-symmetry-16-00999" class="html-bibr">24</a>] (crosses) for <math display="inline"><semantics> <mrow> <msub> <mi>μ</mi> <mi>B</mi> </msub> <mo>/</mo> <mi>T</mi> <mo>=</mo> <mi>n</mi> <mo>/</mo> <mn>2</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>n</mi> <mo>=</mo> <mn>1</mn> <mspace width="3.33333pt"/> <mrow> <mo>(</mo> <mi>top</mi> <mo>)</mo> </mrow> <mo>,</mo> <mo>…</mo> <mo>,</mo> <mn>6</mn> <mspace width="3.33333pt"/> <mrow> <mo>(</mo> <mi>bottom</mi> <mo>)</mo> </mrow> </mrow> </semantics></math>: <math display="inline"><semantics> <mrow> <mi>p</mi> <mo>/</mo> <msup> <mi>T</mi> <mn>4</mn> </msup> </mrow> </semantics></math> (left column), <math display="inline"><semantics> <mrow> <msub> <mi>n</mi> <mi>B</mi> </msub> <mo>/</mo> <msup> <mi>T</mi> <mn>3</mn> </msup> </mrow> </semantics></math> (middle column), and <math display="inline"><semantics> <mrow> <mi>e</mi> <mo>/</mo> <mi>p</mi> </mrow> </semantics></math> (right column) as a function of <span class="html-italic">T</span>. Note the different scales for <math display="inline"><semantics> <mrow> <msub> <mi>n</mi> <mi>B</mi> </msub> <mo>/</mo> <msup> <mi>T</mi> <mn>3</mn> </msup> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <mi>e</mi> <mo>/</mo> <mi>p</mi> </mrow> </semantics></math>.</p>
Full article ">Figure 1 Cont.
<p>Comparison of the EMd model results with lattice data [<a href="#B24-symmetry-16-00999" class="html-bibr">24</a>] (crosses) for <math display="inline"><semantics> <mrow> <msub> <mi>μ</mi> <mi>B</mi> </msub> <mo>/</mo> <mi>T</mi> <mo>=</mo> <mi>n</mi> <mo>/</mo> <mn>2</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>n</mi> <mo>=</mo> <mn>1</mn> <mspace width="3.33333pt"/> <mrow> <mo>(</mo> <mi>top</mi> <mo>)</mo> </mrow> <mo>,</mo> <mo>…</mo> <mo>,</mo> <mn>6</mn> <mspace width="3.33333pt"/> <mrow> <mo>(</mo> <mi>bottom</mi> <mo>)</mo> </mrow> </mrow> </semantics></math>: <math display="inline"><semantics> <mrow> <mi>p</mi> <mo>/</mo> <msup> <mi>T</mi> <mn>4</mn> </msup> </mrow> </semantics></math> (left column), <math display="inline"><semantics> <mrow> <msub> <mi>n</mi> <mi>B</mi> </msub> <mo>/</mo> <msup> <mi>T</mi> <mn>3</mn> </msup> </mrow> </semantics></math> (middle column), and <math display="inline"><semantics> <mrow> <mi>e</mi> <mo>/</mo> <mi>p</mi> </mrow> </semantics></math> (right column) as a function of <span class="html-italic">T</span>. Note the different scales for <math display="inline"><semantics> <mrow> <msub> <mi>n</mi> <mi>B</mi> </msub> <mo>/</mo> <msup> <mi>T</mi> <mn>3</mn> </msup> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <mi>e</mi> <mo>/</mo> <mi>p</mi> </mrow> </semantics></math>.</p>
Full article ">Figure 2
<p>Contour plots of scaled entropy density <math display="inline"><semantics> <mrow> <mi>s</mi> <mo>/</mo> <msup> <mi>T</mi> <mn>3</mn> </msup> </mrow> </semantics></math> (<b>left top panel</b>), baryon density <math display="inline"><semantics> <mrow> <msub> <mi>n</mi> <mi>B</mi> </msub> <mo>/</mo> <msup> <mi>T</mi> <mn>3</mn> </msup> </mrow> </semantics></math> (<b>right top panel</b>), entropy per baryon <math display="inline"><semantics> <mrow> <mi>s</mi> <mo>/</mo> <msub> <mi>n</mi> <mi>B</mi> </msub> </mrow> </semantics></math> (<b>left bottom panel</b>, relevant for adiabatic expansion), and pressure <math display="inline"><semantics> <mrow> <mi>p</mi> <mo>/</mo> <msup> <mi>T</mi> <mn>4</mn> </msup> </mrow> </semantics></math> (<b>right bottom panel</b>) over the <span class="html-italic">T</span>-<math display="inline"><semantics> <msub> <mi>μ</mi> <mi>B</mi> </msub> </semantics></math> plane. The CEP is depicted as a bullet and the solid black curve is the emerging FOPT. The labeling numbers “<span class="html-italic">N</span>” mean <math display="inline"><semantics> <msup> <mn>10</mn> <mi>N</mi> </msup> </semantics></math> of the respective quantity. Note the weak dependence of <math display="inline"><semantics> <mrow> <mi>s</mi> <mo>/</mo> <msup> <mi>T</mi> <mn>3</mn> </msup> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <mi>p</mi> <mo>/</mo> <msup> <mi>T</mi> <mn>4</mn> </msup> </mrow> </semantics></math> on <math display="inline"><semantics> <msub> <mi>μ</mi> <mi>B</mi> </msub> </semantics></math> to the left of the FOPT at <math display="inline"><semantics> <mrow> <mi>T</mi> <mspace width="3.33333pt"/> <mo>&lt;</mo> <mspace width="3.33333pt"/> <mn>100</mn> </mrow> </semantics></math> MeV. The crosses depict results of the lattice QCD calculations [<a href="#B24-symmetry-16-00999" class="html-bibr">24</a>]. The scaled energy density, <math display="inline"><semantics> <mrow> <mi>e</mi> <mo>/</mo> <msup> <mi>T</mi> <mn>4</mn> </msup> <mo>=</mo> <mo>−</mo> <mi>p</mi> <mo>/</mo> <msup> <mi>T</mi> <mn>4</mn> </msup> <mo>+</mo> <mi>s</mi> <mo>/</mo> <msup> <mi>T</mi> <mn>3</mn> </msup> <mo>+</mo> <mrow> <mo>(</mo> <msub> <mi>μ</mi> <mi>B</mi> </msub> <mo>/</mo> <mi>T</mi> <mo>)</mo> </mrow> <msub> <mi>n</mi> <mi>B</mi> </msub> <mo>/</mo> <msup> <mi>T</mi> <mn>3</mn> </msup> </mrow> </semantics></math>, can be inferred from the displayed information.</p>
Full article ">Figure 3
<p>Contour plot of the EoS as isobars <math display="inline"><semantics> <mrow> <mi>p</mi> <mo>(</mo> <mi>T</mi> <mo>,</mo> <msub> <mi>μ</mi> <mi>B</mi> </msub> <mo>)</mo> <mo>=</mo> <mi>c</mi> <mi>o</mi> <mi>n</mi> <mi>s</mi> <mi>t</mi> </mrow> </semantics></math> (<b>left panel</b>) and iso-energy density curves <math display="inline"><semantics> <mrow> <mi>e</mi> <mo>(</mo> <mi>T</mi> <mo>,</mo> <msub> <mi>μ</mi> <mi>B</mi> </msub> <mo>)</mo> <mo>=</mo> <mi>c</mi> <mi>o</mi> <mi>n</mi> <mi>s</mi> <mi>t</mi> </mrow> </semantics></math> (<b>right panel</b>) over the <span class="html-italic">T</span>-<math display="inline"><semantics> <msub> <mi>μ</mi> <mi>B</mi> </msub> </semantics></math> plane. The CEP, FOPT, line style, and meaning of labeling (here in units of MeV/fm<sup>3</sup>) are as in <a href="#symmetry-16-00999-f002" class="html-fig">Figure 2</a>. Note again the weak dependence on <math display="inline"><semantics> <msub> <mi>μ</mi> <mi>B</mi> </msub> </semantics></math> to the left of the FOPT at <math display="inline"><semantics> <mrow> <mi>T</mi> <mo>&lt;</mo> <mn>100</mn> </mrow> </semantics></math> MeV. The crosses depict results of the lattice QCD calculations [<a href="#B24-symmetry-16-00999" class="html-bibr">24</a>].</p>
Full article ">Figure 4
<p>(<b>Left panel</b>): Energy density <span class="html-italic">e</span> (solid curves) as a function of temperature <span class="html-italic">T</span> along the “safe” isobars <math display="inline"><semantics> <mrow> <mi>T</mi> <mrow> <mo>(</mo> <msub> <mi>μ</mi> <mi>B</mi> </msub> <mo>)</mo> </mrow> <msub> <mrow> <mo>|</mo> </mrow> <mrow> <mi>p</mi> <mo>=</mo> <msub> <mi>p</mi> <mn>0</mn> </msub> </mrow> </msub> </mrow> </semantics></math> (see <a href="#symmetry-16-00999-f003" class="html-fig">Figure 3</a>—left) for various values of <math display="inline"><semantics> <mrow> <msub> <mi>T</mi> <mn>0</mn> </msub> <mo>=</mo> <mn>125</mn> </mrow> </semantics></math> (black), 150 (cyan), 175 (yellow), and 200 MeV (magenta), and, thus, <math display="inline"><semantics> <mrow> <msub> <mi>p</mi> <mn>0</mn> </msub> <mo>=</mo> <mi>p</mi> <mrow> <mo>(</mo> <msub> <mi>T</mi> <mn>0</mn> </msub> <mo>,</mo> <msub> <mi>μ</mi> <mi>B</mi> </msub> <mo>=</mo> <mn>0</mn> <mo>)</mo> </mrow> </mrow> </semantics></math>. In addition, the case of a “less reliable” isobar with <math display="inline"><semantics> <mrow> <msub> <mi>T</mi> <mn>0</mn> </msub> <mo>=</mo> <mn>100</mn> </mrow> </semantics></math> MeV is also displayed (red). The right-hand side endpoints (“o”) are for <math display="inline"><semantics> <mrow> <msub> <mi>μ</mi> <mi>B</mi> </msub> <mo>=</mo> <mn>0</mn> </mrow> </semantics></math>, both for <span class="html-italic">e</span> and pressure <math display="inline"><semantics> <mrow> <mi>p</mi> <mo>=</mo> <msub> <mi>p</mi> <mn>0</mn> </msub> </mrow> </semantics></math> (horizontal thin lines with the same color code as the corresponding energy density). The difference of <span class="html-italic">e</span> and <span class="html-italic">p</span> (both in units of MeV/fm<sup>3</sup>) in the employed log scale delivers directly <math display="inline"><semantics> <mrow> <mi>e</mi> <mo>/</mo> <mi>p</mi> </mrow> </semantics></math> as a function of <span class="html-italic">T</span> along the respective isobar. Equally well, <span class="html-italic">e</span> and <span class="html-italic">p</span> for a selected constant value of <span class="html-italic">T</span> can be read off, thus providing the iso-thermal EoS <math display="inline"><semantics> <msub> <mrow> <mi>p</mi> <mrow> <mo>(</mo> <mi>e</mi> <mo>)</mo> </mrow> <mo>|</mo> </mrow> <mrow> <mi>T</mi> <mo>=</mo> <mi>c</mi> <mi>o</mi> <mi>n</mi> <mi>s</mi> <mi>t</mi> </mrow> </msub> </semantics></math>, exhibited in the (<b>right panel</b>) for various temperatures as provided by labels. The right-hand side endpoints “+” are for <math display="inline"><semantics> <mrow> <msub> <mi>μ</mi> <mi>B</mi> </msub> <mo>=</mo> <mn>2000</mn> </mrow> </semantics></math> MeV. One could also combine the results of <a href="#symmetry-16-00999-f002" class="html-fig">Figure 2</a> along cuts of <math display="inline"><semantics> <mrow> <mi>T</mi> <mo>=</mo> <mi>c</mi> <mi>o</mi> <mi>n</mi> <mi>s</mi> <mi>t</mi> </mrow> </semantics></math> to arrive at the same picture. The crosses depict results of the lattice QCD calculations [<a href="#B24-symmetry-16-00999" class="html-bibr">24</a>] in both panels. The bullet depicts the onset point of the perturbative QCD regime for <math display="inline"><semantics> <mrow> <mi>T</mi> <mo>=</mo> <mn>0</mn> </mrow> </semantics></math>. Nuclear many-body theory is expected to apply below the left bottom corner.</p>
Full article ">Figure A1
<p>Illustration of expected isobars <math display="inline"><semantics> <mrow> <mi>p</mi> <mo>(</mo> <mi>T</mi> <mo>,</mo> <msub> <mi>μ</mi> <mi>B</mi> </msub> <mo>)</mo> <mo>=</mo> <mi>c</mi> <mi>o</mi> <mi>n</mi> <mi>s</mi> <mi>t</mi> </mrow> </semantics></math> over the <span class="html-italic">T</span>-<math display="inline"><semantics> <msub> <mi>μ</mi> <mi>B</mi> </msub> </semantics></math> plane in a toy model. The heavy solid bar on the <span class="html-italic">T</span> axis indicates the region, where reliable QCD input data (e.g., <math display="inline"><semantics> <mrow> <mi>p</mi> <mo>(</mo> <mi>T</mi> <mo>)</mo> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <msub> <mi>χ</mi> <mn>2</mn> </msub> <mrow> <mo>(</mo> <mi>T</mi> <mo>)</mo> </mrow> </mrow> </semantics></math>) are at our disposal. The continuation to <math display="inline"><semantics> <mrow> <msub> <mi>μ</mi> <mi>B</mi> </msub> <mo>&gt;</mo> <mn>0</mn> </mrow> </semantics></math> is controlled by lattice data in the hatched region (with sections of rays <math display="inline"><semantics> <mrow> <msub> <mi>μ</mi> <mi>B</mi> </msub> <mo>/</mo> <mi>T</mi> <mo>=</mo> <mi>c</mi> <mi>o</mi> <mi>n</mi> <mi>s</mi> <mi>t</mi> </mrow> </semantics></math> highlighted). Isobars not emerging from the heavy solid vertical bar or not running a noticeable section through the hatched control region are to be considered as less reliable (dashed or dotted curves). Irrespective of the EoS on the <span class="html-italic">T</span> axis, such a mapping by “laminar curves” <math display="inline"><semantics> <mrow> <mi>T</mi> <mrow> <mo>(</mo> <msub> <mi>μ</mi> <mi>B</mi> </msub> <mo>)</mo> </mrow> <msub> <mrow> <mo>|</mo> </mrow> <mrow> <mi>p</mi> <mo>=</mo> <mi>c</mi> <mi>o</mi> <mi>n</mi> <mi>s</mi> <mi>t</mi> </mrow> </msub> </mrow> </semantics></math> (solid curves) would allow us to arrive unambiguously at the cool EoS at <math display="inline"><semantics> <mrow> <mi>T</mi> <mo>=</mo> <mn>0</mn> </mrow> </semantics></math>, or any other cut through the <span class="html-italic">T</span>-<math display="inline"><semantics> <msub> <mi>μ</mi> <mi>B</mi> </msub> </semantics></math> plane, thus also providing a warm EoS for neutron star merger dynamics.</p>
Full article ">Figure A2
<p>The stable branches of scaled density <math display="inline"><semantics> <mrow> <msub> <mi>n</mi> <mi>B</mi> </msub> <mo>/</mo> <msup> <mi>T</mi> <mn>3</mn> </msup> </mrow> </semantics></math> (left panel) and scaled pressure <math display="inline"><semantics> <mrow> <mi>p</mi> <mo>/</mo> <msup> <mi>T</mi> <mn>4</mn> </msup> </mrow> </semantics></math> as a function of temperature <span class="html-italic">T</span> for various values of <math display="inline"><semantics> <mrow> <msub> <mi>μ</mi> <mi>B</mi> </msub> <mo>=</mo> <mi>n</mi> <mspace width="0.166667em"/> <mn>500</mn> </mrow> </semantics></math> MeV for <math display="inline"><semantics> <mrow> <mi>n</mi> <mo>=</mo> <mn>0</mn> </mrow> </semantics></math> (blue), 1 (green), 2 (red), 3 (cyan), and 4 (magenta). The crosses depict the results of the lattice QCD calculations [<a href="#B24-symmetry-16-00999" class="html-bibr">24</a>].</p>
Full article ">Figure A3
<p>Contour plots of <math display="inline"><semantics> <msup> <mi>χ</mi> <mn>2</mn> </msup> </semantics></math> with respect to scaled entropy density (<b>left panel</b>), <math display="inline"><semantics> <msup> <mi>L</mi> <mrow> <mo>−</mo> <mn>1</mn> </mrow> </msup> </semantics></math> (<b>middle panel</b>), and <math display="inline"><semantics> <msub> <mi>κ</mi> <mn>5</mn> </msub> </semantics></math> (<b>right panel</b>, in units of <math display="inline"><semantics> <msup> <mi>L</mi> <mrow> <mn>3</mn> <mo>/</mo> <mn>2</mn> </mrow> </msup> </semantics></math>) for the dilaton potential function Equation (<a href="#FD4-symmetry-16-00999" class="html-disp-formula">4</a>) with local maximum of <math display="inline"><semantics> <mrow> <msub> <mi mathvariant="script">W</mi> <mi>m</mi> </msub> <mo>=</mo> <mn>0.6</mn> </mrow> </semantics></math> at <math display="inline"><semantics> <mrow> <msub> <mi>ϕ</mi> <mi>m</mi> </msub> <mo>=</mo> <mn>3.25</mn> </mrow> </semantics></math> as side conditions. The dashed line depicts the locus of <math display="inline"><semantics> <mrow> <msub> <mi>p</mi> <mn>3</mn> </msub> <mo>=</mo> <mn>0</mn> </mrow> </semantics></math> determined by <math display="inline"><semantics> <mrow> <msub> <mi>p</mi> <mn>1</mn> </msub> <mo>=</mo> <msub> <mi mathvariant="script">W</mi> <mi>m</mi> </msub> <mo form="prefix">exp</mo> <mrow> <mo>{</mo> <mi>γ</mi> <msub> <mi>ϕ</mi> <mi>m</mi> </msub> <mo>}</mo> </mrow> <mrow> <mo>(</mo> <mn>2</mn> <mo>−</mo> <mi>γ</mi> <msub> <mi>ϕ</mi> <mi>m</mi> </msub> <mo>)</mo> </mrow> <mo>/</mo> <msub> <mi>ϕ</mi> <mi>m</mi> </msub> </mrow> </semantics></math>, i.e., for <math display="inline"><semantics> <mrow> <msub> <mi>p</mi> <mn>3</mn> </msub> <mo>&gt;</mo> <mn>0</mn> </mrow> </semantics></math>, an unintended thermal phase transition is excluded since, beyond the maximum, <math display="inline"><semantics> <mrow> <mi mathvariant="script">W</mi> <mo>(</mo> <mi>ϕ</mi> <mo>)</mo> </mrow> </semantics></math> is smoothly and monotonously approaching zero at <math display="inline"><semantics> <mrow> <mi>ϕ</mi> <mo>→</mo> <mo>∞</mo> </mrow> </semantics></math>. The bullet in the <math display="inline"><semantics> <mrow> <msub> <mi>p</mi> <mn>3</mn> </msub> <mo>&lt;</mo> <mn>0</mn> </mrow> </semantics></math> region is for the parameter choice of <math display="inline"><semantics> <msub> <mi>p</mi> <mrow> <mn>1</mn> <mo>,</mo> <mn>2</mn> <mo>,</mo> <mn>3</mn> </mrow> </msub> </semantics></math> and <math display="inline"><semantics> <mi>γ</mi> </semantics></math> listed below Equation (5), which facilitates <math display="inline"><semantics> <mrow> <msub> <mi mathvariant="script">W</mi> <mi>m</mi> </msub> <mo>≈</mo> <mn>0.6</mn> </mrow> </semantics></math> at <math display="inline"><semantics> <mrow> <msub> <mi>ϕ</mi> <mi>m</mi> </msub> <mo>≈</mo> <mn>3.25</mn> </mrow> </semantics></math>.</p>
Full article ">
10 pages, 366 KiB  
Communication
Gravitational Waves of Holographic QCD Phase Transition with Hyperscaling Violation
by Zhourun Zhu, Manman Sun, Rui Zhou, Jinzhong Han and Defu Hou
Universe 2024, 10(5), 224; https://doi.org/10.3390/universe10050224 - 17 May 2024
Viewed by 759
Abstract
In this paper, we study the gravitational waves of holographic QCD phase transition with hyperscaling violation. We consider an Einstein–Maxwell Dilaton background and discuss the confinement–deconfinement phase transition between thermally charged AdS and AdS black holes. We find that hyperscaling violation reduces the [...] Read more.
In this paper, we study the gravitational waves of holographic QCD phase transition with hyperscaling violation. We consider an Einstein–Maxwell Dilaton background and discuss the confinement–deconfinement phase transition between thermally charged AdS and AdS black holes. We find that hyperscaling violation reduces the phase transition temperature. In a further study, we discuss the effect of hyperscaling violation on the GW spectrum. We found that the hyperscaling violation exponent suppresses the peak frequency of the total GW spectrum. Moreover, the results of the GW spectrum may be detected by IPTA, SKA, BBO, and NANOGrav. We also find that the hyperscaling violation exponent suppresses the peak frequency of the bubble-collision spectrum h2Ωenv. Hyperscaling violation enhances the energy densities of the sound wave spectrum h2Ωsw and the MHD turbulence spectrum h2Ωturb. The total GW spectrum is dominated by the contribution of the bubble collision in runaway bubbles case. Full article
(This article belongs to the Section Gravitation)
Show Figures

Figure 1

Figure 1
<p>The effect of hyperscaling violation on phase transition temperature. The blue line represents <math display="inline"><semantics> <mrow> <mi>μ</mi> <mo>=</mo> <mn>0.05</mn> </mrow> </semantics></math> GeV, and the red line represents <math display="inline"><semantics> <mrow> <mi>μ</mi> <mo>=</mo> <mn>0.15</mn> </mrow> </semantics></math> GeV.</p>
Full article ">Figure 2
<p>The GW spectrum produced from the first-order QCD phase transition with hyperscaling violation when <math display="inline"><semantics> <mrow> <mi>μ</mi> <mo>=</mo> <mn>0.05</mn> </mrow> </semantics></math> GeV. The black line represents <math display="inline"><semantics> <mrow> <mi>α</mi> <mo>=</mo> <mn>0.01</mn> </mrow> </semantics></math>, and the red line represents <math display="inline"><semantics> <mrow> <mi>α</mi> <mo>=</mo> <mn>0.7</mn> </mrow> </semantics></math>.</p>
Full article ">Figure 3
<p>The effects of hyperscaling violation on <math display="inline"><semantics> <mrow> <msup> <mi>h</mi> <mn>2</mn> </msup> <msub> <mo>Ω</mo> <mrow> <mi>e</mi> <mi>n</mi> <mi>v</mi> </mrow> </msub> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <msup> <mi>h</mi> <mn>2</mn> </msup> <msub> <mo>Ω</mo> <mrow> <mi>s</mi> <mi>w</mi> </mrow> </msub> </mrow> </semantics></math>, and <math display="inline"><semantics> <mrow> <msup> <mi>h</mi> <mn>2</mn> </msup> <msub> <mo>Ω</mo> <mrow> <mi>t</mi> <mi>u</mi> <mi>r</mi> <mi>b</mi> </mrow> </msub> </mrow> </semantics></math> are plotted in (<b>a</b>–<b>c</b>) respectively, where the solid lines (dashed lines) denote <math display="inline"><semantics> <mrow> <mi>α</mi> <mo>=</mo> <mn>0.01</mn> </mrow> </semantics></math> (<math display="inline"><semantics> <mrow> <mi>α</mi> <mo>=</mo> <mn>0.7</mn> </mrow> </semantics></math>). The GWs spectrum of <math display="inline"><semantics> <mrow> <msup> <mi>h</mi> <mn>2</mn> </msup> <mo>Ω</mo> <mrow> <mo>(</mo> <mi>f</mi> <mo>)</mo> </mrow> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <msup> <mi>h</mi> <mn>2</mn> </msup> <msub> <mo>Ω</mo> <mrow> <mi>e</mi> <mi>n</mi> <mi>v</mi> </mrow> </msub> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <msup> <mi>h</mi> <mn>2</mn> </msup> <msub> <mo>Ω</mo> <mrow> <mi>s</mi> <mi>w</mi> </mrow> </msub> </mrow> </semantics></math>, and <math display="inline"><semantics> <mrow> <msup> <mi>h</mi> <mn>2</mn> </msup> <msub> <mo>Ω</mo> <mrow> <mi>t</mi> <mi>u</mi> <mi>r</mi> <mi>b</mi> </mrow> </msub> </mrow> </semantics></math> when <math display="inline"><semantics> <mrow> <mi>α</mi> <mo>=</mo> <mn>0.7</mn> </mrow> </semantics></math> is plotted in (<b>d</b>). The solid red line represents <math display="inline"><semantics> <mrow> <msup> <mi>h</mi> <mn>2</mn> </msup> <mo>Ω</mo> <mrow> <mo>(</mo> <mi>f</mi> <mo>)</mo> </mrow> </mrow> </semantics></math>. The dashed orange, dashed blue, and dashed green lines denote <math display="inline"><semantics> <mrow> <msup> <mi>h</mi> <mn>2</mn> </msup> <msub> <mo>Ω</mo> <mrow> <mi>e</mi> <mi>n</mi> <mi>v</mi> </mrow> </msub> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <msup> <mi>h</mi> <mn>2</mn> </msup> <msub> <mo>Ω</mo> <mrow> <mi>s</mi> <mi>w</mi> </mrow> </msub> </mrow> </semantics></math>, and <math display="inline"><semantics> <mrow> <msup> <mi>h</mi> <mn>2</mn> </msup> <msub> <mo>Ω</mo> <mrow> <mi>t</mi> <mi>u</mi> <mi>r</mi> <mi>b</mi> </mrow> </msub> </mrow> </semantics></math> respectively.</p>
Full article ">Figure 3 Cont.
<p>The effects of hyperscaling violation on <math display="inline"><semantics> <mrow> <msup> <mi>h</mi> <mn>2</mn> </msup> <msub> <mo>Ω</mo> <mrow> <mi>e</mi> <mi>n</mi> <mi>v</mi> </mrow> </msub> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <msup> <mi>h</mi> <mn>2</mn> </msup> <msub> <mo>Ω</mo> <mrow> <mi>s</mi> <mi>w</mi> </mrow> </msub> </mrow> </semantics></math>, and <math display="inline"><semantics> <mrow> <msup> <mi>h</mi> <mn>2</mn> </msup> <msub> <mo>Ω</mo> <mrow> <mi>t</mi> <mi>u</mi> <mi>r</mi> <mi>b</mi> </mrow> </msub> </mrow> </semantics></math> are plotted in (<b>a</b>–<b>c</b>) respectively, where the solid lines (dashed lines) denote <math display="inline"><semantics> <mrow> <mi>α</mi> <mo>=</mo> <mn>0.01</mn> </mrow> </semantics></math> (<math display="inline"><semantics> <mrow> <mi>α</mi> <mo>=</mo> <mn>0.7</mn> </mrow> </semantics></math>). The GWs spectrum of <math display="inline"><semantics> <mrow> <msup> <mi>h</mi> <mn>2</mn> </msup> <mo>Ω</mo> <mrow> <mo>(</mo> <mi>f</mi> <mo>)</mo> </mrow> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <msup> <mi>h</mi> <mn>2</mn> </msup> <msub> <mo>Ω</mo> <mrow> <mi>e</mi> <mi>n</mi> <mi>v</mi> </mrow> </msub> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <msup> <mi>h</mi> <mn>2</mn> </msup> <msub> <mo>Ω</mo> <mrow> <mi>s</mi> <mi>w</mi> </mrow> </msub> </mrow> </semantics></math>, and <math display="inline"><semantics> <mrow> <msup> <mi>h</mi> <mn>2</mn> </msup> <msub> <mo>Ω</mo> <mrow> <mi>t</mi> <mi>u</mi> <mi>r</mi> <mi>b</mi> </mrow> </msub> </mrow> </semantics></math> when <math display="inline"><semantics> <mrow> <mi>α</mi> <mo>=</mo> <mn>0.7</mn> </mrow> </semantics></math> is plotted in (<b>d</b>). The solid red line represents <math display="inline"><semantics> <mrow> <msup> <mi>h</mi> <mn>2</mn> </msup> <mo>Ω</mo> <mrow> <mo>(</mo> <mi>f</mi> <mo>)</mo> </mrow> </mrow> </semantics></math>. The dashed orange, dashed blue, and dashed green lines denote <math display="inline"><semantics> <mrow> <msup> <mi>h</mi> <mn>2</mn> </msup> <msub> <mo>Ω</mo> <mrow> <mi>e</mi> <mi>n</mi> <mi>v</mi> </mrow> </msub> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <msup> <mi>h</mi> <mn>2</mn> </msup> <msub> <mo>Ω</mo> <mrow> <mi>s</mi> <mi>w</mi> </mrow> </msub> </mrow> </semantics></math>, and <math display="inline"><semantics> <mrow> <msup> <mi>h</mi> <mn>2</mn> </msup> <msub> <mo>Ω</mo> <mrow> <mi>t</mi> <mi>u</mi> <mi>r</mi> <mi>b</mi> </mrow> </msub> </mrow> </semantics></math> respectively.</p>
Full article ">
7 pages, 585 KiB  
Communication
Photons as a Signal of Deconfinement in Hadronic Matter under Extreme Conditions
by Sergei Nedelko and Aleksei Nikolskii
Physics 2023, 5(2), 547-553; https://doi.org/10.3390/physics5020039 - 16 May 2023
Viewed by 1135
Abstract
The photon production by conversion of gluons ggγ via quark loop in the framework of the mean-field approach to the QCD (quantunm chromodynamics) vacuum is studied here. According to the domain model of QCD vacuum, the confinement phase is dominated [...] Read more.
The photon production by conversion of gluons ggγ via quark loop in the framework of the mean-field approach to the QCD (quantunm chromodynamics) vacuum is studied here. According to the domain model of QCD vacuum, the confinement phase is dominated by Abelian (anti-)self-dual gluon fields, while the deconfinement phase is characterized by a strong chromomagnetic field. In the confinement phase, photon production is impossible due to the random spacial orientation of the statistical ensemble of vacuum fields. However, the conditions of Furry theorem are not satisfied in the deconfinement phase, the conversion of gluons is nonzero and, in addition, photon distribution has a strong angular anisotropy. Thus, the photon production in the discussed process acts as one of the important features of transition in quark-gluon plasma to the deconfinement phase. Full article
(This article belongs to the Special Issue From Heavy Ions to Astroparticle Physics)
Show Figures

Figure 1

Figure 1
<p>The diagrams of process <math display="inline"><semantics> <mrow> <mi>g</mi> <mi>g</mi> <mo>→</mo> <mi>γ</mi> </mrow> </semantics></math> via quark loop in the presence of homogeneous Abelian gauge field. <span class="html-italic">p</span> and <span class="html-italic">k</span> are momenta of gluons <math display="inline"><semantics> <msup> <mi>Q</mi> <mi>b</mi> </msup> </semantics></math> and <math display="inline"><semantics> <msup> <mi>Q</mi> <mi>a</mi> </msup> </semantics></math> respectively, <span class="html-italic">q</span> is the photon (<math display="inline"><semantics> <msub> <mi>A</mi> <mi>ρ</mi> </msub> </semantics></math>) momentum. The closed arrows inside the triangle diagrams (<b>I</b>,<b>II</b>) indicate the direction of quark loop momentum. See text for more details.</p>
Full article ">Figure 2
<p>Some form factors, such as the function of transverse gluon momenta, <math display="inline"><semantics> <mrow> <msubsup> <mi>p</mi> <mo>⊥</mo> <mn>2</mn> </msubsup> <mo>=</mo> <msubsup> <mi>k</mi> <mo>⊥</mo> <mn>2</mn> </msubsup> </mrow> </semantics></math>, for longitudinal momenta, <math display="inline"><semantics> <mrow> <msubsup> <mi>p</mi> <mrow> <mo>|</mo> <mo>|</mo> </mrow> <mn>2</mn> </msubsup> <mo>=</mo> <msubsup> <mi>k</mi> <mrow> <mo>|</mo> <mo>|</mo> </mrow> <mn>2</mn> </msubsup> <mo>=</mo> <mn>1</mn> </mrow> </semantics></math>. Dimensionless notations <math display="inline"><semantics> <mrow> <msup> <mi>p</mi> <mn>2</mn> </msup> <mo>=</mo> <msup> <mi>p</mi> <mn>2</mn> </msup> <mo>/</mo> <mi>B</mi> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <msup> <mi>k</mi> <mn>2</mn> </msup> <mo>=</mo> <msup> <mi>k</mi> <mn>2</mn> </msup> <mo>/</mo> <mi>B</mi> </mrow> </semantics></math> are used, form factors <math display="inline"><semantics> <mrow> <msub> <mi>F</mi> <mi>l</mi> </msub> <mrow> <mo>(</mo> <mi>p</mi> <mo>,</mo> <mi>k</mi> <mo>)</mo> </mrow> </mrow> </semantics></math> are dimensionless. See [<a href="#B15-physics-05-00039" class="html-bibr">15</a>] for the detailed form of <math display="inline"><semantics> <mrow> <msubsup> <mi mathvariant="script">F</mi> <mrow> <mi>μ</mi> <mi>ν</mi> <mi>ρ</mi> </mrow> <mi>l</mi> </msubsup> <mrow> <mo>(</mo> <mi>p</mi> <mo>,</mo> <mi>k</mi> <mo>)</mo> </mrow> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <msub> <mi>F</mi> <mi>l</mi> </msub> <mrow> <mo>(</mo> <mi>p</mi> <mo>,</mo> <mi>k</mi> <mo>)</mo> </mrow> </mrow> </semantics></math>.</p>
Full article ">Figure 3
<p>The squared amplitude, <math display="inline"><semantics> <mrow> <mi>T</mi> <mo>(</mo> <mi>p</mi> <mo>,</mo> <mi>k</mi> <mo>)</mo> </mrow> </semantics></math> (<a href="#FD6-physics-05-00039" class="html-disp-formula">6</a>), as a function of gluon momenta for <math display="inline"><semantics> <mrow> <msubsup> <mi>k</mi> <mo>⊥</mo> <mn>2</mn> </msubsup> <mo>=</mo> <msubsup> <mi>p</mi> <mo>⊥</mo> <mn>2</mn> </msubsup> </mrow> </semantics></math>. The dashed line corresponds to the pure magnetic field, <math display="inline"><semantics> <msub> <mi>B</mi> <mi>el</mi> </msub> </semantics></math> [<a href="#B8-physics-05-00039" class="html-bibr">8</a>], dotted and solid lines represent the case of a pure chromomagnetic field <span class="html-italic">B</span> with different strengths. The mass of the pion, <math display="inline"><semantics> <msub> <mi>m</mi> <mi>π</mi> </msub> </semantics></math>, is chosen as the scale. Dimensionless notation <math display="inline"><semantics> <mrow> <msubsup> <mi>p</mi> <mo>⊥</mo> <mn>2</mn> </msubsup> <mo>=</mo> <msubsup> <mi>p</mi> <mo>⊥</mo> <mn>2</mn> </msubsup> <mo>/</mo> <mi>B</mi> </mrow> </semantics></math> is used. The quarks are considered massless.</p>
Full article ">Figure 4
<p>The squared amplitude (<a href="#FD6-physics-05-00039" class="html-disp-formula">6</a>) taking into account all Landau levels for different quark masses <math display="inline"><semantics> <msub> <mi>m</mi> <mi>f</mi> </msub> </semantics></math> [<a href="#B15-physics-05-00039" class="html-bibr">15</a>] at gluon momenta <math display="inline"><semantics> <mrow> <msubsup> <mi>k</mi> <mo>⊥</mo> <mn>2</mn> </msubsup> <mo>=</mo> <msubsup> <mi>p</mi> <mo>⊥</mo> <mn>2</mn> </msubsup> <mo>&lt;</mo> <mn>3</mn> <msubsup> <mi>m</mi> <mi>f</mi> <mn>2</mn> </msubsup> <mo>/</mo> <mn>2</mn> </mrow> </semantics></math> and the case of massless quarks. The chromomagnetic field strength <math display="inline"><semantics> <mrow> <mi>B</mi> <mo>=</mo> <mn>4</mn> <msubsup> <mi>m</mi> <mi>π</mi> <mn>2</mn> </msubsup> </mrow> </semantics></math> and magnetic field <math display="inline"><semantics> <mrow> <msub> <mi>B</mi> <mrow> <mi>e</mi> <mi>l</mi> </mrow> </msub> <mo>=</mo> <mn>0</mn> </mrow> </semantics></math>. Dimensionless notation <math display="inline"><semantics> <mrow> <msubsup> <mi>p</mi> <mo>⊥</mo> <mn>2</mn> </msubsup> <mo>=</mo> <msubsup> <mi>p</mi> <mo>⊥</mo> <mn>2</mn> </msubsup> <mo>/</mo> <mi>B</mi> </mrow> </semantics></math> is used.</p>
Full article ">Figure 5
<p>Differential energy distribution of the generated photons for a pure magnetic field <math display="inline"><semantics> <msub> <mi>B</mi> <mi>el</mi> </msub> </semantics></math> (dashed line) and pure chromomagnetic field <span class="html-italic">B</span> (the dotted and solid lines).</p>
Full article ">
15 pages, 6504 KiB  
Article
Chaos in QCD? Gap Equations and Their Fractal Properties
by Thomas Klähn, Lee C. Loveridge and Mateusz Cierniak
Particles 2023, 6(2), 470-484; https://doi.org/10.3390/particles6020026 - 11 Apr 2023
Viewed by 1277
Abstract
In this study, we discuss how iterative solutions of QCD-inspired gap-equations at the finite chemical potential demonstrate domains of chaotic behavior as well as non-chaotic domains, which represent one or the other of the only two—usually distinct—positive mass gap solutions with broken or [...] Read more.
In this study, we discuss how iterative solutions of QCD-inspired gap-equations at the finite chemical potential demonstrate domains of chaotic behavior as well as non-chaotic domains, which represent one or the other of the only two—usually distinct—positive mass gap solutions with broken or restored chiral symmetry, respectively. In the iterative approach, gap solutions exist which exhibit restored chiral symmetry beyond a certain dynamical cut-off energy. A chirally broken, non-chaotic domain with no emergent mass poles and hence with no quasi-particle excitations exists below this energy cut-off. The transition domain between these two energy-separated domains is chaotic. As a result, the dispersion relation is that of quarks with restored chiral symmetry, cut at a dynamical energy scale, and determined by fractal structures. We argue that the chaotic origin of the infrared cut-off could hint at a chaotic nature of confinement and the deconfinement phase transition. Full article
Show Figures

Figure 1

Figure 1
<p>Real part of the scalar gap <span class="html-italic">B</span> after 300 iterations starting from <math display="inline"><semantics> <mrow> <msub> <mi>A</mi> <mn>0</mn> </msub> <mo>=</mo> <mn>1</mn> </mrow> </semantics></math> (<b>top</b>, <b>bottom</b>), and <math display="inline"><semantics> <mrow> <msub> <mi>B</mi> <mn>0</mn> </msub> <mo>=</mo> <mi>m</mi> <mo>=</mo> </mrow> </semantics></math> (10 MeV (<b>top</b>), 100 MeV (<b>bottom</b>)).</p>
Full article ">Figure 2
<p>Periodicity of the iterative mass gap solution at <math display="inline"><semantics> <mrow> <mi>m</mi> <mo>=</mo> <mn>100</mn> </mrow> </semantics></math> MeV. The outer, indigo region of the plot are absolutely stable under iteration, the inner almond shape has periodicity two, and the area in between exhibits chaos with increasing periodicity. For this plot, areas with periodicity larger than ten are plotted in black.</p>
Full article ">Figure 3
<p>Real part of the mass gap <span class="html-italic">B</span> at <math display="inline"><semantics> <mrow> <msubsup> <mi>z</mi> <mi>R</mi> <mn>2</mn> </msubsup> <mo>=</mo> <mn>0.1</mn> </mrow> </semantics></math> MeV<math display="inline"><semantics> <msup> <mrow/> <mn>2</mn> </msup> </semantics></math>. The color coding indicates how frequently a solution has been found over 300 iterations after the first 100 iterations which are sufficient to shape the fractal as seen. For reference, all analytic solutions to the polynomial gap equations are plotted in color. Iteration switches from massive solutions (blue) at small <math display="inline"><semantics> <mrow> <mi mathvariant="script">I</mi> <mo>(</mo> <msup> <mi>z</mi> <mn>2</mn> </msup> <mo>)</mo> </mrow> </semantics></math> to bare-mass solutions (green) at larger values. Except for the chaotic transition domain, the iterative approach picks positive mass-gap solutions, only. Note, that the chaotic domain has solutions of periodicity of two and higher; it is truly unstable. Hence, we add a gray scale to measure the frequency of a particular solution over the final 300 iterations.</p>
Full article ">Figure 4
<p>Upper panel: Solutions of the polynomial gap equations for <math display="inline"><semantics> <mrow> <mi>m</mi> <mo>=</mo> <mn>100</mn> </mrow> </semantics></math> MeV. Each is plotted on a scale that most accentuates its structure. Solution 1 and 3 (from the left) are stable in some, mutually exclusive domains under iteration, as illustrated in <a href="#particles-06-00026-f003" class="html-fig">Figure 3</a>. Lower panel: After 300 iterations, using the corresponding solution of the polynomial gap equations from the upper panel as initial seed for the iteration. In the outer, non-chaotic domain, all four cases produce nearly identical results with positive mass gap only.</p>
Full article ">Figure 5
<p>Difference between gap solution 1 and 3 (from the left) in the top panel of <a href="#particles-06-00026-f004" class="html-fig">Figure 4</a> and iterative solutions seeded with the non-interacting solution (<math display="inline"><semantics> <mrow> <mi>A</mi> <mo>=</mo> <mn>1</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>B</mi> <mo>=</mo> <mi>m</mi> </mrow> </semantics></math>) after 500 iterations. White domains show no difference between iterative solutions seeded with an analytical model solution or seeded with the non-interacting solution. Solution 2 and 4 show no agreement anywhere in the stable domain of periodicity one (not shown).</p>
Full article ">Figure 6
<p>Natural logarithm of <math display="inline"><semantics> <msup> <mfenced separators="" open="(" close=")"> <msubsup> <mi>p</mi> <mn>3</mn> <mn>2</mn> </msubsup> <mo>+</mo> <msup> <mi>M</mi> <mn>2</mn> </msup> <mo>−</mo> <msubsup> <mi>p</mi> <mn>4</mn> <mn>2</mn> </msubsup> </mfenced> <mn>2</mn> </msup> </semantics></math> for the iterative solution for <math display="inline"><semantics> <mrow> <mi>μ</mi> <mo>=</mo> <mo>(</mo> <mn>100</mn> <mo>,</mo> <mn>350</mn> <mo>,</mo> <mn>600</mn> <mo>)</mo> </mrow> </semantics></math> MeV (top down) at quark-bare mass <math display="inline"><semantics> <mrow> <mi>m</mi> <mo>=</mo> </mrow> </semantics></math> 100 MeV. The vertical line shaped by minimal negative values indicate a physical mass pole, viz. a quasi-particle. In the chaotic domain, this pole structure is absent, viz. the vertical line (or any distinct pole) pattern is absent. This implies an infrared energy gap, below which quarks show no quasi-particle properties. As the chemical potential increases, the quasi-particle pole line moves to the right and simultaneously decreases the gap, viz., the gap region without a pole traces the outer shape of the fractal. Once the chemical potential is sufficiently large, the gap closes entirely. Note that the absence of a mass pole does not imply that there is no mass gap solution, as illustrated in <a href="#particles-06-00026-f003" class="html-fig">Figure 3</a>.</p>
Full article ">Figure 7
<p>Plotted is the logarithm of the mass-pole condition <math display="inline"><semantics> <mrow> <mo form="prefix">log</mo> <mo>(</mo> <mo>|</mo> <msup> <mover accent="true"> <mi>p</mi> <mo>→</mo> </mover> <mn>2</mn> </msup> <mo>−</mo> <msubsup> <mi>p</mi> <mn>4</mn> <mn>2</mn> </msubsup> <mo>+</mo> <msup> <mi>μ</mi> <mn>2</mn> </msup> <mo>+</mo> <mo>ℜ</mo> <mrow> <mo>(</mo> <msup> <mi>M</mi> <mn>2</mn> </msup> <mo>)</mo> </mrow> <mo>|</mo> <mo>)</mo> </mrow> </semantics></math>, which shows a dispersion relation with distinct, chaos-induced infrared cut-off. With increasing chemical potential (<math display="inline"><semantics> <mrow> <mi>m</mi> <mo>=</mo> <mn>0.1</mn> <mi>η</mi> </mrow> </semantics></math>; <math display="inline"><semantics> <mrow> <mi>μ</mi> <mo>=</mo> <mo>(</mo> <mn>0.2</mn> <mo>,</mo> <mn>0.4</mn> <mo>,</mo> <mn>0.7</mn> <mo>)</mo> <mi>η</mi> </mrow> </semantics></math> from <b>left</b> to <b>right</b>), the infrared cut-off decreases and eventually disappears. With increasing widening (<math display="inline"><semantics> <mrow> <mi>σ</mi> <mo>=</mo> <mo>(</mo> <mn>0.00</mn> <mo>,</mo> <mn>0.01</mn> <mo>,</mo> <mn>0.02</mn> <mo>)</mo> <mi>η</mi> </mrow> </semantics></math> from <b>top</b> to <b>bottom</b>), chaotic domains blur but the observed IR cut-off remains.</p>
Full article ">
6 pages, 244 KiB  
Communication
On the Temperature Dependence of the String-Breaking Distance in QCD
by Dmitry Antonov
Universe 2023, 9(2), 97; https://doi.org/10.3390/universe9020097 - 13 Feb 2023
Cited by 2 | Viewed by 1147
Abstract
The temperature dependence of the QCD string-breaking distance is evaluated in terms of the string tension and the rate of production of light mesons in the chromo-electric field of a flux tube. As a function of the meson mass, the mentioned rate can [...] Read more.
The temperature dependence of the QCD string-breaking distance is evaluated in terms of the string tension and the rate of production of light mesons in the chromo-electric field of a flux tube. As a function of the meson mass, the mentioned rate can be falling off either as a Gaussian, as suggested by the Schwinger formula, or as an exponential, which is the case in the London limit of the dual superconductor. We find an excellent agreement of the so-evaluated temperature dependence of the string-breaking distance with the respective lattice data, for the case of the meson-production rate corresponding to the London limit. Full article
(This article belongs to the Special Issue Quantum Field Theory)
Show Figures

Figure 1

Figure 1
<p>Plotted are the cited values for <math display="inline"><semantics> <mrow> <msqrt> <msub> <mi>σ</mi> <mn>0</mn> </msub> </msqrt> <msub> <mi>R</mi> <mrow> <mi mathvariant="normal">s</mi> <mo>.</mo> <mi mathvariant="normal">b</mi> <mo>.</mo> </mrow> </msub> </mrow> </semantics></math> vs. the fitting function <math display="inline"><semantics> <mrow> <mn>3.171</mn> <msup> <mfenced separators="" open="(" close=")"> <mn>1</mn> <mo>−</mo> <mfrac> <mi>T</mi> <msub> <mi>T</mi> <mi>c</mi> </msub> </mfrac> </mfenced> <mrow> <mn>0.195</mn> </mrow> </msup> </mrow> </semantics></math>.</p>
Full article ">
11 pages, 340 KiB  
Article
Some Aspects of Persistent Homology Analysis on Phase Transition: Examples in an Effective QCD Model with Heavy Quarks
by Hayato Antoku and Kouji Kashiwa
Universe 2023, 9(2), 82; https://doi.org/10.3390/universe9020082 - 3 Feb 2023
Cited by 2 | Viewed by 1192
Abstract
Recently, persistent homology analysis has been used to investigate phase structure. In this study, we apply persistent homology analysis to the QCD effective model with heavy quarks at finite imaginary chemical potential; i.e., the Potts model with the suitably tuned external field. Since [...] Read more.
Recently, persistent homology analysis has been used to investigate phase structure. In this study, we apply persistent homology analysis to the QCD effective model with heavy quarks at finite imaginary chemical potential; i.e., the Potts model with the suitably tuned external field. Since we try to obtain a deeper understanding of the relationship between persistent homology and phase transition in QCD, we consider the imaginary chemical potential because the clear phase transition, which is closely related to the confinement-deconfinement transition, exists. In the actual analysis, we employ the point-cloud approach to consider persistent homology. In addition, we investigate the fluctuation of persistent diagrams to obtain additional information on the relationship between the spatial topology and the phase transition. Full article
(This article belongs to the Special Issue Collectivity in High-Energy Proton-Proton and Heavy-Ion Collisions)
Show Figures

Figure 1

Figure 1
<p>The <math display="inline"><semantics> <mi>θ</mi> </semantics></math>-dependence of <math display="inline"><semantics> <mo>Ψ</mo> </semantics></math> at <math display="inline"><semantics> <mrow> <mi>θ</mi> <mo>=</mo> <mn>0</mn> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <mi>π</mi> <mo>/</mo> <mn>3</mn> <mo>−</mo> <mi>ϵ</mi> </mrow> </semantics></math>, where we set to <math display="inline"><semantics> <mrow> <mi>ϵ</mi> <mo>=</mo> <msup> <mn>10</mn> <mrow> <mo>−</mo> <mn>3</mn> </mrow> </msup> </mrow> </semantics></math>. The (<b>left</b>) and (<b>right</b>) panels show the real and imaginary parts of <math display="inline"><semantics> <mo>Ψ</mo> </semantics></math>, respectively. The circle and square symbols are the results of the high- and low-temperature situations, respectively. Lines in all panels in this paper are the eye guides.</p>
Full article ">Figure 2
<p>The <math display="inline"><semantics> <mi>κ</mi> </semantics></math>-dependence of <math display="inline"><semantics> <mo>Ψ</mo> </semantics></math>. The (<b>left</b>) and (<b>right</b>) panels show the results at <math display="inline"><semantics> <mrow> <mi>θ</mi> <mo>=</mo> <mn>0</mn> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <mi>π</mi> <mo>/</mo> <mn>3</mn> <mo>−</mo> <mi>ϵ</mi> </mrow> </semantics></math>, respectively. The circle and square symbols are the results of the real and imaginary parts of <math display="inline"><semantics> <mo>Ψ</mo> </semantics></math>, respectively.</p>
Full article ">Figure 3
<p>The <math display="inline"><semantics> <mi>κ</mi> </semantics></math>-dependence of the ratio of the birth-and-death times calculated from configurations. The (<b>left</b>) and (<b>right</b>) panels show the results of <math display="inline"><semantics> <msub> <mi>R</mi> <mi>ave</mi> </msub> </semantics></math> and <math display="inline"><semantics> <msub> <mi>R</mi> <mi>max</mi> </msub> </semantics></math>, respectively. The square and circle symbols are the results at <math display="inline"><semantics> <mrow> <mi>θ</mi> <mo>=</mo> <mn>0</mn> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <mi>π</mi> <mo>/</mo> <mn>3</mn> <mo>−</mo> <mi>ϵ</mi> </mrow> </semantics></math>, respectively.</p>
Full article ">Figure 4
<p>The <math display="inline"><semantics> <mi>κ</mi> </semantics></math>-dependence of fluctuation calculated from persistent diagrams. The square and circle symbols are the results at <math display="inline"><semantics> <mrow> <mi>θ</mi> <mo>=</mo> <mn>0</mn> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <mi>π</mi> <mo>/</mo> <mn>3</mn> <mo>−</mo> <mi>ϵ</mi> </mrow> </semantics></math>, respectively.</p>
Full article ">
16 pages, 641 KiB  
Article
Persistent Homology Analysis for Dense QCD Effective Model with Heavy Quarks
by Kouji Kashiwa, Takehiro Hirakida and Hiroaki Kouno
Symmetry 2022, 14(9), 1783; https://doi.org/10.3390/sym14091783 - 26 Aug 2022
Cited by 10 | Viewed by 1555
Abstract
The isospin chemical potential region is known as the sign-problem-free region of quantum chromodynamics (QCD). In this paper, we introduce the isospin chemical potential to the three-dimensional three-state Potts model to mimic dense QCD; e.g., the QCD effective model with heavy quarks at [...] Read more.
The isospin chemical potential region is known as the sign-problem-free region of quantum chromodynamics (QCD). In this paper, we introduce the isospin chemical potential to the three-dimensional three-state Potts model to mimic dense QCD; e.g., the QCD effective model with heavy quarks at finite density. We call it the QCD-like Potts model. The QCD-like Potts model does not have a sign problem, but we expect it to share some properties with QCD. Since we can obtain the non-approximated Potts spin configuration at finite isospin chemical potential, where the simple Metropolis algorithm can work, we perform the persistent homology analysis toward exploring the dense spatial structure of QCD. We show that the averaged birth-death ratio has the same information with the Polyakov loop, but the maximum birth-death ratio has additional information near the phase transition where the birth-death ratio means the ratio of the creation time of a hole and its vanishing time based on the persistent homology. Full article
(This article belongs to the Special Issue QCD- and QED-Like Theories and Symmetry)
Show Figures

Figure 1

Figure 1
<p>The persistent diagram for randomly distributed data in the <math display="inline"><semantics> <msup> <mn>30</mn> <mn>3</mn> </msup> </semantics></math> squared lattice system as a function of the birth and death times. The occupation ratio of the system is about <math display="inline"><semantics> <mrow> <mn>33</mn> <mo>%</mo> <mo>,</mo> <mn>40</mn> <mo>%</mo> <mo>,</mo> <mn>50</mn> <mo>%</mo> </mrow> </semantics></math>, and <math display="inline"><semantics> <mrow> <mn>60</mn> <mo>%</mo> </mrow> </semantics></math> from the top-left → top-right → left bottom → right-bottom panels, respectively. In the legend, Value means the number of data points which appear at the same point.</p>
Full article ">Figure 2
<p>The Monte Carlo evolution of the spatial averaged Polyakov loop after thermalization. The left (right) panel is the result with <math display="inline"><semantics> <mrow> <mi>κ</mi> <mo>=</mo> <mn>0.6</mn> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <msub> <mi>μ</mi> <mi>iso</mi> </msub> <mo>=</mo> <mn>2</mn> </mrow> </semantics></math> (<math display="inline"><semantics> <mrow> <mi>κ</mi> <mo>=</mo> <mn>0.6</mn> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <msub> <mi>μ</mi> <mi>iso</mi> </msub> <mo>=</mo> <mn>6</mn> </mrow> </semantics></math>). Each symbol is the result with corresponding configuration which is obtained via the standard Metropolis algorithm. The horizontal axis <span class="html-italic">t</span> means the label number of configurations.</p>
Full article ">Figure 3
<p>The <math display="inline"><semantics> <mi>κ</mi> </semantics></math>-dependence of the Polyakov loop. The open circle, diamond, square, and triangle symbols are results with <math display="inline"><semantics> <mrow> <msub> <mi>μ</mi> <mi>iso</mi> </msub> <mo>=</mo> <mn>0</mn> <mo>,</mo> <mn>6</mn> <mo>,</mo> <mn>7</mn> </mrow> </semantics></math> and 8, respectively. Lines are just eye guides.</p>
Full article ">Figure 4
<p>The mean value of Polyakov loop on the <math display="inline"><semantics> <msub> <mi>μ</mi> <mi>iso</mi> </msub> </semantics></math>-<math display="inline"><semantics> <mi>κ</mi> </semantics></math> plane. Statistical errors are small, and thus, we do not show them here.</p>
Full article ">Figure 5
<p>The spatial correlators for the <span class="html-italic">x</span>-direction at <math display="inline"><semantics> <mrow> <msub> <mi>μ</mi> <mi>iso</mi> </msub> <mo>=</mo> <mn>5</mn> </mrow> </semantics></math> with <math display="inline"><semantics> <mrow> <mi>κ</mi> <mo>=</mo> <mn>0.3</mn> <mo>,</mo> <mn>0.4</mn> <mo>,</mo> <mn>0.5</mn> </mrow> </semantics></math>, and <math display="inline"><semantics> <mrow> <mn>0.6</mn> </mrow> </semantics></math> from the top to the bottom panel, respectively. The left and right panels show the spatial correlators for the real and imaginary parts of the Polyakov loop, respectively.</p>
Full article ">Figure 6
<p>The persistent diagram at <math display="inline"><semantics> <mrow> <mi>μ</mi> <mo>=</mo> <mn>0</mn> </mrow> </semantics></math> for <math display="inline"><semantics> <mrow> <mi>k</mi> <mo>=</mo> <mn>0</mn> </mrow> </semantics></math> spins; e.g., the dataset A. Panels are results with <math display="inline"><semantics> <mrow> <mi>κ</mi> <mo>=</mo> <mn>0.3</mn> <mo>,</mo> <mn>0.4</mn> <mo>,</mo> <mn>0.5</mn> </mrow> </semantics></math>, and <math display="inline"><semantics> <mrow> <mn>0.6</mn> </mrow> </semantics></math> for one particular configuration from the left-top → right-top → left-bottom → the right-bottom panels, respectively.</p>
Full article ">Figure 7
<p>The persistent diagram at <math display="inline"><semantics> <mrow> <mi>μ</mi> <mo>=</mo> <mn>5</mn> </mrow> </semantics></math> for <math display="inline"><semantics> <mrow> <mi>k</mi> <mo>=</mo> <mn>0</mn> </mrow> </semantics></math> spins; e.g., the dataset A. Panels are results with <math display="inline"><semantics> <mrow> <mi>κ</mi> <mo>=</mo> <mn>0.3</mn> <mo>,</mo> <mn>0.4</mn> <mo>,</mo> <mn>0.5</mn> </mrow> </semantics></math>, and <math display="inline"><semantics> <mrow> <mn>0.6</mn> </mrow> </semantics></math> for one particular configuration from the left-top → right-top → left-bottom → right-bottom panels, respectively.</p>
Full article ">Figure 8
<p>The persistent diagram at <math display="inline"><semantics> <mrow> <mi>κ</mi> <mo>=</mo> <mn>0.2</mn> </mrow> </semantics></math> for <math display="inline"><semantics> <mrow> <mi>k</mi> <mo>=</mo> <mn>0</mn> </mrow> </semantics></math> spins; e.g., the dataset A. Panels are results with <math display="inline"><semantics> <mrow> <msub> <mi>μ</mi> <mi>iso</mi> </msub> <mo>=</mo> <mn>2</mn> <mo>,</mo> <mn>4</mn> <mo>,</mo> <mn>6</mn> </mrow> </semantics></math>, and 8 for one particular configuration from the left-top → right-top → left-bottom → right-bottom panels, respectively.</p>
Full article ">Figure 9
<p>The <math display="inline"><semantics> <mi>κ</mi> </semantics></math>-dependence of the mean value of the birth-death ratio with <math display="inline"><semantics> <mrow> <msub> <mi>μ</mi> <mi>iso</mi> </msub> <mo>=</mo> <mn>0</mn> <mo>,</mo> <mn>5</mn> <mo>,</mo> <mn>6</mn> </mrow> </semantics></math>, and 7 where we take the configuration average. The top and bottom panels are the result of the averaged birth-death ratio (<span class="html-italic">R</span>) and the maximum birth-death ratio (<math display="inline"><semantics> <msub> <mi>R</mi> <mi>max</mi> </msub> </semantics></math>), respectively. The open circle, diamond, square and triangle symbols are results with <math display="inline"><semantics> <mrow> <msub> <mi>μ</mi> <mi>iso</mi> </msub> <mo>=</mo> <mn>0</mn> <mo>,</mo> <mn>5</mn> <mo>,</mo> <mn>6</mn> </mrow> </semantics></math>, and 7, respectively. Lines are just eye guides.</p>
Full article ">Figure 10
<p>The mean value of the birth-death ratio on the <math display="inline"><semantics> <msub> <mi>μ</mi> <mi>iso</mi> </msub> </semantics></math>-<math display="inline"><semantics> <mi>κ</mi> </semantics></math> plane where we take the configuration average. The left and right panels are the result of the averaged birth-death ratio <span class="html-italic">R</span> and the maximum <math display="inline"><semantics> <msub> <mi>R</mi> <mi>max</mi> </msub> </semantics></math>, respectively. Statistical errors are very small, and thus, we do not show them here.</p>
Full article ">
9 pages, 280 KiB  
Article
On Emergent Particles and Stable Neutral Plasma Balls in SU(2) Yang-Mills Thermodynamics
by Ralf Hofmann and Thierry Grandou
Universe 2022, 8(2), 117; https://doi.org/10.3390/universe8020117 - 12 Feb 2022
Cited by 5 | Viewed by 4554
Abstract
For a pure SU(2) Yang–Mills theory in 4D, we revisit the spatial (3D), ball-like region of radius r0 in its bulk subject to the pressureless, deconfining phase at T0=1.32Tc, where Tc denotes the critical temperature [...] Read more.
For a pure SU(2) Yang–Mills theory in 4D, we revisit the spatial (3D), ball-like region of radius r0 in its bulk subject to the pressureless, deconfining phase at T0=1.32Tc, where Tc denotes the critical temperature for the onset of the deconfining–preconfining phase transition. Such a region possesses finite energy density and represents the self-intersection of a figure-eight shaped center-vortex loop if a BPS monopole of core radius ∼r052.4, isolated from its antimonopole by repulsion externally invoked through a transient shift of (anti)caloron holonomy (pair creation), is trapped therein. The entire soliton (vortex line plus region of self-intersection of mass m0 containing the monopole) can be considered an excitation of the pressureless and energyless ground state of the confining phase. Correcting an earlier estimate of r0, we show that the vortex-loop self-intersection region associates to the central part of a(n) (anti)caloron and that this region carries one unit of electric U(1) charge via the (electric-magnetic dually interpreted) charge of the monopole. The monopole core quantum vibrates at a thermodynamically determined frequency ω0 and is unresolved. For a deconfining-phase plasma oscillation about the zero-pressure background at T=T0, we compute the lowest frequency Ω0 within a neutral and homogeneous spatial ball (no trapped monopole) in dependence of its radius R0. For R0=r0 a comparison of Ω0 with ω0 reveals that the neutral plasma oscillates much slower than the same plasma driven by the oscillation of a monopole core. Full article
(This article belongs to the Special Issue Quantum Field Theory)
Show Figures

Figure 1

Figure 1
<p>Saturation towards a harmonic Euclidean time dependence of the contributions of Harrington–Shepard calorons to the field-strength correlation defining the phase of the field <math display="inline"><semantics> <mi>ϕ</mi> </semantics></math> as a function of the scaled cutoff <math display="inline"><semantics> <mrow> <mi>ξ</mi> <mo>≡</mo> <mfrac> <mi>ρ</mi> <mi>β</mi> </mfrac> </mrow> </semantics></math> for the instanton-scale-parameter integration. Cutting off at <math display="inline"><semantics> <mrow> <mi>ρ</mi> <mo>∼</mo> <msub> <mi>r</mi> <mn>0</mn> </msub> <mo>=</mo> <mn>1.29</mn> <msub> <mi>β</mi> <mn>0</mn> </msub> </mrow> </semantics></math> suggests that there are (mild) deviations from a harmonic dependence. Figure taken from [<a href="#B25-universe-08-00117" class="html-bibr">25</a>].</p>
Full article ">
13 pages, 336 KiB  
Article
Investigation of the Thermal QCD Matter from Canonical Sectors
by Kouji Kashiwa
Symmetry 2021, 13(7), 1273; https://doi.org/10.3390/sym13071273 - 15 Jul 2021
Cited by 3 | Viewed by 1895
Abstract
We discuss the thermal phase structure of quantum chromodynamics (QCD) at zero real chemical potential (μR=0) from the viewpoint of canonical sectors. The canonical sectors take the system to pieces of each elementary excitation mode and thus seem [...] Read more.
We discuss the thermal phase structure of quantum chromodynamics (QCD) at zero real chemical potential (μR=0) from the viewpoint of canonical sectors. The canonical sectors take the system to pieces of each elementary excitation mode and thus seem to be useful in the investigation of the confinement–deconfinement nature of QCD. Since the canonical sectors themselves are difficult to compute, we propose a convenient quantity which may determine the structural changes of the canonical sectors. We discuss the quantity qualitatively by adopting lattice QCD prediction for the phase structure with finite imaginary chemical potential. In addition, we numerically estimate this quantity by using the simple QCD effective model. It is shown that there should be a sharp change of the canonical sectors near the Roberge–Weiss endpoint temperature at μR=0. Then, the behavior of the quark number density at finite imaginary chemical potential plays a crucial role in clarifying the thermal QCD properties. Full article
(This article belongs to the Special Issue QCD- and QED-Like Theories and Symmetry)
Show Figures

Figure 1

Figure 1
<p>The schematic figures of the QCD phase diagram on the <math display="inline"><semantics> <mi>θ</mi> </semantics></math>-<span class="html-italic">T</span> plane in the thermodynamic limit. Solid lines represent the first-order phase transition lines and closed circles mean the second-order points. We here assume that the thermodynamic quantities have a singularity only once along the <span class="html-italic">T</span> axis and <math display="inline"><semantics> <mrow> <msub> <mi>T</mi> <mi>RW</mi> </msub> <mo>&gt;</mo> <msub> <mi>T</mi> <mi>beard</mi> </msub> </mrow> </semantics></math>. Furthermore, the transition temperature is decreased with decreasing <math display="inline"><semantics> <mi>θ</mi> </semantics></math> from <math display="inline"><semantics> <mrow> <mi>θ</mi> <mo>=</mo> <mi>π</mi> <mo>/</mo> <mn>3</mn> <mo>→</mo> <mn>0</mn> </mrow> </semantics></math>.</p>
Full article ">Figure 2
<p>The <span class="html-italic">T</span>-dependence of <math display="inline"><semantics> <msup> <mover accent="true"> <mi>δ</mi> <mo>¯</mo> </mover> <mn>2</mn> </msup> </semantics></math> at <math display="inline"><semantics> <mrow> <msub> <mi>μ</mi> <mi mathvariant="normal">R</mi> </msub> <mo>=</mo> <mn>0</mn> </mrow> </semantics></math> is calculated by using the PNJL model. In the panel, <math display="inline"><semantics> <msup> <mover accent="true"> <mi>δ</mi> <mo>¯</mo> </mover> <mn>2</mn> </msup> </semantics></math> is normalized by <math display="inline"><semantics> <mrow> <mn>1</mn> <mo>/</mo> <msubsup> <mi>T</mi> <mi>RW</mi> <mn>6</mn> </msubsup> </mrow> </semantics></math>.</p>
Full article ">Figure 3
<p>The <span class="html-italic">T</span>-dependence of <math display="inline"><semantics> <mrow> <mi>d</mi> <msup> <mover accent="true"> <mi>δ</mi> <mo>¯</mo> </mover> <mn>2</mn> </msup> </mrow> </semantics></math> at <math display="inline"><semantics> <mrow> <msub> <mi>μ</mi> <mi mathvariant="normal">R</mi> </msub> <mo>=</mo> <mn>0</mn> </mrow> </semantics></math> is calculated by using the PNJL model. In the panel, <math display="inline"><semantics> <mrow> <mi>d</mi> <msup> <mover accent="true"> <mi>δ</mi> <mo>¯</mo> </mover> <mn>2</mn> </msup> </mrow> </semantics></math> is normalized by <math display="inline"><semantics> <mrow> <mn>1</mn> <mo>/</mo> <msubsup> <mi>T</mi> <mi>RW</mi> <mn>5</mn> </msubsup> </mrow> </semantics></math>.</p>
Full article ">
22 pages, 349 KiB  
Article
Imaginary Chemical Potential, NJL-Type Model and Confinement–Deconfinement Transition
by Kouji Kashiwa
Symmetry 2019, 11(4), 562; https://doi.org/10.3390/sym11040562 - 18 Apr 2019
Cited by 13 | Viewed by 3175
Abstract
In this review, we present of an overview of several interesting properties of QCD at finite imaginary chemical potential and those applications to exploring the QCD phase diagram. The most important properties of QCD at a finite imaginary chemical potential are the Roberge–Weiss [...] Read more.
In this review, we present of an overview of several interesting properties of QCD at finite imaginary chemical potential and those applications to exploring the QCD phase diagram. The most important properties of QCD at a finite imaginary chemical potential are the Roberge–Weiss periodicity and the transition. We summarize how these properties play a crucial role in understanding QCD properties at finite temperature and density. This review covers several topics in the investigation of the QCD phase diagram based on the imaginary chemical potential. Full article
(This article belongs to the Special Issue Nambu-Jona-Lasinio model and its applications)
Show Figures

Figure 1

Figure 1
<p>The <math display="inline"><semantics> <mi>θ</mi> </semantics></math>-dependence of <math display="inline"><semantics> <mrow> <mi>σ</mi> <mo stretchy="false">/</mo> <msub> <mi>σ</mi> <mn>0</mn> </msub> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <msub> <mi>n</mi> <mi>q</mi> </msub> <mo stretchy="false">/</mo> <msup> <mi>T</mi> <mn>3</mn> </msup> </mrow> </semantics></math>. The dotted and solid lines represent the result at <math display="inline"><semantics> <mrow> <mi>T</mi> <mo>=</mo> <mn>100</mn> </mrow> </semantics></math> and 300 MeV, respectively.</p>
Full article ">Figure 2
<p>The right and left panels show the <math display="inline"><semantics> <mrow> <mover accent="true"> <mi>D</mi> <mo stretchy="false">˜</mo> </mover> <msubsup> <mo>.</mo> <mi>JS</mi> <mi>J</mi> </msubsup> </mrow> </semantics></math> trajectory on the 2-simplex for the PNJL model and the lattice QCD data [<a href="#B39-symmetry-11-00562" class="html-bibr">39</a>], respectively.</p>
Full article ">
16 pages, 1842 KiB  
Article
Hot Dense Matter: Deconfinement and Clustering of Color Sources in Nuclear Collisions
by Rolf P. Scharenberg, Brijesh K. Srivastava, Andrew S. Hirsch and Carlos Pajares
Universe 2018, 4(9), 96; https://doi.org/10.3390/universe4090096 - 18 Sep 2018
Cited by 5 | Viewed by 2918
Abstract
Within the first few microseconds from after the Big Bang, the hot dense matter was in the form of the Quark Gluon Plasm (QGP) consisting of free quarks and gluons. By colliding heavy nuclei at RHIC and LHC at a velocity close to [...] Read more.
Within the first few microseconds from after the Big Bang, the hot dense matter was in the form of the Quark Gluon Plasm (QGP) consisting of free quarks and gluons. By colliding heavy nuclei at RHIC and LHC at a velocity close to the speed of light, we were able to create the primordial matter and observe the matter after expansion and cooling. In this report we present the thermodynamics and transport coefficients obtained in the framework of clustering of color sources in both hadron-hadron and nucleus-nucleus collisions at RHIC and LHC energies. Multiparticle production at high energies can be described in terms of color strings stretched between the projectile and target. At high string density single strings overlap and form color sources. This addition belongs to the non-perturbative domain of Quantum Chromo Dynamics (QGP) and manifests its most fundamental features. The Schwinger QED 2 mechanism produces color neutral q q ¯ pairs when color source strings break. Subsequent hardonization produces the observed hadrons. With growing energy and atomic number of the colliding nuclei the density of strings grows and more color sources form clusters in the transverse plane. At a certain critical density a macroscopic cluster appears, which marks the percolation phase transition. This is the Color String Percolation Model (CSPM). The critical density is identified as the deconfinement transition and happens at the hadronization temperature. The stochastic thermalization in p p and A-A is a consequence of the quantum tunneling through the event horizon introduced by the confining color fields, the Hawking-Unruh effect. The percolation approach within CSPM is successfully used to describe the crossover phase transition in the soft collision region. The same phenomenology when applied to both hadron-hadron and nucleus-nucleus collisions emphasizes the importance of color string density, creating a macroscopic cluster which identifies the connectivity required for a finite droplet of the QGP. Full article
Show Figures

Figure 1

Figure 1
<p>Phase diagram of the nuclear matter. Temperature vs. baryonic chemical potential [<a href="#B3-universe-04-00096" class="html-bibr">3</a>].</p>
Full article ">Figure 2
<p>Illustration of the dynamical evolution of relativistic heavy-ion collisions and the QGP expansion [<a href="#B8-universe-04-00096" class="html-bibr">8</a>].</p>
Full article ">Figure 3
<p>(<b>Left</b>) Isolated disks; (<b>Middle</b>) Cluster formation; (<b>Right</b>) Overlapping discs forming a cluster of communication [<a href="#B11-universe-04-00096" class="html-bibr">11</a>].</p>
Full article ">Figure 4
<p>Transverse momentum spectra of <math display="inline"><semantics> <mrow> <mi>p</mi> <mi>i</mi> <mi>o</mi> <mi>n</mi> <mi>s</mi> </mrow> </semantics></math> from CMS experiment at <math display="inline"><semantics> <msqrt> <mi>s</mi> </msqrt> </semantics></math> = 7 TeV for two different multiplicity cuts <math display="inline"><semantics> <mrow> <msub> <mi>N</mi> <mrow> <mi>t</mi> <mi>r</mi> <mi>a</mi> <mi>c</mi> <mi>k</mi> </mrow> </msub> <mo>=</mo> <mn>131</mn> </mrow> </semantics></math> (red solid circle) and <math display="inline"><semantics> <msub> <mi>N</mi> <mrow> <mi>t</mi> <mi>r</mi> <mi>a</mi> <mi>c</mi> <mi>k</mi> </mrow> </msub> </semantics></math> = 75 (green solid circle) [<a href="#B17-universe-04-00096" class="html-bibr">17</a>]. For comparison purpose the <math display="inline"><semantics> <msub> <mi>p</mi> <mi>t</mi> </msub> </semantics></math> spectra from <math display="inline"><semantics> <mrow> <mi>p</mi> <mi>p</mi> </mrow> </semantics></math> at <math display="inline"><semantics> <msqrt> <mi>s</mi> </msqrt> </semantics></math> = 200 GeV is also shown (solid blue circle) [<a href="#B19-universe-04-00096" class="html-bibr">19</a>].</p>
Full article ">Figure 5
<p>Color Suppression Factor <math display="inline"><semantics> <mrow> <mi>F</mi> <mo>(</mo> <mi>ξ</mi> <mo>)</mo> </mrow> </semantics></math> in <math display="inline"><semantics> <mi mathvariant="italic">pp</mi> </semantics></math> collisions vs. <math display="inline"><semantics> <msub> <mi>N</mi> <mrow> <mi>t</mi> <mi>r</mi> <mi>a</mi> <mi>c</mi> <mi>k</mi> <mi>s</mi> </mrow> </msub> </semantics></math>.</p>
Full article ">Figure 6
<p>Interaction cross section <math display="inline"><semantics> <msub> <mi>S</mi> <mo>⊥</mo> </msub> </semantics></math> vs. <math display="inline"><semantics> <mrow> <msub> <mi>N</mi> <mrow> <mi>t</mi> <mi>r</mi> <mi>a</mi> <mi>c</mi> <mi>k</mi> <mi>s</mi> </mrow> </msub> <mo>/</mo> <mo>Δ</mo> <mi>η</mi> </mrow> </semantics></math>. <math display="inline"><semantics> <msub> <mi>S</mi> <mo>⊥</mo> </msub> </semantics></math> is obtained using IP-Glasma model [<a href="#B22-universe-04-00096" class="html-bibr">22</a>].</p>
Full article ">Figure 7
<p>Color Suppression Factor <math display="inline"><semantics> <mrow> <mi>F</mi> <mo>(</mo> <mi>ξ</mi> <mo>)</mo> </mrow> </semantics></math> in <math display="inline"><semantics> <mi mathvariant="italic">pp</mi> </semantics></math>, <math display="inline"><semantics> <mrow> <mover accent="true"> <mi>p</mi> <mo>¯</mo> </mover> <mi>p</mi> </mrow> </semantics></math> and Au-Au collisions vs. <math display="inline"><semantics> <mrow> <msub> <mi>N</mi> <mrow> <mi>t</mi> <mi>r</mi> <mi>a</mi> <mi>c</mi> <mi>k</mi> <mi>s</mi> </mrow> </msub> <mo>/</mo> <mo>Δ</mo> <mi>η</mi> </mrow> </semantics></math> scaled by the transverse area <math display="inline"><semantics> <msub> <mi>S</mi> <mo>⊥</mo> </msub> </semantics></math>. For <math display="inline"><semantics> <mi mathvariant="italic">pp</mi> </semantics></math> and <math display="inline"><semantics> <mrow> <mover accent="true"> <mi>p</mi> <mo>¯</mo> </mover> <mi>p</mi> </mrow> </semantics></math> collisions <math display="inline"><semantics> <msub> <mi>S</mi> <mo>⊥</mo> </msub> </semantics></math> is multiplicity dependent as obtained from IP-Glasma model [<a href="#B22-universe-04-00096" class="html-bibr">22</a>]. In case of Au-Au collisions the nuclear overlap area was obtained using the Glauber model [<a href="#B23-universe-04-00096" class="html-bibr">23</a>].</p>
Full article ">Figure 8
<p>Temperature vs. <math display="inline"><semantics> <mrow> <msub> <mi>N</mi> <mrow> <mi>t</mi> <mi>r</mi> <mi>a</mi> <mi>c</mi> <mi>k</mi> <mi>s</mi> </mrow> </msub> <mo>/</mo> <mo>Δ</mo> <mi>η</mi> </mrow> </semantics></math> scaled by <math display="inline"><semantics> <msub> <mi>S</mi> <mo>⊥</mo> </msub> </semantics></math> from <math display="inline"><semantics> <mi mathvariant="italic">pp</mi> </semantics></math> and Au-Au collisions. The horizontal line at ∼165 MeV is the universal hadronization temperature [<a href="#B30-universe-04-00096" class="html-bibr">30</a>,<a href="#B40-universe-04-00096" class="html-bibr">40</a>].</p>
Full article ">Figure 9
<p><math display="inline"><semantics> <mrow> <mi>ε</mi> <mo>/</mo> <msup> <mi>T</mi> <mn>4</mn> </msup> </mrow> </semantics></math> versus <math display="inline"><semantics> <mrow> <mi>T</mi> <mo>/</mo> <msub> <mi>T</mi> <mi>c</mi> </msub> </mrow> </semantics></math> from CSPM (red circles) and Lattice QCD (blue dash line) for 2 + 1 flavor and p4 action [<a href="#B20-universe-04-00096" class="html-bibr">20</a>].</p>
Full article ">Figure 10
<p>(<b>a</b>) <math display="inline"><semantics> <mrow> <mi>η</mi> <mo>/</mo> <mi>s</mi> </mrow> </semantics></math> as a function of temperature T using Equation (<a href="#FD25-universe-04-00096" class="html-disp-formula">25</a>) for <math display="inline"><semantics> <msqrt> <mi>s</mi> </msqrt> </semantics></math> = 0.9, 2.76, 7 and 13 TeV. The lower bound shown is given by the AdS/CFT [<a href="#B45-universe-04-00096" class="html-bibr">45</a>]. For comparison purposes the results from Au-Au and Pb-Pb at <math display="inline"><semantics> <msub> <msqrt> <mi>s</mi> </msqrt> <mrow> <mi>N</mi> <mi>N</mi> </mrow> </msub> </semantics></math> = 200 GeV and 2.76 TeV respectively are also shown as solid squares for 0–5 % centrality [<a href="#B19-universe-04-00096" class="html-bibr">19</a>]. <math display="inline"><semantics> <mrow> <mi>η</mi> <mo>/</mo> <mi>s</mi> </mrow> </semantics></math> estimates for wQGP and sQGP are shown as dotted blue and green lines respectively [<a href="#B43-universe-04-00096" class="html-bibr">43</a>]. (<b>b</b>) The trace anomaly <math display="inline"><semantics> <mrow> <mo>Δ</mo> <mo>=</mo> <mrow> <mo>(</mo> <mi>ε</mi> <mo>−</mo> <mn>3</mn> <mi>p</mi> <mo>)</mo> </mrow> <mo>/</mo> <msup> <mi>T</mi> <mn>4</mn> </msup> </mrow> </semantics></math> vs. temperature. Blue open squares are from HotQCD Collaboration [<a href="#B46-universe-04-00096" class="html-bibr">46</a>]. Black stars are from Wuppertal Collaboration [<a href="#B47-universe-04-00096" class="html-bibr">47</a>]. The CSPM results are obtained as <math display="inline"><semantics> <mrow> <mo>Δ</mo> <mo>=</mo> <mn>1</mn> <mo>/</mo> <mo>(</mo> <mi>η</mi> <mo>/</mo> <mi>s</mi> <mo>)</mo> </mrow> </semantics></math> [<a href="#B19-universe-04-00096" class="html-bibr">19</a>]. The black dashed line both in (<b>a</b>,<b>b</b>) corresponds to extrapolation from CSPM at higher temperatures.</p>
Full article ">
Back to TopTop