[go: up one dir, main page]

 
 
Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (69)

Search Parameters:
Keywords = Palaearctic

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 2208 KiB  
Article
The Final Pliocene and Early Pleistocene Faunal Dispersals from East to Europe and Correlation of the Villafranchian Biochronology between Eastern and Western Europe
by Nikolai Spassov
Quaternary 2024, 7(4), 43; https://doi.org/10.3390/quat7040043 - 11 Oct 2024
Viewed by 499
Abstract
The Villafranchian stage in the mammal fauna evolution in Eurasia (ca. 3.6/3.4 Ma—ca. 1.2 Ma) is associated with the beginning of the formation of the modern appearance of the mammal megafauna of today’s Palaearctic. The cooling and the aridification starting with the beginning [...] Read more.
The Villafranchian stage in the mammal fauna evolution in Eurasia (ca. 3.6/3.4 Ma—ca. 1.2 Ma) is associated with the beginning of the formation of the modern appearance of the mammal megafauna of today’s Palaearctic. The cooling and the aridification starting with the beginning of the Early Pleistocene gradually eliminated the quasi-tropical appearance of the Late Neogene landscapes and fauna of Europe. The time from the Mid-Piacenzian (ca. 3.3–3.0 Ma) to the end of the Early Pleistocene was a time of particularly intense dispersal of species, of faunal exchange between Eurasia and Africa, and of the entry of new mammals into Europe from the East. That is why the correlation of the biochronology of the Villafranchian fauna between Eastern and Western Europe is of particular interest. Accumulated data make possible a more precise correlation of these faunas today. A correlation of selected Eastern European localities with established faunal units and MNQ zones is made in the present work. Usually, the dispersal from Asia or from E. Europe to W. Europe is instantaneous from a geological point of view, but in a number of cases, reaching W. Europe happens later, or some species known to be from Eastern Europe do not reach Western Europe. The main driving forces of the faunal dispersals, which are the key bioevents in the faunal formation, are climate changes, which in turn, affect the environment. We can summarize the following more significant Villafranchian bioevents in Europe: the End Pliocene (Early Villafranchian: MNQ16) turnover related to the first appearance of a number of taxa, for example, felids, canids, proboscideans, and ungulates; the Quaternary beginning turnover. Correlated with this are the beginning of the Middle Villafranchian, which should be placed at about 2.6 Ma; the Coste San Giacomo faunal unit turnover (Senèze and Slivnitsa localities should be included here, and the FU itself, at the very beginning of the late Villafranchian (=MNQ18a)); the Pachycrocuta event at the very beginning of the Olivola FU; and the events related to the Late Villafranchian/Epivillafranchian bounfary. Full article
Show Figures

Figure 1

Figure 1
<p>Canids discussed in paragraph 1.1. (<b>a</b>): m1 of “<span class="html-italic">Canis</span>” from Vialette in occlusal view (cast of mandible 2003-5-401-VIA, Crozatier Museum of Le Puy-en-Velay). The arrow shows the hypoconid and the metaconid (though heavily worn) are not fused at their bases. (<b>b</b>–<b>d</b>): <span class="html-italic">Canis neschersensis</span> (MNHN.F.PET2010) stored in the coll. of the Laboratory. of Paleontology of the National Museum of Natural History, Paris, in occlusal, labial, and lingual views.</p>
Full article ">Figure 2
<p>Correlation of the Villafranchian biochronology between Eastern and Western Europe (geological age and biochronological position of selected Eastern European Villafranchian localities). The biochronology table and the correlation between the faunal units and the MNQ zones is based on Nomade et al. [<a href="#B18-quaternary-07-00043" class="html-bibr">18</a>] with some original modifications. The additional column on the far right presents the position of the Eastern European localities, discussed in <a href="#sec2dot3-quaternary-07-00043" class="html-sec">Section 2.3</a>. Abbreviations of polarity subchrons: Reu.—Réunion; Mamm.—Mammoth. Localities abbreviations: CER—Cernãteşti; TUL—Tulucesti; RSK—Ripa Skortselskaya; BOS—Bossilkovtsi; TSO—Tsotylio; DFN—Dafnero; SESK—Sesklo; VAR – Varshets; VLKS—Volakas; SLIV—Slivnitsa; LaPI—La Pietris; GER—Gerakarou; KARN—Karnezeika; VGRA—Vale Graunceanului; KRIM—Krimni; TRLI—Trlica; APOL—Apollonia.</p>
Full article ">
15 pages, 1740 KiB  
Article
Diversity and Interactions between Picobiine Mites and Starlings
by Bozena Sikora, Jakub Z. Kosicki, Milena Patan, Iva Marcisova, Martin Hromada and Maciej Skoracki
Animals 2024, 14(17), 2517; https://doi.org/10.3390/ani14172517 - 29 Aug 2024
Viewed by 354
Abstract
The subfamily Picobiinae (Acariformes: Syringophilidae) comprises obligate and permanent parasites of birds found exclusively in the quills of contour feathers. We studied associations of picobiine mites with birds of the family Sturnidae (Aves: Passeriformes) across the Palaearctic, Afrotropical, Oriental, and Oceanian zoogeographical regions. [...] Read more.
The subfamily Picobiinae (Acariformes: Syringophilidae) comprises obligate and permanent parasites of birds found exclusively in the quills of contour feathers. We studied associations of picobiine mites with birds of the family Sturnidae (Aves: Passeriformes) across the Palaearctic, Afrotropical, Oriental, and Oceanian zoogeographical regions. Among the 414 examined bird individuals belonging to 44 species (35.2% of all sturnids), 103 individuals from 24 species (54.5% of examined species) were parasitised by quill mites. The diversity of mites was represented by five species, including one newly described, Picobia malayi Patan and Skoracki sp. n. Statistical analysis of the Picobiinae–Sturnidae bipartite network demonstrated a low connectance value (Con = 0.20) and high modularity, with significant differences in the H2′ specialisation index compared to null model values. The network structure, characterised by four distinct modules, highlighted the specificity and limited host range of the Picobiinae–Sturnidae associations. The distribution of Picobia species among starlings was congruent with the phylogeny of their hosts, with different mites parasitising specific clades of starlings. Additionally, the findings suggest that the social and breeding behaviours of starlings influence quite a high prevalence. Finally, our studies support the validity of museum collections to study these parasitic interactions. Full article
(This article belongs to the Special Issue Diversity and Interactions Between Mites and Vertebrates)
Show Figures

Figure 1

Figure 1
<p><span class="html-italic">Picobia malayi</span> Patan and Skoracki sp. n., female. (<b>A</b>)—dorsal view; (<b>B</b>)—ventral view.</p>
Full article ">Figure 2
<p><span class="html-italic">Picobia malayi</span> Patan and Skoracki sp. n., female. (<b>A</b>)—hypostomal apex; (<b>B</b>)—peritreme; (<b>C</b>)—propodonotal seta <span class="html-italic">si</span>; (<b>D</b>)—genito-anal region in ventral view; (<b>E</b>)—tarsus III with claws.</p>
Full article ">Figure 3
<p>Bipartite network graph of interactions between Picobiine mites (<b>left</b>) and their Starling hosts (<b>right</b>).</p>
Full article ">Figure 4
<p>Modules of the Picobiine mites—Starlings communities. The intensity of the colour of each square indicates the strength of the interaction between particular parasite species (horizontal axis) and their host species (vertical axis).</p>
Full article ">
27 pages, 11103 KiB  
Article
Resolving the Taxonomy of Mountain Syrphidae (Diptera) in the Iberian Peninsula: The Species Group of Cheilosia melanura Becker, 1894
by Iván Ballester-Torres, Zorica Nedeljković, Pablo Aguado-Aranda, Ante Vujić, María Ángeles Marcos-García and Antonio Ricarte
Insects 2024, 15(9), 640; https://doi.org/10.3390/insects15090640 - 26 Aug 2024
Viewed by 656
Abstract
The largest genus of Palaearctic Syrphidae, Cheilosia Meigen, 1822 (Syrphidae: Rhingiini), is currently under revision in the Ibero-Balearic region (Iberian Peninsula + Balearic Islands). Prior to this study, various species groups with putative phylogenetic support were defined for this genus of complex taxonomy. [...] Read more.
The largest genus of Palaearctic Syrphidae, Cheilosia Meigen, 1822 (Syrphidae: Rhingiini), is currently under revision in the Ibero-Balearic region (Iberian Peninsula + Balearic Islands). Prior to this study, various species groups with putative phylogenetic support were defined for this genus of complex taxonomy. The group of Cheilosia melanura Becker, 1894 includes species distributed all over Europe, with some of these species being similar each other in both morphology and genetics. After recent fieldwork in different Iberian localities and consultation of entomological collections, a new species from Sierra Nevada (Granada, Spain) was uncovered, described, and illustrated. Data on diagnostic characters, intraspecific variability, and adult biology were also provided. Maximum likelihood analyses of the fragment “C” of the 5′ end of the cytochrome c oxydase subunit I (COI-5′) and complete COI-5′ were performed to explore and support morphological species concepts within the group. The Spanish-endemic Cheilosia andalusiaca Torp Pedersen, 1971 is recognised here to be part of the C. melanura group based both on morphological and molecular evidence. Cheilosia carbonaria Egger, 1860 and Cheilosia cynocephala Loew, 1840 from the Iberian Peninsula are reported for the first time based on specimens originating in the Spanish Pyrenees. An identification key for the Iberian species of the C. melanura group is provided. Full article
(This article belongs to the Section Insect Systematics, Phylogeny and Evolution)
Show Figures

Figure 1

Figure 1
<p>Map of the localities (red circles) sampled between 2021 and 2024 in the Iberian Peninsula and the Balearic Islands.</p>
Full article ">Figure 2
<p>Location of the Sierra Nevada and distribution of the sampled localities (black circles) in the present <span class="html-italic">Cheilosia</span> study. The outer black line represents the border of the Sierra Nevada Natural Park, whilst the darkened area corresponds with the National Park area.</p>
Full article ">Figure 3
<p>Maximum Likelihood tree based on COI-5′ of Iberian and European specimens of the <span class="html-italic">Cheilosia melanura</span> group. DNA vouchers for own sequences are highlighted in bold. DNA vouchers for the new species are grouped in a blue rectangle. Bootstrap values of &gt;50 are shown near nodes. Branch lengths are measured in numbers of substitutions per site.</p>
Full article ">Figure 4
<p>Maximum Likelihood tree based on fragment “C” of COI-5′ of Iberian and European specimens of the <span class="html-italic">Cheilosia melanura</span> group. DNA vouchers for own sequences are highlighted in bold. DNA vouchers for the new species and <span class="html-italic">Cheilosia andalusiaca</span> are each grouped in a blue rectangle. Bootstrap values of &gt;50 are shown near nodes. Branch lengths are measured in numbers of substitutions per site.</p>
Full article ">Figure 5
<p><span class="html-italic">Cheilosia triamilia</span> Ballester-Torres, Ricarte, and Nedeljković sp. nov. (<b>A</b>) Holotype, male, dorsal view. (<b>B</b>) Holotype, male, lateral view. (<b>C</b>) Paratype (CEUA00114370), female, dorsal view. (<b>D</b>) Paratype, female, lateral view. Scale bars: (<b>A</b>,<b>C</b>) 2.5 mm; (<b>B</b>,<b>D</b>) 2.5 mm.</p>
Full article ">Figure 6
<p><span class="html-italic">Cheilosia triamilia</span> Ballester-Torres, Ricarte, and Nedeljković sp. nov. (<b>A</b>) Holotype, male, antenna, lateral view. (<b>B</b>) Paratype, female, antenna, lateral view. Scale bars: (<b>A</b>,<b>B</b>) 0.25 mm.</p>
Full article ">Figure 7
<p><span class="html-italic">Cheilosia triamilia</span> Ballester-Torres, Ricarte, and Nedeljković sp. nov.; measurements of the described characters (<b>A</b>) Paratype, female. (<b>B</b>) Holotype, male. Abbreviations: bl = body length; bw = body width; ec = eye contiguity length; ft = frontal triangle length; wl = wing length. Scale bars = (<b>A</b>) 2.5 mm; (<b>B</b>) 1 mm.</p>
Full article ">Figure 8
<p><span class="html-italic">Cheilosia triamilia</span> sp. nov., male genitalia, holotype. (<b>A</b>) Hypandrium with right gonostylus, lateral view. (<b>B</b>) Epandrium with right surstylus, lateral view. (<b>C</b>) Epandrium, dorsal view. Abbreviations: dl: dorsal lobe of gonostylus; s la: surstylus lamella; vl: ventral lobe of gonostylus. Scale bar (<b>A</b>–<b>C</b>): 250 µm.</p>
Full article ">Figure 9
<p>Distribution of <span class="html-italic">Cheilosia triamilia</span> sp. nov. in the Sierra Nevada mountain range (white dots). The outer black line represents the limits of the Natural Park of Sierra Nevada, whilst the darkened area corresponds with the National Park area.</p>
Full article ">Figure 10
<p><span class="html-italic">Cheilosia andalusiaca</span> Torp Pedersen, 1971, male genitalia (based on CEUA00016731). (<b>A</b>) Hypandrium with the right gonostylus, lateral view. (<b>B</b>) Epandrium with the right surstylus, lateral view. Abbreviations: dl: dorsal lobe of the gonostylus; s la: surstylus lamella; vl: ventral lobe of the gonostylus. Scale bar: (<b>A</b>,<b>B</b>) 250 µm.</p>
Full article ">Figure 11
<p><span class="html-italic">Cheilosia carbonaria</span> from Sant Joan de Toran, Lleida, Spain. (<b>A</b>) Female, dorsal view. (<b>B</b>) Female, lateral view. Scale bar: (<b>A</b>,<b>B</b>) 2.5 mm.</p>
Full article ">Figure 12
<p><span class="html-italic">Cheilosia cynocephala</span> from Portillo de Eraize, Navarra, Spain. (<b>A</b>) Male, lateral view. (<b>B</b>) Female, dorsal view. Scale bars: (<b>A</b>,<b>B</b>) 2.5 mm.</p>
Full article ">Figure 13
<p>Heads of species of the <span class="html-italic">Cheilosia melanura</span> group in posterior view. (<b>A</b>). <span class="html-italic">Cheilosia bergenstammi</span>, male (<b>B</b>). <span class="html-italic">Cheilosia triamilia</span> sp. nov., male. Red arrows indicate the presence of hairs (<b>C</b>). <span class="html-italic">Cheilosia bracusi,</span> male. Scale bars: (<b>A</b>,<b>B</b>) 0.5 mm; (<b>C</b>) 0.75 mm.</p>
Full article ">Figure 14
<p>Hind legs of species of the <span class="html-italic">Cheilosia melanura</span> group to show the colour and pilosity of the tibia, anterior view (except for (<b>C</b>), posterior view; (<b>E</b>), dorsal view) (<b>A</b>). <span class="html-italic">Cheilosia fraterna,</span> male. (<b>B</b>). <span class="html-italic">Cheilosia triamilia</span> sp. nov., female. (<b>C</b>). <span class="html-italic">Cheilosia triamilia</span> sp. nov., female. (<b>D</b>). <span class="html-italic">Cheilosia bracusi,</span> male. (<b>E</b>). <span class="html-italic">Cheilosia bracusi,</span> male. Red arrows indicate the presence of long hairs. Scale bars: (<b>A</b>,<b>E</b>) 0.75 mm; (<b>B</b>,<b>C</b>) 0.5 mm; (<b>D</b>) 1 mm.</p>
Full article ">Figure 15
<p>Hind legs of <span class="html-italic">Cheilosia andalusiaca,</span> highlighting the variability in the tibia colour<span class="html-italic">,</span> anterior view. (<b>A</b>). Male with a completely black tibia. (<b>B</b>). Female with a basally orange tibia. (<b>C</b>). Male with an orange tibia at both ends. Scale bars: (<b>A</b>–<b>C</b>) 0.75 mm.</p>
Full article ">
11 pages, 6831 KiB  
Article
An Integrative Analysis of the Specific Distinctness of Valvata (Cincinna) ambigua Westerlund, 1873 and Valvata (Cincinna) piscinalis (Müller, 1774) (Gastropoda: Valvatidae)
by Maibritt Schäffer and Bernhard Hausdorf
Diversity 2024, 16(7), 419; https://doi.org/10.3390/d16070419 - 18 Jul 2024
Viewed by 617
Abstract
Valvata (Cincinna) piscinalis (Müller, 1774) is a widespread and variable Palaearctic freshwater snail species. Some authors have separated more depressed forms with a wider umbilicus as a distinct species, Valvata (Cincinna) ambigua Westerlund, 1873. The latter species was described [...] Read more.
Valvata (Cincinna) piscinalis (Müller, 1774) is a widespread and variable Palaearctic freshwater snail species. Some authors have separated more depressed forms with a wider umbilicus as a distinct species, Valvata (Cincinna) ambigua Westerlund, 1873. The latter species was described from Scandinavia and has also been reported from Siberia and Kazakhstan and more recently from Central Europe. We conducted an integrative study of the delimitation and relationships of V. ambigua and V. piscinalis using both morphometric and molecular genetic analyses. Analyses of the morphometric data did not reveal differentiation into distinct clusters. Rather, the shell characteristics used to distinguish V. ambigua and V. piscinalis showed continuous variation. There is little variability in mitochondrial DNA sequences in the V. piscinalis complex. A median-joining network based on cytochrome oxidase sequences showed that the morphological character states supposedly characteristic of V. ambigua and V. piscinalis did not correlate with the genetic relationships of the individuals studied. We therefore consider V. ambigua to be synonymous with V. piscinalis. Full article
(This article belongs to the Section Animal Diversity)
Show Figures

Figure 1

Figure 1
<p>Shells of specimens of the <span class="html-italic">Valvata piscinalis</span> complex. (<b>a</b>) Specimen corresponding to <span class="html-italic">V. piscinalis</span> sensu Vinarski et al. [<a href="#B14-diversity-16-00419" class="html-bibr">14</a>] from the Reitbrooker Sammelgraben in Hamburg-Bergedorf (ZMH 159600). (<b>b</b>) Intermediate specimen from the Untenburger Schleusengraben in Hamburg-Harburg (ZMH 159583). (<b>c</b>) Specimen corresponding to <span class="html-italic">V. ambigua</span> sensu Vinarski et al. [<a href="#B14-diversity-16-00419" class="html-bibr">14</a>] from the Spadenländer Deichsielgraben in Hamburg-Harburg (ZMH 159598). Scale bar = 1 mm.</p>
Full article ">Figure 2
<p>Plots of the shell parameters of specimens of the <span class="html-italic">Valvata piscinalis</span> complex from the Hamburg region and the Ratzeburger See. (<b>a</b>) Shell height (H) versus shell diameter (D). (<b>b</b>) Relative umbilicus width (U/D) versus shell shape (D/H). Specimens from the Reitbrooker Sammelgraben in Hamburg-Bergedorf, where both species are said to co-occur syntopically [<a href="#B13-diversity-16-00419" class="html-bibr">13</a>], are highlighted in red.</p>
Full article ">Figure 3
<p>The two best supported NMMs in the space defined by the three principal components most useful for group discrimination (PC4−PC6). The ellipse shows the 95% high-density region for the normal distribution of morphological group 1.</p>
Full article ">Figure 4
<p>Maximum likelihood tree of Valvatidae based on the concatenated partial sequences of COI and 16S rDNA. Species names and extraction voucher numbers are given at the tips of the tree. Newly sequenced individuals are shown in red. Bootstrap support values from the maximum likelihood analysis ≥70 and posterior probabilities from the Bayesian inference analysis ≥0.95 are indicated at the branches.</p>
Full article ">Figure 5
<p>Median-joining network based on the partial COI sequences of specimens of the <span class="html-italic">Valvata piscinalis</span> complex from the Hamburg region (see <a href="#app1-diversity-16-00419" class="html-app">Supplementary Table S2</a> for a list of specimens and GenBank accession numbers). (<b>a</b>) Specimens were classified according to shell shape (D/H). (<b>b</b>) Specimens were classified according to relative umbilicus width (U/D).</p>
Full article ">
21 pages, 18738 KiB  
Article
Diversity and Conservation of Rodents in Saudi Arabia
by Khaled Ahmad Al Malki, Abdul Rahman Al Ghamdi, Faisal Shuraim, Farah Neyaz, Ahmad Al Boug, Sharif Al Jbour, Francesco M. Angelici and Zuhair S. Amr
Diversity 2024, 16(7), 398; https://doi.org/10.3390/d16070398 - 11 Jul 2024
Viewed by 2342
Abstract
The rodents of Saudi Arabia consist of twenty species and twelve genera within four families (Gliridae, Dipodidae, Muridae, and Hystricidae). Details on the past and present distribution of the rodents were included, along with available data on their habitat preference and biology. The [...] Read more.
The rodents of Saudi Arabia consist of twenty species and twelve genera within four families (Gliridae, Dipodidae, Muridae, and Hystricidae). Details on the past and present distribution of the rodents were included, along with available data on their habitat preference and biology. The eastern central part of Saudi Arabia, covering the Tuwiq mountains plateau, including the vicinity of Riyadh, hosts the highest number of rodent species. An analysis of the rodent fauna of Saudi Arabia revealed that they have four major zoogeographical affinities: Palaearctic–Oriental (one species), Afrotropical–Palaearctic (six species), Palaearctic (four species), endemic to Saudi Arabia and Yemen (three species), Afrotropical–Palaearctic–Oriental (three species), and three cosmopolitan species. According to the National Red List, the Euphrates Jerboa, Scarturus euphraticus, is listed as endangered, the Indian Crested Porcupine, Hystrix indica, as near threatened, three further species as data-deficient, while the rest are considered least concern. Full article
(This article belongs to the Section Animal Diversity)
Show Figures

Figure 1

Figure 1
<p>Map of Saudi Arabia showing localities of reported rodents.</p>
Full article ">Figure 2
<p>(<b>A</b>) <span class="html-italic">Eliomys melanurus</span>. (<b>B</b>) <span class="html-italic">Scarturus euphratica</span> (Photo by A. Shehab). (<b>C</b>) <span class="html-italic">Jaculus loftusi</span>. (<b>D</b>) <span class="html-italic">Acomys dimidiatus</span>. (<b>E</b>) <span class="html-italic">Acomys russatus</span> (Photo by B. Rubinic). (<b>F</b>) <span class="html-italic">Gerbillus dasyurus</span> (Photo by A. Shehab).</p>
Full article ">Figure 3
<p>(<b>A</b>) <span class="html-italic">Gerbillus cheesmani</span>. (<b>B</b>) <span class="html-italic">Gerbillus henleyi</span> (Photo by M. Abu Baker). (<b>C</b>) <span class="html-italic">Gerbillus nanus</span>. (<b>D</b>) <span class="html-italic">Gerbillus poecilops</span> (Photo by M. Jordan). (<b>E</b>) <span class="html-italic">Meriones crassus</span>. (<b>F</b>) <span class="html-italic">Meriones libycus</span>. (<b>G</b>) <span class="html-italic">Meriones rex</span> (Photo by R. Wirth). (<b>H</b>) <span class="html-italic">Psammomys obesus</span> (Photo by S. Al Jbour).</p>
Full article ">Figure 4
<p>(<b>A</b>) <span class="html-italic">Sekeetamys calurus</span> (Photo by M. Abu Baker). (<b>B</b>) <span class="html-italic">Rattus rattus</span>. (<b>C</b>) <span class="html-italic">Rattus norvegicus</span>. (<b>D</b>) <span class="html-italic">Mus musculus</span>. (<b>E</b>) <span class="html-italic">Ochromyscus yemeni</span> (Photo by C. Bocos). (<b>F</b>) <span class="html-italic">Hystrix indica</span>.</p>
Full article ">Figure 5
<p>Heat map showing rodent species richness in Saudi Arabia.</p>
Full article ">
14 pages, 17937 KiB  
Article
Anatolia: A Hotspot of Avian Genetic Diversity in the Western Palaearctic
by Tamer Albayrak, Tuğba Tunçel, Pınar Öğe, Dieter Thomas Tietze and Giovanni Forcina
Diversity 2024, 16(6), 339; https://doi.org/10.3390/d16060339 - 11 Jun 2024
Viewed by 963
Abstract
Located at the crossroads of two continents and at the southeastern edge of the Mediterranean Basin, Anatolia was one of the most important Pleistocene glacial refugia in the Western Palaearctic. As part of the Irano-Anatolian, Caucasus and Mediterranean Basin biodiversity hotspots, this region [...] Read more.
Located at the crossroads of two continents and at the southeastern edge of the Mediterranean Basin, Anatolia was one of the most important Pleistocene glacial refugia in the Western Palaearctic. As part of the Irano-Anatolian, Caucasus and Mediterranean Basin biodiversity hotspots, this region is also home to a rich avian community including nearly 400 breeding species. Nevertheless, research addressing the genetic structure and diversity of local bird populations is limited, and information on glacial refugia in this region is still scant, especially when compared to other large Mediterranean peninsulas, namely the Balkan, Italian and Iberian ones. In this study, we contribute to filling this gap by addressing the biogeographic pattern of four common resident songbirds—the Eurasian blue tit (Cyanistes caeruleus), the great tit (Parus major), the Eurasian chaffinch (Fringilla coelebs) and the Eurasian blackbird (Turdus merula)—and one endemic species—the Krüper’s nuthatch (Sitta krueperi)—by amplifying two mitochondrial DNA genes in individuals from Anatolia (n = 329) and comparing their sequences to those of conspecifics from the rest of their distribution range across the western Palaearctic (n = 357) deposited in public databases. The overall genetic structure of these species is consistent with a scenario of isolation for multiple populations in different refugia across Anatolia and subsequent secondary contact in the wake of ice retreat, which makes this region a hotspot of genetic diversity for both widespread and endemic avian species. Full article
(This article belongs to the Section Animal Diversity)
Show Figures

Figure 1

Figure 1
<p>Sampling localities. 1. Kazdağları; 2. Lesvos Island; 3. Spil Mountain; 4. Adrasan; 5. Beydağları; 6. Burdur; 7. Kartalkaya; 8. Küredağları; 9. Yozgat; 10. Aladağlar; 11. Artvin; 12. Caucasus. See <a href="#app1-diversity-16-00339" class="html-app">Supplementary S1</a> for coordinates and other details. The main mountain ranges are also indicated.</p>
Full article ">Figure 2
<p>Percentage of COI and ND2 haplotypes private to Anatolia, found in Anatolia and found in other Western Palaearctic regions (i.e., non-private to Anatolia) and not found in Anatolia in Eurasian blue tit, great tit, Eurasian chaffinch, Eurasian blackbird and Krüper’s nuthatch (<b>left</b> to <b>right</b>). Numbers on top of the columns indicate sample size within (<b>left</b>) and outside (<b>right</b>) Anatolia. Pictures not to scale.</p>
Full article ">Figure 3
<p>COI and ND2 (top and bottom left, respectively) median-joining network of target species: (<b>a</b>) Eurasian blue tit; (<b>b</b>) great tit; (<b>c</b>) Eurasian chaffinch; (<b>d</b>) Eurasian blackbird; (<b>e</b>) Krüper’s nuthatch. A scale to infer the number of sequences (i.e., individuals) for each haplotype (1–308) is provided; mutational steps are indicated by hatch marks. See <a href="#app1-diversity-16-00339" class="html-app">Supplementary S1</a> for coordinates and other details.</p>
Full article ">Figure 4
<p>Proportion of private- and non-private-to-Anatolia COI and ND2 haplotypes per species and sampling locality. Sample sizes per locus and locality are also indicated (see <a href="#app1-diversity-16-00339" class="html-app">Supplementary S1</a> for coordinates and other details). (<b>a</b>) Eurasian blue tit; (<b>b</b>) great tit; (<b>c</b>) Eurasian chaffinch; (<b>d</b>) Eurasian blackbird; (<b>e</b>) Krüper’s nuthatch. Pictures not to scale.</p>
Full article ">Figure 5
<p>Extended Bayesian Skyline Plots (EBSPs) based on COI and ND2 of Anatolian populations of the five species included in this study: (<b>a</b>) Eurasian blue tit; (<b>b</b>) great tit; (<b>c</b>) Eurasian chaffinch; (<b>d</b>) Eurasian blackbird; (<b>e</b>) Krüper’s nuthatch. Median estimates of effective population size (Ne) are given. The dotted line and the grey area delimit the 95% central posterior density (CPD) intervals. The <span class="html-italic">x</span>-axis represents time from the present in million years (Myr), while the blue line indicates the Last Glacial Maximum. Panels on the left evidence mismatch distributions to expected frequencies under the demographic expansion model (top: COI; bottom ND2).</p>
Full article ">
40 pages, 17749 KiB  
Article
The Diversity of Parasitoids and Their Role in the Control of the Siberian Moth, Dendrolimus sibiricus (Lepidoptera: Lasiocampidae), a Major Coniferous Pest in Northern Asia
by Natalia I. Kirichenko, Alexander A. Ageev, Sergey A. Astapenko, Anna N. Golovina, Dmitry R. Kasparyan, Oksana V. Kosheleva, Alexander V. Timokhov, Ekaterina V. Tselikh, Evgeny V. Zakharov, Dmitrii L. Musolin and Sergey A. Belokobylskij
Life 2024, 14(2), 268; https://doi.org/10.3390/life14020268 - 17 Feb 2024
Cited by 1 | Viewed by 1881
Abstract
The Siberian moth, Dendrolimus sibiricus Tschetv., 1908 (Lepidoptera: Lasiocampidae) is a conifer pest that causes unprecedented forest mortality in Northern Asia, leading to enormous ecological and economic losses. This is the first study summarizing data on the parasitoid diversity and parasitism of this [...] Read more.
The Siberian moth, Dendrolimus sibiricus Tschetv., 1908 (Lepidoptera: Lasiocampidae) is a conifer pest that causes unprecedented forest mortality in Northern Asia, leading to enormous ecological and economic losses. This is the first study summarizing data on the parasitoid diversity and parasitism of this pest over the last 118 years (1905–2022). Based on 860 specimens of freshly reared and archival parasitoids, 16 species from two orders (Hymenoptera and Diptera) were identified morphologically and/or with the use of DNA barcoding. For all of them, data on distribution and hosts and images of parasitoid adults are provided. Among them, the braconid species, Meteorus versicolor (Wesmael, 1835), was documented as a parasitoid of D. sibiricus for the first time. The eastern Palaearctic form, Aleiodes esenbeckii (Hartig, 1838) dendrolimi (Matsumura, 1926), status nov., was resurrected from synonymy as a valid subspecies, and a key for its differentiation from the western Palaearctic subspecies Aleiodes esenbeckii ssp. esenbecki is provided. DNA barcodes of 11 parasitoid species from Siberia, i.e., nine hymenopterans and two dipterans, represented novel records and can be used for accurate molecular genetic identification of species. An exhaustive checklist of parasitoids accounting for 93 species associated with D. sibirisus in northern Asia was compiled. Finally, the literature and original data on parasitism in D. sibiricus populations for the last 83 years (1940–2022) were analysed taking into account the pest population dynamics (i.e., growth, outbreak, decline, and depression phases). A gradual time-lagged increase in egg and pupal parasitism in D. sibiricus populations was detected, with a peak in the pest decline phase. According to long-term observations, the following species are able to cause significant mortality of D. sibiricus in Northern Asia: the hymenopteran egg parasitoids Telenomus tetratomus and Ooencyrtus pinicolus; the larval parasitoids Aleiodes esenbeckii sp. dendrolimi, Cotesia spp., and Glyptapanteles liparidis; and the dipteran pupal parasitoids Masicera sphingivora, Tachina sp., and Blepharipa sp. Their potential should be further explored in order to develop biocontrol programs for this important forest pest. Full article
(This article belongs to the Special Issue Feature Papers in Animal Science: 2nd Edition)
Show Figures

Figure 1

Figure 1
<p>Modern range of <span class="html-italic">Dendrolimus sibiricus</span>, the most recent outbreaks and sampled sites in Northern Asia. The pest’s range is modified from Rhozkov [<a href="#B3-life-14-00268" class="html-bibr">3</a>] and Kononov et al. [<a href="#B28-life-14-00268" class="html-bibr">28</a>]. Rep.—Republic. The map was generated using ArcGIS 9.3 [<a href="#B29-life-14-00268" class="html-bibr">29</a>].</p>
Full article ">Figure 2
<p>Sampled foci of <span class="html-italic">Dendrolimus sibiricus</span> in Siberia in 2018–2022. (<b>A</b>) Significantly defoliated fir forest, Kachug (Irkutsk Province), June 2021; (<b>B</b>) sampling of larvae emerging from litter, Irbei (Krasnoyarsk Territory), end of April 2019; (<b>C</b>) aerial view of the foci in the mixed forest predominated by fir, <span class="html-italic">Abies sibirica</span>, Tomsk Province, July 2018; and (<b>D</b>) the helicopter used for accessing infested plots. Photos: A.A. Ageev, S.A. Astapenko.</p>
Full article ">Figure 3
<p>Sampling of <span class="html-italic">Dendrolimus sibiricus</span> specimens in the forest: (<b>A</b>) eggs, July 2022; (<b>B</b>,<b>C</b>) collecting young larvae by beating tree stems, August 2019; (<b>D</b>,<b>E</b>) collecting overwintering late instar larvae (shown by arrows) from the litter, January 2020; and (<b>F</b>,<b>G</b>) collecting parasitized late instar larvae found on tree stems, June 2022. Photos: A.A. Ageev, S.A. Astapenko. Images B and D are published with permission from the photographed coauthors (S.A. Astapenko and A.N. Golovina).</p>
Full article ">Figure 4
<p>Obtaining parasitoids from different ontogenetic stages of <span class="html-italic">Dendrolimus sibiricus</span> in laboratory conditions: (<b>A</b>) parasitoids of <span class="html-italic">D. sibiricus</span> eggs; (<b>B</b>,<b>C</b>) parasitoids exploring and infesting fresh eggs of <span class="html-italic">D. sibiricus</span>; (<b>D</b>,<b>E</b>) rearing larvae of <span class="html-italic">D. sibiricus</span> and sampling the parasitized specimens; and (<b>F</b>–<b>H</b>) keeping <span class="html-italic">D. sibiricus</span> pupae for monitoring parasitoids emergence. Photos: A.A. Ageev.</p>
Full article ">Figure 5
<p>Maximum likelihood tree showing the relatedness of tachinids attacking <span class="html-italic">Dendrolimus sibiricus</span> in Northern Asia with closest neighbours in BOLD (borrowed sequences are indicated in blue); the outgroup is indicated in orange. Each specimen is provided with a BOLD process ID (beginning with DSPAR for our data), followed by species name, country, and region. Bootstrap values &gt; 70 are indicated next to the corresponding branches. BIN numbers are given next to each cluster. The adult image is provided for the most frequently recorded tachinid species in Siberia.</p>
Full article ">Figure 6
<p>Maximum likelihood trees showing the relatedness of hymenopteran parasitoids from three superfamilies: (<b>A</b>) Ichneumonoidea, (<b>B</b>) Chalcidoidea, and (<b>C</b>) Platygastroidea, attacking <span class="html-italic">Dendrolimus sibiricus</span> in Northern Asia, with closest neighbours in BOLD. Borrowed sequences are highlighted in blue; the outgroup is indicated in orange. Each specimen is indicated by a BOLD process number, followed by species name, country, and region. Next to the clusters, BINs and family names are provided. n/a—not assignable (not possible to assign BIN in BOLD as the sequences are short, i.e., &lt;430 bp). Bootstrap values &gt;70 are indicated next to the corresponding branches. The adult images are shown for some frequently recorded species in Siberia. Abbreviation: Province—Province, Ter.—<span class="html-italic">Territory</span>, spp. d.—subspecies <span class="html-italic">dendrolimi</span>, spp. e.—subspecies <span class="html-italic">esenbeckii</span>; families: Trichogram.—Trichogrammatidae, Per.—Perilampidae, Pterom.—Pteromalidae.</p>
Full article ">Figure 7
<p>Parasitoids from the family Ichneumonidae, (<b>A</b>,<b>C</b>,<b>E</b>,<b>G</b>) lateral view and (<b>B</b>,<b>D</b>,<b>F</b>,<b>H</b>) dorsal view. (<b>A</b>,<b>B</b>) <span class="html-italic">Hyposoter validus</span> (Pfankuch) (Campopleginae), Tomsk Province; (<b>C</b>,<b>D</b>) <span class="html-italic">Iseropus stercorator</span> (Fabricius) (Pimplinae), Irkutsk Province; (<b>E</b>,<b>F</b>) <span class="html-italic">Habronyx heros</span> (Wesmael) (Anomaloninae), Krasnoyarsk Territory; and (<b>G</b>,<b>H</b>) <span class="html-italic">Therion circumflexum</span> (Linnaeus) (Anomaloninae), Krasnoyarsk Territory. Photos: S.A. Belokobylskij.</p>
Full article ">Figure 8
<p>Parasitoids from the family Braconidae, (<b>A</b>,<b>C</b>) lateral view and (<b>B</b>,<b>D</b>) dorsal view. (<b>A</b>,<b>B</b>) <span class="html-italic">Aleiodes esenbeckii</span> (Hartig) ssp. <span class="html-italic">dendrolimi</span> (Matsumura) (Rogadinae), Tomsk Province and (<b>C</b>,<b>D</b>) <span class="html-italic">Meteorus versicolor</span> (Wesmael) (Euphorinae), Irkutsk Province. Photos: S.A. Belokobylskij.</p>
Full article ">Figure 9
<p>Parasitoid <span class="html-italic">Aleiodes esenbeckii</span> ssp. <span class="html-italic">dendrolimi</span> (Matsumura) (Rogadinae), Tomsk Province: (<b>A</b>) body, dorsal view; (<b>B</b>) head, lateral view; (<b>C</b>) head, front view; (<b>D</b>) head, dorsal view; (<b>E</b>) palpi; (<b>F</b>) spurs of hind tibia; (<b>G</b>) mesosoma, dorsal view; (<b>H</b>) mesosoma, lateral view; (<b>I</b>) hind leg; and (<b>J</b>) claw of hind tarsus. Photos: S.A. Belokobylskij.</p>
Full article ">Figure 10
<p>Parasitoid <span class="html-italic">Aleiodes esenbeckii</span> (Hartig, 1838) ssp. <span class="html-italic">dendrolimi</span> (Matsumura) (Rogadinae), Tomsk Province: (<b>A</b>) wings; (<b>B</b>) metasoma, dorsal view; (<b>C</b>) metasoma, lateral view; (<b>D</b>) apex of metasoma and ovipositor, lateral view; and (<b>E</b>) coxa and femur of hind leg. Photos: S.A. Belokobylskij.</p>
Full article ">Figure 11
<p>Parasitoids from the family Braconidae: (<b>A</b>,<b>C</b>) dorsal view and (<b>B</b>,<b>D</b>) lateral view. (<b>A</b>,<b>B</b>) <span class="html-italic">Cotesia ordinaria</span> (Ratzeburg) (Microgastrinae), Krasnoyarsk Territory and (<b>C</b>,<b>D</b>) <span class="html-italic">Glyptapanteles liparidis</span> (Bouché) (Microgastrinae), Irkutsk Province. Photos: S.A. Belokobylskij.</p>
Full article ">Figure 12
<p>Parasitoids from the superfamily Chalcidoidea: (<b>A</b>,<b>C</b>) lateral view; (<b>B</b>,<b>D</b>) dorsal view; and (<b>E</b>,<b>F</b>) wings. (<b>A</b>,<b>B</b>) <span class="html-italic">Perilampus nitens</span> Walker (Perilampidae), Irkutsk Province and (<b>C</b>–<b>F</b>) <span class="html-italic">Pachyneuron solitarium</span> (Hartig) (Pteromalidae), ibidem. Photos: S.A. Belokobylskij.</p>
Full article ">Figure 13
<p>Parasitoids from the superfamily Chalcidoidea and Platygastroidea: (<b>A</b>,<b>D</b>) lateral view and (<b>B</b>,<b>C</b>,<b>E</b>) dorsal view. (<b>A</b>,<b>B</b>) <span class="html-italic">Ooencyrtus pinicolus</span> (Matsumura) (Encyrtidae), Irkutsk Province; (<b>C</b>) <span class="html-italic">Trichogramma dendrolimi</span> Matsumura (Trichogrammatidae); and (<b>D</b>,<b>E</b>) <span class="html-italic">Telenomus tetratomus</span> (Thomson) (Scelionidae), Irkutsk Province. Photos: S.A. Belokobylskij (<b>A</b>,<b>B</b>), E.V. Tselikh (<b>C</b>), and A.V. Timokhov (<b>D</b>,<b>E</b>).</p>
Full article ">Figure 14
<p>Parasitoid <span class="html-italic">Telenomus tetratomus</span> (Thomson, 1861) (Scelionidae), Irkutsk Province. (<b>A</b>) head, front view; (<b>B</b>) head, dorsal view; (<b>C</b>) head, lateral view; (<b>D</b>) antenna; (<b>E</b>) mesosoma, lateral view; (<b>F</b>) mesosoma, dorsal view; and (<b>G</b>) metasoma, dorsal view. Photos: A.V. Timokhov.</p>
Full article ">Figure 15
<p>Parasitoids from the family Tachinidae: (<b>A</b>,<b>C</b>) dorsal view and (<b>B</b>,<b>D</b>) lateral view. (<b>A</b>,<b>B</b>) <span class="html-italic">Exorista larvarum</span> (Linnaeus) (Exoristinae) and (<b>C</b>,<b>D</b>) <span class="html-italic">Masicera sphingivora</span> (Robineau-Desvoidy) (Exoristinae). Photos: S.A. Belokobylskij.</p>
Full article ">Figure 16
<p>Hymenopteran parasitoids associated with <span class="html-italic">Dendrolimus sibiricus</span> in Northern Asia based on the literature data and our records. The number of parasitoid species is provided in brackets next to each superfamily and family; PL.—Platygastroidea, Trichogram.—Trichogrammatidae.</p>
Full article ">Figure 17
<p>Dipteran parasitoids trophically associated with the Siberian moth, <span class="html-italic">Dendrolimus sibiricus</span>, in Northern Asia based on the literature data and our records. The number of parasitoid species is given in brackets next to the superfamily and family name.</p>
Full article ">Figure 18
<p>Relative parasitism (%) of eggs (<b>A</b>), larvae (<b>B</b>), and pupae (<b>C</b>) in <span class="html-italic">Dendrolimus sibiricus</span> populations during the growth, outbreak, decline, and depression phases in Northern Asia in the last 83 years (1940–2022). R<sup>2</sup> values indicated in red are statistically significant at <span class="html-italic">p</span> &lt; 0.001. The bars with different letters are significantly different (<span class="html-italic">p</span> &lt; 0.05) and the bars with the same letter are not (<span class="html-italic">p</span> &gt; 0.05) according to the Mann–Whitney U-test. The Z-value statistics are provided in <a href="#app1-life-14-00268" class="html-app">Table S5</a>.</p>
Full article ">Figure 19
<p>Contribution of different parasitoid species to the mortality of eggs (<b>A</b>), larvae (<b>B</b>), and pupae (<b>C</b>) in <span class="html-italic">Dendrolimus sibiricus</span> populations undergoing different phases as per observations in Northern Asia over 83 years (1940–2022). For the parasitoid species causing mortality ≥10%, the values of averaged parasitism (%) are indicated in the bars. The most impactful parasitoid species are underlined in the legends. For parasitoids indicated with *, the actual names are provided (whereas in the early literature, they were listed under early names, i.e., <span class="html-italic">Cotesia rubripes</span> was listed as <span class="html-italic">Apanteles rubripes</span> (Haliday, 1834), <span class="html-italic">Aleiodes esenbeckii</span> ssp. <span class="html-italic">dendrolimi</span> as <span class="html-italic">Aleiodes esenbeckii</span> (Harting, 1838), <span class="html-italic">Therion giganteum</span> as <span class="html-italic">Exochilum giganteum</span>, <span class="html-italic">Agria affinis</span> as <span class="html-italic">Pseudosarcophaga affinis</span> (Fallen, 1816), and <span class="html-italic">Masicera sphingivora</span> as <span class="html-italic">M. zimini</span> Kolomiets, 1952). Hym.—Hymenoptera.</p>
Full article ">
24 pages, 6925 KiB  
Article
Species of the Western Palaearctic Genus Tetralonia Spinola, 1838 (Hymenoptera, Apidae) with Atypical Pollen Hosts, with a Key to the pollinosa-Group, Description of New Species, and Neotype Designation for Apis malvae Rossi, 1790
by Achik Dorchin and Denis Michez
Taxonomy 2024, 4(1), 126-149; https://doi.org/10.3390/taxonomy4010007 - 25 Jan 2024
Viewed by 1762
Abstract
The long-horn bee genus Tetralonia consists of 35 Western Palaearctic species that are associated mostly with the family Asteraceae as host plants. A minority of the species are, however, exclusively associated with other host plants that have particularly large pollen grains, such as [...] Read more.
The long-horn bee genus Tetralonia consists of 35 Western Palaearctic species that are associated mostly with the family Asteraceae as host plants. A minority of the species are, however, exclusively associated with other host plants that have particularly large pollen grains, such as those in the plant families Caprifoliaceae, Malvaceae, and Onagraceae. This work presents a taxonomic account and morphological description of the assemblages of Tetralonia species with atypical (non-Asteraceae) host plants. It includes a key to the pollinosa-group, which contains most of the species, a description of three regionally restricted new species, namely T. eoacinctella Dorchin sp. nov., T. epilobii Dorchin sp. nov., and T. stellipilis Dorchin sp. nov., a lectotype designation for Eucera cinctella Saunders, 1908 [=Tetralonia cinctella (Saunders, 1908)], and a neotype designation for Apis malvae Rossi, 1790 [=Tetralonia malvae (Rossi, 1790)]. In addition, the name Eucera macroglossa Illiger, 1806 is confirmed as a synonym of Apis malvae Rossi, 1790; Tetralonia macroglossa ssp. xanthopyga Alfken, 1936 is officially placed in synonymy with Apis malvae Rossi, 1790; and Macrocera confusa Pérez, 1902 is listed as a doubtful synonym of Tetralonia scabiosae Mocsàry, 1879 (syn. nov.). Full article
Show Figures

Figure 1

Figure 1
<p>Males’ sternite 5, and profile of genitalia. (<b>a</b>) <span class="html-italic">Tetralonia eoacinctella</span> <b>sp. nov.</b>; (<b>b</b>,<b>c</b>) <span class="html-italic">T. stellipilis</span> <b>sp. nov.</b>, arrow indicating depressed smooth apicomedial region of S5; (<b>d</b>) <span class="html-italic">T. nana</span> Mor., 1874; (<b>e</b>,<b>f</b>) <span class="html-italic">T. epilobii</span> <b>sp. nov.</b>; and (<b>g</b>) <span class="html-italic">T. malvae</span> (Rossi, 1790). Scale bars are 0.5 mm. Collection data of type specimens: paratypes, Israel and Palestine, (<b>a</b>) 1.1 km NW Kefar HaNasi, 246 m, 32.9855° N/35.5958° E, 23.v.2011, A. Dorchin leg.; (<b>b</b>,<b>c</b>) Mt. Hermon, 2180 m, 33.3155° N/35.8077° E, 21.viii.2012, at <span class="html-italic">Cephalaria stellipilis</span> Boiss., A. Dorchin leg.; and (<b>e</b>,<b>f</b>) ‘En A Tina, 71 m, 33.0783° N/35.6443° E, 29.vii.2011, at <span class="html-italic">Lythrum salicaria</span> L., A. Dorchin leg.</p>
Full article ">Figure 2
<p>Male genitalia, S6–8 and T7 of the <span class="html-italic">pollinosa</span>-group. (<b>a</b>–<b>e</b>) <span class="html-italic">Tetralonia scabiosae</span> Moc., 1879; (<b>f</b>–<b>j</b>) <span class="html-italic">T. strigata</span> (Lep., 1841); (<b>k</b>–<b>o</b>) <span class="html-italic">T. pollinosa</span> (Lep., 1841); and (<b>p</b>–<b>t</b>) <span class="html-italic">T. stellipilis</span> <b>sp. nov</b>. Scale bars are 0.5 mm. Collection data of type specimen: (<b>p</b>–<b>t</b>) paratype, Israel and Palestine, Mt. Hermon, 2180 m, 33.3155° N/35.8077° E, 21.viii.2012, at <span class="html-italic">Cephalaria stellipilis</span> Boiss., A. Dorchin leg.</p>
Full article ">Figure 3
<p>Male genitalia and S6–8 of the <span class="html-italic">pollinosa</span>-group (continued). (<b>a</b>–<b>d</b>) <span class="html-italic">Tetralonia cinctella</span> (Saund., 1908) and (<b>e</b>–<b>h</b>) <span class="html-italic">T. eoacinctella</span> <b>sp. nov</b>. Scale bars are 0.5 mm. Collection data of type specimen: (<b>e</b>–<b>h</b>) paratype, Israel and Palestine, 1.1 km NW Kefar HaNasi, 246 m, 32.9855° N/35.5958° E, 23.v.2011, A. Dorchin leg.</p>
Full article ">Figure 4
<p>Mesosoma and metasoma of females of the <span class="html-italic">pollinosa</span>-group. Mesosoma of (<b>a</b>) <span class="html-italic">Tetralonia pollinosa</span> (Lep., 1841); (<b>b</b>) <span class="html-italic">T. stellipilis</span> <b>sp. nov.</b>; (<b>c</b>) <span class="html-italic">T. strigata</span> (Lep., 1841); (<b>d</b>) <span class="html-italic">T. cinctella</span> (Saund., 1908); (<b>e</b>) <span class="html-italic">T. eoacinctella</span> <b>sp. nov.</b>; and (<b>f</b>) <span class="html-italic">T. scabiosae</span> Moc., 1879. Metasoma of (<b>g</b>) <span class="html-italic">Tetralonia pollinosa</span> (Lep., 1841); (<b>h</b>) <span class="html-italic">T. stellipilis</span> <b>sp. nov.</b>; (<b>i</b>) <span class="html-italic">T. strigata</span> (Lep., 1841); (<b>j</b>) <span class="html-italic">T. cinctella</span> (Saund., 1908); (<b>k</b>) <span class="html-italic">T. eoacinctella</span> <b>sp. nov.;</b> and (<b>l</b>) <span class="html-italic">T. scabiosae</span> Moc., 1879. T1 and T2 of (<b>m</b>) <span class="html-italic">Tetralonia pollinosa</span> (Lep., 1841); (<b>n</b>) <span class="html-italic">T. stellipilis</span> <b>sp. nov.</b>; and (<b>o</b>) <span class="html-italic">T. strigata</span> (Lep., 1841). Scale bars are 1 mm, except when labeled 0.5 mm. Collection data of type specimens: paratypes, Israel and Palestine, (<b>b</b>,<b>h</b>,<b>n</b>) Mt. Hermon, 1600 m, 23.vii.2016, at <span class="html-italic">Cephalaria stellipilis</span> Boiss., A. Dorchin leg.; and (<b>e</b>,<b>k</b>) Mt. Gilboa’, N Merav, 353 m, 32.4575° N/35.4244° E, 14.v.2017, at <span class="html-italic">Cephalaria joppensis</span> (Rchb.) Coult., A. Dorchin leg.</p>
Full article ">Figure 5
<p>Female and male habitus of <span class="html-italic">Tetralonia eoacinctella</span> <b>sp. nov</b>. (<b>a</b>–<b>c</b>) Female in dorsal, frontal, and lateral view and (<b>d</b>–<b>f</b>) male holotype in dorsal, frontal, and lateral view. Scale bars are 5 mm. Collection data of type specimens: Israel and Palestine, (<b>a</b>–<b>c</b>) paratype, SW Nir Dawid, −107 m, 32.5019° N/35.4491° E, 14.v.2017, at <span class="html-italic">Cephalaria joppensis</span> (Rchb.) Coult., A. Dorchin leg.; and (<b>d</b>–<b>f</b>) holotype, Mt. Gilboa’, N Merav, 353 m, 32.4575° N/35.4244° E, 14.v.2017, at <span class="html-italic">Cephalaria joppensis</span> (Rchb.) Coult., A. Dorchin leg.</p>
Full article ">Figure 6
<p>Female and male habitus of <span class="html-italic">Tetralonia stellipilis</span> <b>sp. nov</b>. (<b>a</b>–<b>c</b>) Female in dorsal, frontal, and lateral view and (<b>d</b>–<b>f</b>) male holotype in dorsal, frontal, and lateral view. Scale bars are 5 mm. Collection data of type specimens: Israel and Palestine, (<b>a</b>–<b>c</b>) paratype, Mt. Hermon, 1600 m, 23.vii.2016, at <span class="html-italic">Cephalaria stellipilis</span> Boiss., A. Dorchin leg.; and (<b>d</b>–<b>f</b>) holotype, Mt. Hermon, 2180 m, 33.3155° N/35.8077° E, 21.viii.2012, at <span class="html-italic">Cephalaria stellipilis</span> Boiss., A. Dorchin leg.</p>
Full article ">Figure 7
<p>(<b>a</b>–<b>f</b>) Female scopa. (<b>a</b>) <span class="html-italic">Tetralonia scabiosae</span> Moc., 1879; (<b>b</b>) <span class="html-italic">T. epilobii</span> <b>sp. nov.</b>; (<b>c</b>) <span class="html-italic">T. nana</span> Mor., 1874; (<b>d</b>) <span class="html-italic">T. malvae</span> (Rossi, 1790); (<b>e</b>) <span class="html-italic">T. salicariae</span> (Lep., 1841); and (<b>f</b>) <span class="html-italic">T. glauca</span> (Fabricius, 1775). (<b>g</b>–<b>j</b>) Stipes and maxillary palpus. (<b>g</b>) <span class="html-italic">T. epilobii</span> <b>sp. nov.</b>; (<b>h</b>) <span class="html-italic">T. nana</span> Mor., 1874; (<b>i</b>) <span class="html-italic">T. malvae</span> (Rossi, 1790); and (<b>j</b>) <span class="html-italic">T. salicariae</span> (Lep., 1841). Scale bars are 0.5 mm. Collection data of type specimen: (<b>b</b>,<b>g</b>) paratype, Israel and Palestine, ‘En A Tina, 71 m, 33.0783° N/35.6443° E, 29.vii.2011, at <span class="html-italic">Lythrum salicaria</span> L., A. Dorchin leg.</p>
Full article ">Figure 8
<p>Female front tarsi, middle tibial spur, and T1–3 of the <span class="html-italic">nana</span>-group. (<b>a</b>–<b>c</b>) <span class="html-italic">Tetralonia epilobii</span> <b>sp. nov.</b> and (<b>d</b>–<b>f</b>) <span class="html-italic">T. nana</span> Mor., 1874. (<b>g</b>–<b>j</b>) Male genitalia and S6–8 of <span class="html-italic">Tetralonia epilobii</span> <b>sp. nov</b>. Scale bars are 0.5 mm. Collection data of type specimens: (<b>a</b>–<b>c</b>,<b>g</b>–<b>j</b>) paratypes, Israel and Palestine, ‘En A Tina, 71 m, 33.0783° N/35.6443° E, 29.vii.2011, at <span class="html-italic">Lythrum salicaria</span> L., A. Dorchin leg.</p>
Full article ">Figure 9
<p>Female and male habitus of <span class="html-italic">Tetralonia epilobii</span> <b>sp. nov</b>. (<b>a</b>–<b>c</b>) female in dorsal, frontal, and lateral view and (<b>d</b>–<b>f</b>) male holotype in dorsal, frontal, and lateral view. Scale bars are 5 mm. Collection data of type specimens: Israel and Palestine, (<b>a</b>–<b>c</b>) paratype, Nahal Zippori 480 m SW Harduf, 85 m, 32.7622° N/35.1641° E, 12.x.2012, at <span class="html-italic">Epilobium hirsutum</span> L., A. Dorchin leg.; (<b>d</b>–<b>f</b>) holotype, ‘En A Tina, 71 m, 33.0783° N/35.6443° E, 29.vii.2011, at <span class="html-italic">Lythrum salicaria</span> L., A. Dorchin leg.</p>
Full article ">Figure 10
<p>Male genitalia and S6–8, and female underside of mesosoma and profile of metasoma. (<b>a</b>–<b>d</b>) <span class="html-italic">Tetralonia malvae</span> (Rossi, 1790) and (<b>e</b>–<b>j</b>) <span class="html-italic">T. salicariae</span> (Lep., 1841). Scale bars are 0.5 mm.</p>
Full article ">Figure 11
<p>Habitus of male neotype of <span class="html-italic">Apis malvae</span> Rossi, 1790, in (<b>a</b>) dorsal, (<b>b</b>) frontal, and (<b>c</b>) lateral view. Scale bars are 5 mm. Collection data of neotype: Italy, Lazio, Rome, Maccarese, 30–65 m, 41.8358° N/12.2655° E, 14.vi.2022, M. Selis leg.</p>
Full article ">
31 pages, 10625 KiB  
Article
DNA Barcoding Unveils New Species of the Sexually Dimorphic Genus Anteon Jurine (Hymenoptera, Dryinidae) from China
by Huayan Chen, Massimo Olmi, Frode Ødegaard, Leonardo Capradossi and Jingxian Liu
Insects 2024, 15(1), 18; https://doi.org/10.3390/insects15010018 - 30 Dec 2023
Viewed by 1400
Abstract
Species of Anteon Jurine, 1807 are a large group of parasitoids attacking leafhoppers, which are important insect pests. Despite their great potential in pest biological control, the taxonomy and biology of these parasitoids are far from clear. Sexual dimorphism is extreme in Anteon [...] Read more.
Species of Anteon Jurine, 1807 are a large group of parasitoids attacking leafhoppers, which are important insect pests. Despite their great potential in pest biological control, the taxonomy and biology of these parasitoids are far from clear. Sexual dimorphism is extreme in Anteon species and has hampered the taxonomy of these parasitoids, resulting in many species described based on a single sex. In this paper, we employed an integrated taxonomic approach for delimitating species, combining morphological examinations with DNA barcoding, to investigate Anteon species from China. In total, 53 COI sequences representing 29 species of Anteon were obtained and analyzed. On the basis of both morphology and DNA barcoding, five new species of Anteon were discovered and described: A. clariclypeum sp. nov., A. maguanense sp. nov., A. parafidum sp. nov., A. shaanxianum sp. nov., and A. shandonganum sp. nov. The neotype of A. claricolle Kieffer is designated. The sexual association of six species was confirmed by DNA barcoding, which led to the synonymy of Anteon liui Xu, Olmi & He 2010, new syn., under Anteon meifenganum Olmi, 1991. Keys to species of Anteon from the Oriental and Eastern Palaearctic are updated to contain the five new species. Our study demonstrates that DNA barcoding is a potent tool for tackling the taxonomic challenges in parasitoids with extreme sexual dimorphism. Full article
(This article belongs to the Collection Hymenoptera: Biology, Taxonomy and Integrated Management)
Show Figures

Figure 1

Figure 1
<p>RAxML tree and result of the species delimitation of <span class="html-italic">Anteon</span> based on <span class="html-italic">COI</span> barcodes. Bootstraps values of 50 and above are indicated. The scale bar represents 0.08 substitutions per site.</p>
Full article ">Figure 2
<p><span class="html-italic">Anteon blanduscutum</span> Xu, He &amp; Rui, 1996, male (SCAU 3011678). (<b>A</b>) Habitus, lateral view. (<b>B</b>) Habitus, dorsal view. (<b>C</b>) Head and mesosoma, lateral view. (<b>D</b>) Head and mesosoma, dorsal view. (<b>E</b>) Head, dorsal view. (<b>F</b>) Genitalia (right half removed).</p>
Full article ">Figure 3
<p><span class="html-italic">Anteon clariclypeum</span> Chen, Olmi &amp; Ødegaard, sp. nov., holotype, female (SCAU 3011671). (<b>A</b>) Habitus, lateral view. (<b>B</b>) Habitus, dorsal view. (<b>C</b>) Mesosoma, lateral view. (<b>D</b>) Mesosoma, dorsal view. (<b>E</b>) Head, dorsal view. (<b>F</b>) Chela.</p>
Full article ">Figure 4
<p><span class="html-italic">Anteon claricolle</span> Kieffer, 1906, neotype, female. (<b>A</b>) Habitus, lateral view. (<b>B</b>) Habitus, dorsal view. (<b>C</b>) Head and mesosoma, lateral view. (<b>D</b>) Head and mesosoma, dorsal view. (<b>E</b>) Head and anterior mesosoma, dorsal view. (<b>F</b>) Chela.</p>
Full article ">Figure 5
<p><span class="html-italic">Anteon claricolle</span> Kieffer, 1906, male, (<b>A</b>–<b>F</b>): SCAU 3011712) (<b>A</b>) Habitus, lateral view; (<b>B</b>) habitus, dorsal view; (<b>C</b>) head and mesosoma, lateral view; (<b>D</b>) head and mesosoma, dorsal view; (<b>E</b>) head and anterior mesosoma, dorsal view; (<b>F</b>) genitalia (right half removed); (<b>G</b>,<b>H</b>): from Norway) (<b>G</b>) habitus, dorsal view; (<b>H</b>) head, anterior view.</p>
Full article ">Figure 6
<p><span class="html-italic">Anteon maguanense</span> Chen, Olmi &amp; Liu, sp. nov., holotype, female (SCAU 3011738). (<b>A</b>) Habitus, lateral view. (<b>B</b>) Habitus, dorsal view. (<b>C</b>) Head and mesosoma, lateral view. (<b>D</b>) Head and mesosoma, dorsal view. (<b>E</b>) Head, dorsal view. (<b>F</b>) Chela.</p>
Full article ">Figure 7
<p><span class="html-italic">Anteon meifenganum</span> Olmi, 1991, female (SCAU 3040514). (<b>A</b>) Habitus, lateral view. (<b>B</b>) Habitus, dorsal view. (<b>C</b>) Head and mesosoma, lateral view. (<b>D</b>) Head and mesosoma, dorsal view. (<b>E</b>) Head, dorsal view. (<b>F</b>) Chela.</p>
Full article ">Figure 8
<p><span class="html-italic">Anteon meifenganum</span> Olmi, 1991, male (SCAU 3040520). (<b>A</b>) Habitus, lateral view. (<b>B</b>) Habitus, dorsal view. (<b>C</b>) Head and mesosoma, lateral view. (<b>D</b>) Head and mesosoma, dorsal view. (<b>E</b>) Head, anterior view. (<b>F</b>) Genitalia (left half removed).</p>
Full article ">Figure 9
<p><span class="html-italic">Anteon parafidum</span> Chen, Olmi &amp; Ødegaard, sp. nov., holotype, female (SCAU 3011658). (<b>A</b>) Habitus, lateral view. (<b>B</b>) Habitus, dorsal view. (<b>C</b>) Head and mesosoma, lateral view. (<b>D</b>) Head and mesosoma, dorsal view. (<b>E</b>) Head, dorsal view. (<b>F</b>) Chela.</p>
Full article ">Figure 10
<p><span class="html-italic">Anteon parafidum</span> Chen, Olmi &amp; Ødegaard, sp. nov., paratype, male (SCAU 3011662). (<b>A</b>) Habitus, lateral view. (<b>B</b>) Habitus, dorsal view. (<b>C</b>) Head and mesosoma, lateral view. (<b>D</b>) Head and mesosoma, dorsal view. (<b>E</b>) Head, anterior view. (<b>F</b>) Genitalia (left half removed).</p>
Full article ">Figure 11
<p><span class="html-italic">Anteon priscum</span> Olmi, 1991, female (SCAU 3011631). (<b>A</b>) Habitus, lateral view. (<b>B</b>) Habitus, dorsal view. (<b>C</b>) Head and mesosoma, lateral view. (<b>D</b>) Head and mesosoma, dorsal view. (<b>E</b>) Head, dorsal view. (<b>F</b>) Chela.</p>
Full article ">Figure 12
<p><span class="html-italic">Anteon shaanxianum</span> Chen, Olmi &amp; Ødegaard, sp. nov., holotype, male (SCAU 3040516). (<b>A</b>) Habitus, lateral view. (<b>B</b>) Habitus, dorsal view. (<b>C</b>) Head and mesosoma, lateral view. (<b>D</b>) Mesosoma, dorsal view. (<b>E</b>) Head, dorsal view. (<b>F</b>) Genitalia (left half removed).</p>
Full article ">Figure 13
<p><span class="html-italic">Anteon shandonganum</span> Olmi, Chen &amp; Liu, sp. nov., holotype, female (SCAU 3011688). (<b>A</b>) Habitus, lateral view. (<b>B</b>) Habitus, dorsal view. (<b>C</b>) Head and mesosoma, lateral view. (<b>D</b>) Head and mesosoma, dorsal view. (<b>E</b>) Head, dorsal view. (<b>F</b>) Chela.</p>
Full article ">
9 pages, 1848 KiB  
Communication
Seasonal Activity of Adult Ticks Ixodes persulcatus (Acari, Ixodidae) in the North-West of the Distribution Area
by Sergey V. Bugmyrin and Lyubov A. Bespyatova
Animals 2023, 13(24), 3834; https://doi.org/10.3390/ani13243834 - 13 Dec 2023
Cited by 2 | Viewed by 1347
Abstract
The taiga tick Ixodes persulcatus (Schulze, 1930) (Acari, Ixodidae) is the main vector of the tick-borne encephalitis virus and one of the most widespread species of ixodid ticks in the Palaearctic. In this paper, we present long-term data on the seasonal activity of [...] Read more.
The taiga tick Ixodes persulcatus (Schulze, 1930) (Acari, Ixodidae) is the main vector of the tick-borne encephalitis virus and one of the most widespread species of ixodid ticks in the Palaearctic. In this paper, we present long-term data on the seasonal activity of adult ticks in the north-west of their distribution. The seasonal activity of Ixodes persulcatus was studied from 1982 to 1990 and from 2012 to 2023 in the middle taiga subzone of Karelia (N62.0697, E33.961). In the study area, adult ticks I. persulcatus demonstrate a pronounced spring–summer activity with a unimodal curve of abundance change. A comparison of the monitoring data from the 1980s and the 2010s showed a significant increase in the abundance of I. persulcatus in the study area. A tendency towards an earlier start of the tick activity, as compared to the 1980s, is now being observed. Full article
Show Figures

Figure 1

Figure 1
<p>Map of the study area (Gomselga field station, Russia, 62.07° N, 33.96° E). The map was made in SimpleMappr [<a href="#B20-animals-13-03834" class="html-bibr">20</a>].</p>
Full article ">Figure 2
<p>Average daily litter temperature along the monitoring route (<b>a</b>) and in five different biotopes (<b>b</b>); measurements taken every 3 h.</p>
Full article ">Figure 3
<p>The course of seasonal activity of ticks <span class="html-italic">Ixodes persulcatus</span> during two long-term observation period lines (squares—average values).</p>
Full article ">Figure 4
<p>Changes in the abundance of <span class="html-italic">Ixodes persulcatus</span> (adults, males, and females) during the activity season in the middle taiga subzone of Karelia. Generalised data for 2012–2023; lines—average values; points—extreme values.</p>
Full article ">Figure 5
<p>Results of surveys of relative abundance (ticks per flag-km) of adult ticks <span class="html-italic">Ixodes persulcatus</span> (I.pers) made during ten-day periods in 2016 and 2017.</p>
Full article ">
21 pages, 1949 KiB  
Article
The Influence of Salinity Gradient and Island Isolation on Fauna Composition and Structure of Aquatic Invertebrate Communities of the Shantar Islands (Khabarovsk Krai)
by Anna A. Novichkova, Rostislav R. Borisov, Lada V. Vorobjeva, Dmitry M. Palatov, Mikhail V. Chertoprud and Elena S. Chertoprud
Diversity 2023, 15(12), 1198; https://doi.org/10.3390/d15121198 - 6 Dec 2023
Viewed by 1438
Abstract
The present study is the first structured attempt to analyze the species composition and distribution of freshwater invertebrates in the lakes, streams, and rivers of the Shantar Islands and to compare the diversity of the hydrobiont fauna of the archipelago and the continental [...] Read more.
The present study is the first structured attempt to analyze the species composition and distribution of freshwater invertebrates in the lakes, streams, and rivers of the Shantar Islands and to compare the diversity of the hydrobiont fauna of the archipelago and the continental part of Khabarovsk Krai on the basis of the original and literature data. The research revealed 57 zooplanktonic, 47 meiobenthic, and 142 macrobenthic taxa in the waters of the island and the adjacent continental areas. Different patterns of variability in the species richness, abundance, and the community structure are observed for different groups of hydrobionts along the salinity gradient in the unique, brackish Lake Bolshoe. Zooplankton show no directional variability, reaching a maximum in a frontal zone where riverine and brackish water mix. Meiobenthos show the highest diversity in the most saline zone of the lake, where marine species are abundant. The characteristics of the macrozoobenthos gradually increase with the salinity of the lake, with a dramatic change in the dominance structure at the critical salinity threshold, where amphibiotic insects, dominant in the desalinated water zone, are replaced by amphipods. Latitudinal variability in species richness and biogeographic structure of the fauna are closely related for different groups of freshwater invertebrates. A smooth decline in species richness from southern to northern areas was observed when comparing the faunas of the Shantar water bodies with those located to the south. This trend is shown for amphibiotic insects and microcrustaceans and is most pronounced for mollusks. The fauna of the Shantar Islands is predominantly represented by species with a wide Palaearctic, Holarctic, and cosmopolitan range, with a small proportion of species restricted to the Arctic zone of Eurasia or specific to Eastern Siberia and the Far East. Only three brackish water species have a Beringian type of distribution. The assemblage structures of the zooplankton and meiobenthos communities of continental coastal and island lakes do not greatly differ. On the contrary, brackish communities are clearly distinct from the others. The taxonomic composition of macroinvertebrates differed significantly between the islands and the mainland. Full article
(This article belongs to the Special Issue Diversity and Biogeography of Microcrustaceans in Continental Waters)
Show Figures

Figure 1

Figure 1
<p>Map of the studied part of the Khabarovsk Krai (Russia): (<b>A</b>) Shantar Islands and adjacent continental coast; (<b>B</b>) Lake Bolshoe on the Bolshoi Shantar Island. Location of sampling stations marked as red points.</p>
Full article ">Figure 2
<p>Main types of water bodies of the Shantar Islands area: Swamp lake on the Wrangel Cape area (<b>a</b>); Swamp lake of the Bolshoi Shantar Island (<b>b</b>); Ongachan Lake (<b>c</b>); Satellite lake near Lake Bolshoe (<b>d</b>); Small stream on Bolshoi Shantar Island (<b>e</b>); Ongachan River (<b>f</b>); Lake Bolshoe, station 1 (<b>g</b>); Lake Bolshoe, bird’s eye view (<b>h</b>).</p>
Full article ">Figure 3
<p>Variability in species richness (<b>A</b>) and abundance of total zooplankton (<b>B</b>, ind/m<sup>3</sup>), meiobenthos (<b>C</b>, ind/10 cm<sup>2</sup>), macrobenthos (<b>D</b>, ind/m<sup>2</sup>), and dominant groups of hydrobionts along a salinity gradient in Lake Bolshoe.</p>
Full article ">Figure 4
<p>MDS ordination of water bodies of different hydrological type and localization according to species structure of assemblages of different ecological groups of hydrobionts (Kulczynski similarity index): Zooplankton (<b>A</b>), Meiobenthos (<b>B</b>), Macrozoobenthos (<b>C</b>). Red dots—brackish; blue dots—insular lentic; green dots—continental lentic; yellow dots—continental lotic; purple dots—insular lotic water bodies.</p>
Full article ">
40 pages, 22187 KiB  
Article
Molecular Phylogeny of Holarctic Aeshnidae with a Focus on the West Palaearctic and Some Remarks on Its Genera Worldwide (Aeshnidae, Odonata)
by Thomas Schneider, Andy Vierstraete, Oleg E. Kosterin, Dietmar Ikemeyer, Fang-Shuo Hu, Nataly Snegovaya and Henri J. Dumont
Diversity 2023, 15(9), 950; https://doi.org/10.3390/d15090950 - 23 Aug 2023
Cited by 6 | Viewed by 4196
Abstract
Aeshnidae Rambur, 1842 are impressive large insects distributed worldwide. Currently, over 500 species are recognized. Nevertheless, the phylogeny of this family is not completely understood. We applied molecular phylogenetic analysis using two popular phylogenetic markers, the mitochondrial COI gene fragment (barcoding sequence) and [...] Read more.
Aeshnidae Rambur, 1842 are impressive large insects distributed worldwide. Currently, over 500 species are recognized. Nevertheless, the phylogeny of this family is not completely understood. We applied molecular phylogenetic analysis using two popular phylogenetic markers, the mitochondrial COI gene fragment (barcoding sequence) and the nucleic ITS region, containing the ITS1, 5.8S rRNA, and ITS2 sequences. We used available and credible published sequences and 96 newly sequenced specimens. Our analysis involved all West Palaearctic species, all but one genera of the Holarctic Aeshnidae, and most genera worldwide, and is by far the largest molecular study of this family. The topology of all trees created with different algorithms and genes is in favour of the current taxonomic concept, with some remarkable outcomes. Aeshna Fabricius, 1775, was found to be diverged into several branches, especially with respect to the COI gene. Although it appeared not monophyletic in phylogenetic reconstructions based on the ITS region, the analysis of COI and joint analysis suggest its monophyly in the current taxonomical sense, with one notable exception. Aeshna isoceles (Müller, 1767) has fallen out of Aeshna in all analyses, so a new monophyletic genus, Isoaeschna gen. nov. is introduced for it. The genus Brachytron Evans, 1845 tightly clustered with Aeschnophlebia Selys, 1883, Epiaeschna Hagen in Selys, 1883, and Nasiaeschna Selys in Förster, 1900. Thus, we suggest subsuming these four genera under the priority name Brachytron. Tetracanthagyna Selys, 1883 clusters as expected with Brachytron in the ITS tree, but is an independent ancient clade of its own in all COI trees. The genus Polycanthagyna Fraser, 1933 syn. nov. is synonymised to Indaeschna Fraser, 1926. On the species level, we suggest that the American Aeshna septentrionalis Burmeister, 1839 be treated as a subspecies of A. caerulea (Ström, 1783), Aeshna caerulea septentrionalis. We synonymize Gynacantha hyalina Selys, 1882 with Gynacantha subinterrupta Rambur, 1842. Our analysis provides new insights on the tight relationships of the circumboreal species Aeshna juncea and A. subarctica and the intraspecies phylogeny of Aeshna juncea. Full article
Show Figures

Figure 1

Figure 1
<p>Some Aeshnidae in their natural environment: (<b>A</b>): <span class="html-italic">Aeshna vercanica</span> ♂, Mãzandarãn Province, Iran. (<b>B</b>): <span class="html-italic">Aeshna crenata</span> ♂, SE Transbaikalia, Russia. (<b>C</b>): <span class="html-italic">Aeshna serrata</span>, copula, West Siberia, Russia. (<b>D</b>): <span class="html-italic">Aeshna viridis</span> ♂, Germany. (<b>E</b>): <span class="html-italic">Tetracanthagyna waterhousei</span> ♂, Mondulkiri Province, Cambodia. (<b>F</b>): <span class="html-italic">Aeshna isoceles</span> ♂, Gilãn Province, Iran. (<b>G</b>): <span class="html-italic">Anax imperator</span> ♂, Germany. (<b>H</b>): <span class="html-italic">Anax julius</span> ♂, Primorye, Russia. (<b>I</b>): <span class="html-italic">Anax guttatus</span> ♀, Kampot Province, Cambodia. (<b>J</b>): <span class="html-italic">Aeschnophlebia longistigma</span>, copula, Primorye, Russia. (<b>K</b>): <span class="html-italic">Brachytron pratense</span> ♂, Germany. (<b>L</b>): <span class="html-italic">Caliaeschna microstigma</span> ♂, Muğla Province, Turkey. (<b>M</b>): <span class="html-italic">Boyeria irene</span> ♂, France. (<b>N</b>): <span class="html-italic">Polycanthagyna erythromelas</span> ♀, Pursat Province, Cambodia. (<b>O</b>): <span class="html-italic">Planaeschna milei</span> ♂, Shikoku Chiho, Japan. (<b>P</b>): <span class="html-italic">Gynacantha subinterrupta</span> ♂, Ratanakiri Province, Cambodia. (<b>Q</b>): <span class="html-italic">Gynacantha bayadera</span> ♂, Pingtung County, Taiwan. (<b>R</b>): <span class="html-italic">Gynacantha ryukyuensis</span> ♂, Yilan County, Taiwan. (<b>S</b>): <span class="html-italic">Gynacantha japonica</span> ♂, Nantou County, Taiwan. (<b>T</b>): <span class="html-italic">Gynacantha hyalina</span> ♂, New Taipei City, Taiwan. (<b>U</b>): <span class="html-italic">Sarasaeschna lieni</span> copula, Pingtung County, Taiwan. (<b>V</b>): <span class="html-italic">Sarasaeschna tsaopiensis</span> ♂, Yilan County, Taiwan. (<b>W</b>): <span class="html-italic">Planaeschna risi</span> ♂, Yilan County, Taiwan. (<b>X</b>): <span class="html-italic">Planaeschna taiwana</span> ♂, Taipei City, Taiwan. Photos: (<b>A</b>,<b>D</b>,<b>F</b>,<b>G</b>,<b>K</b>–<b>M</b>): Dietmar Ikemeyer, (<b>B</b>,<b>C</b>,<b>E</b>,<b>I</b>,<b>J</b>,<b>N</b>–<b>P</b>): Oleg Kosterin, (<b>H</b>): Vladimir Onishko, (<b>Q</b>–<b>X</b>): Fang-Shuo Hu.</p>
Full article ">Figure 1 Cont.
<p>Some Aeshnidae in their natural environment: (<b>A</b>): <span class="html-italic">Aeshna vercanica</span> ♂, Mãzandarãn Province, Iran. (<b>B</b>): <span class="html-italic">Aeshna crenata</span> ♂, SE Transbaikalia, Russia. (<b>C</b>): <span class="html-italic">Aeshna serrata</span>, copula, West Siberia, Russia. (<b>D</b>): <span class="html-italic">Aeshna viridis</span> ♂, Germany. (<b>E</b>): <span class="html-italic">Tetracanthagyna waterhousei</span> ♂, Mondulkiri Province, Cambodia. (<b>F</b>): <span class="html-italic">Aeshna isoceles</span> ♂, Gilãn Province, Iran. (<b>G</b>): <span class="html-italic">Anax imperator</span> ♂, Germany. (<b>H</b>): <span class="html-italic">Anax julius</span> ♂, Primorye, Russia. (<b>I</b>): <span class="html-italic">Anax guttatus</span> ♀, Kampot Province, Cambodia. (<b>J</b>): <span class="html-italic">Aeschnophlebia longistigma</span>, copula, Primorye, Russia. (<b>K</b>): <span class="html-italic">Brachytron pratense</span> ♂, Germany. (<b>L</b>): <span class="html-italic">Caliaeschna microstigma</span> ♂, Muğla Province, Turkey. (<b>M</b>): <span class="html-italic">Boyeria irene</span> ♂, France. (<b>N</b>): <span class="html-italic">Polycanthagyna erythromelas</span> ♀, Pursat Province, Cambodia. (<b>O</b>): <span class="html-italic">Planaeschna milei</span> ♂, Shikoku Chiho, Japan. (<b>P</b>): <span class="html-italic">Gynacantha subinterrupta</span> ♂, Ratanakiri Province, Cambodia. (<b>Q</b>): <span class="html-italic">Gynacantha bayadera</span> ♂, Pingtung County, Taiwan. (<b>R</b>): <span class="html-italic">Gynacantha ryukyuensis</span> ♂, Yilan County, Taiwan. (<b>S</b>): <span class="html-italic">Gynacantha japonica</span> ♂, Nantou County, Taiwan. (<b>T</b>): <span class="html-italic">Gynacantha hyalina</span> ♂, New Taipei City, Taiwan. (<b>U</b>): <span class="html-italic">Sarasaeschna lieni</span> copula, Pingtung County, Taiwan. (<b>V</b>): <span class="html-italic">Sarasaeschna tsaopiensis</span> ♂, Yilan County, Taiwan. (<b>W</b>): <span class="html-italic">Planaeschna risi</span> ♂, Yilan County, Taiwan. (<b>X</b>): <span class="html-italic">Planaeschna taiwana</span> ♂, Taipei City, Taiwan. Photos: (<b>A</b>,<b>D</b>,<b>F</b>,<b>G</b>,<b>K</b>–<b>M</b>): Dietmar Ikemeyer, (<b>B</b>,<b>C</b>,<b>E</b>,<b>I</b>,<b>J</b>,<b>N</b>–<b>P</b>): Oleg Kosterin, (<b>H</b>): Vladimir Onishko, (<b>Q</b>–<b>X</b>): Fang-Shuo Hu.</p>
Full article ">Figure 1 Cont.
<p>Some Aeshnidae in their natural environment: (<b>A</b>): <span class="html-italic">Aeshna vercanica</span> ♂, Mãzandarãn Province, Iran. (<b>B</b>): <span class="html-italic">Aeshna crenata</span> ♂, SE Transbaikalia, Russia. (<b>C</b>): <span class="html-italic">Aeshna serrata</span>, copula, West Siberia, Russia. (<b>D</b>): <span class="html-italic">Aeshna viridis</span> ♂, Germany. (<b>E</b>): <span class="html-italic">Tetracanthagyna waterhousei</span> ♂, Mondulkiri Province, Cambodia. (<b>F</b>): <span class="html-italic">Aeshna isoceles</span> ♂, Gilãn Province, Iran. (<b>G</b>): <span class="html-italic">Anax imperator</span> ♂, Germany. (<b>H</b>): <span class="html-italic">Anax julius</span> ♂, Primorye, Russia. (<b>I</b>): <span class="html-italic">Anax guttatus</span> ♀, Kampot Province, Cambodia. (<b>J</b>): <span class="html-italic">Aeschnophlebia longistigma</span>, copula, Primorye, Russia. (<b>K</b>): <span class="html-italic">Brachytron pratense</span> ♂, Germany. (<b>L</b>): <span class="html-italic">Caliaeschna microstigma</span> ♂, Muğla Province, Turkey. (<b>M</b>): <span class="html-italic">Boyeria irene</span> ♂, France. (<b>N</b>): <span class="html-italic">Polycanthagyna erythromelas</span> ♀, Pursat Province, Cambodia. (<b>O</b>): <span class="html-italic">Planaeschna milei</span> ♂, Shikoku Chiho, Japan. (<b>P</b>): <span class="html-italic">Gynacantha subinterrupta</span> ♂, Ratanakiri Province, Cambodia. (<b>Q</b>): <span class="html-italic">Gynacantha bayadera</span> ♂, Pingtung County, Taiwan. (<b>R</b>): <span class="html-italic">Gynacantha ryukyuensis</span> ♂, Yilan County, Taiwan. (<b>S</b>): <span class="html-italic">Gynacantha japonica</span> ♂, Nantou County, Taiwan. (<b>T</b>): <span class="html-italic">Gynacantha hyalina</span> ♂, New Taipei City, Taiwan. (<b>U</b>): <span class="html-italic">Sarasaeschna lieni</span> copula, Pingtung County, Taiwan. (<b>V</b>): <span class="html-italic">Sarasaeschna tsaopiensis</span> ♂, Yilan County, Taiwan. (<b>W</b>): <span class="html-italic">Planaeschna risi</span> ♂, Yilan County, Taiwan. (<b>X</b>): <span class="html-italic">Planaeschna taiwana</span> ♂, Taipei City, Taiwan. Photos: (<b>A</b>,<b>D</b>,<b>F</b>,<b>G</b>,<b>K</b>–<b>M</b>): Dietmar Ikemeyer, (<b>B</b>,<b>C</b>,<b>E</b>,<b>I</b>,<b>J</b>,<b>N</b>–<b>P</b>): Oleg Kosterin, (<b>H</b>): Vladimir Onishko, (<b>Q</b>–<b>X</b>): Fang-Shuo Hu.</p>
Full article ">Figure 2
<p>Bayesian phylogenetic tree reconstructed from the ITS region of representatives of Aeshnidae using MRBAYES 3.2.7a, shown as a phylogram on the left side and the mirrored cladogram on the right side. Bayesian posterior probability values are depicted at the nodes. Included are our own sequences (PCR number next to the name) and those retrieved from GenBank (accession number next to the name).</p>
Full article ">Figure 2 Cont.
<p>Bayesian phylogenetic tree reconstructed from the ITS region of representatives of Aeshnidae using MRBAYES 3.2.7a, shown as a phylogram on the left side and the mirrored cladogram on the right side. Bayesian posterior probability values are depicted at the nodes. Included are our own sequences (PCR number next to the name) and those retrieved from GenBank (accession number next to the name).</p>
Full article ">Figure 2 Cont.
<p>Bayesian phylogenetic tree reconstructed from the ITS region of representatives of Aeshnidae using MRBAYES 3.2.7a, shown as a phylogram on the left side and the mirrored cladogram on the right side. Bayesian posterior probability values are depicted at the nodes. Included are our own sequences (PCR number next to the name) and those retrieved from GenBank (accession number next to the name).</p>
Full article ">Figure 3
<p>Bayesian tree reconstructed from the long (632 bp) fragment of the COI gene of representatives of Aeshnidae using MRBAYESs 3.2.7a, shown as a phylogram on the left side and the mirrored cladogram on the right side. Bayesian posterior probability values are depicted at the nodes. Included are our own sequences (PCR number next to the name) and those retrieved from GenBank (accession number next to the name).</p>
Full article ">Figure 3 Cont.
<p>Bayesian tree reconstructed from the long (632 bp) fragment of the COI gene of representatives of Aeshnidae using MRBAYESs 3.2.7a, shown as a phylogram on the left side and the mirrored cladogram on the right side. Bayesian posterior probability values are depicted at the nodes. Included are our own sequences (PCR number next to the name) and those retrieved from GenBank (accession number next to the name).</p>
Full article ">Figure 3 Cont.
<p>Bayesian tree reconstructed from the long (632 bp) fragment of the COI gene of representatives of Aeshnidae using MRBAYESs 3.2.7a, shown as a phylogram on the left side and the mirrored cladogram on the right side. Bayesian posterior probability values are depicted at the nodes. Included are our own sequences (PCR number next to the name) and those retrieved from GenBank (accession number next to the name).</p>
Full article ">Figure 4
<p>Haplotype network of the long COI fragment for <span class="html-italic">Aeshna cyanea</span>, <span class="html-italic">A. vecranica</span>, <span class="html-italic">C. umbrosa</span>, <span class="html-italic">A. constricta</span>, <span class="html-italic">A. palmata</span>, and <span class="html-italic">A. petal.</span> Like in the ITS analysis, specimens of <span class="html-italic">A. cyanea</span> from North Africa and Europe cluster together. However, specimens of <span class="html-italic">A. cyanea</span> from the Caucasus and Transcaucasia region on one hand and from the rest of the range on the other had no longer form sister clades as in the ITS tree (<a href="#diversity-15-00950-f002" class="html-fig">Figure 2</a>). Instead, the Caucasian plus Transcaucasian specimens radiate from the base of the <span class="html-italic">A. cyanea</span> cluster, while the European plus African cluster is now internal, as a sprouting among them. This can be interpreted as the species <span class="html-italic">A. cyanea</span> having originated in the Caucasian area and then one of its lineages having spread to the west and occupied vast European and North African territories. <span class="html-italic">A. vercanica</span> and <span class="html-italic">A. cyanea</span> are sister branches in the COI tree (<a href="#diversity-15-00950-f003" class="html-fig">Figure 3</a>), but the node of <span class="html-italic">A. cyanea</span> has a weak support of 0.55.</p>
Full article ">Figure 5
<p>Haplotype network of the long COI fragment for <span class="html-italic">Aeshna caerulea</span>, <span class="html-italic">A. septentrionalis</span>, and <span class="html-italic">A. sitchensis</span>.</p>
Full article ">Figure 6
<p>Haplotype network of the long COI fragment for <span class="html-italic">Aeshna juncea</span> and <span class="html-italic">A. subarctica</span>.</p>
Full article ">Figure 7
<p>Haplotype network of the long COI fragment for <span class="html-italic">Aeshna mixta</span>, <span class="html-italic">A. soneharai</span>, <span class="html-italic">A. affinis</span>, <span class="html-italic">A. isosceles</span>, and <span class="html-italic">Austrogynacantha heterogena</span>.</p>
Full article ">Figure 8
<p>Haplotype network of the long COI fragment for the genera <span class="html-italic">Planaeschna</span>, <span class="html-italic">Cephalaeschna</span>, <span class="html-italic">Caliaeschna</span>, <span class="html-italic">Remartinia</span>, and <span class="html-italic">Sarasaeschna</span>.</p>
Full article ">Figure 9
<p>Haplotype network of the long COI fragment for representatives of the genus <span class="html-italic">Gynacantha</span>.</p>
Full article ">Figure 10
<p>Haplotype network of the long COI fragment for <span class="html-italic">A. isoceles</span>, <span class="html-italic">Austrogynacantha heterogena</span>, and <span class="html-italic">Anaciaeschna</span> spp.</p>
Full article ">Figure 11
<p>Haplotype network of representatives of the genera <span class="html-italic">Anax, Triacanthagyna</span>, and <span class="html-italic">Tetracanthagyna</span> for the COI long fragment.</p>
Full article ">Figure 12
<p>Bayesian tree reconstructed from the short (341 bp) COI gene fragment of representatives of Aeshnidae using MRBAYESs 3.2.7a. Bayesian posterior probability values are depicted at the nodes. Included are our own sequences (PCR number next to the name) and those retrieved from GenBank (accession number next to the name).</p>
Full article ">Figure 12 Cont.
<p>Bayesian tree reconstructed from the short (341 bp) COI gene fragment of representatives of Aeshnidae using MRBAYESs 3.2.7a. Bayesian posterior probability values are depicted at the nodes. Included are our own sequences (PCR number next to the name) and those retrieved from GenBank (accession number next to the name).</p>
Full article ">Figure 12 Cont.
<p>Bayesian tree reconstructed from the short (341 bp) COI gene fragment of representatives of Aeshnidae using MRBAYESs 3.2.7a. Bayesian posterior probability values are depicted at the nodes. Included are our own sequences (PCR number next to the name) and those retrieved from GenBank (accession number next to the name).</p>
Full article ">Figure 13
<p>Haplotype network of the short COI gene fragment for the genera <span class="html-italic">Brachytron</span>, <span class="html-italic">Aeschnophlebia</span>, <span class="html-italic">Epiaeschna</span>, and <span class="html-italic">Nasiaeschna</span>.</p>
Full article ">Figure 14
<p>Multi-locus sequence species tree reconstructed with StarBeast3 v 1.1.7 based on the short COI gene fragment and the ITS region of representatives of Aeshnidae. Bayesian posterior probabilities values are depicted at the nodes and as colour in the branches.</p>
Full article ">
26 pages, 5719 KiB  
Article
A Revision of the Genus Argolis (Hemiptera: Reduviidae: Stenopodainae) from Asia
by Zhuo Chen, Michael D. Webb and Wanzhi Cai
Insects 2023, 14(8), 680; https://doi.org/10.3390/insects14080680 - 31 Jul 2023
Cited by 1 | Viewed by 1801
Abstract
The assassin bug genus Argolis Stål, 1861 (Hemiptera: Reduviidae: Stenopodainae) has a disjunct distribution in Sub-Saharan Africa and Asia. In the present study, the Asian species of Argolis are revised. Two species are recognized, redescribed, and illustrated, with the following new subjective synonyms [...] Read more.
The assassin bug genus Argolis Stål, 1861 (Hemiptera: Reduviidae: Stenopodainae) has a disjunct distribution in Sub-Saharan Africa and Asia. In the present study, the Asian species of Argolis are revised. Two species are recognized, redescribed, and illustrated, with the following new subjective synonyms and new combination proposed: Argolis Stål, 1861 = Bardesanes Distant, 1909, syn. nov. = Neoklugia Distant, 1919, syn. nov.; A. farinator (Reuter, 1882) = N. typica Distant, 1919, syn. nov. = B. sericenotatus Livingstone & Ravichandran, 1989, syn. nov.; A. signata (Distant, 1909), comb. nov. (transferred from Bardesanes) = Caunus noctulus Hsiao, 1977, syn. nov. Lectotypes for C. farinator, B. signatus, and N. typica are designated. A key to separate the two Asian species of Argolis is provided. The sexual dimorphism, systematic relationships, and distribution of Argolis are discussed. Argolis is newly recorded from Laos, Pakistan, and Vietnam. Full article
(This article belongs to the Section Insect Systematics, Phylogeny and Evolution)
Show Figures

Figure 1

Figure 1
<p>Name-bearing types of <span class="html-italic">Caunus farinator</span> Reuter, 1882 and <span class="html-italic">Neoklugia typica</span> Distant, 1919, habitus with labels: (<b>A</b>–<b>C</b>) <span class="html-italic">C. farinator</span>, lectotype, female; (<b>D</b>,<b>E</b>) <span class="html-italic">N. typica</span>, lectotype, male. (<b>A</b>,<b>D</b>) Dorsal; (<b>B</b>,<b>E</b>) lateral; (<b>C</b>) ventral. Scale bar: 5.0 mm. ©ZMUC (A–C) and ©BMNH (D,E).</p>
Full article ">Figure 2
<p><span class="html-italic">Argolis farinator</span> (Reuter, 1882), habitus: (<b>A</b>–<b>C</b>) non-type male; (<b>D</b>–<b>F</b>) non-type female. (<b>A</b>,<b>D</b>) Dorsal; (<b>B</b>,<b>E</b>) lateral; (<b>C</b>,<b>F</b>) ventral. Scale bar: 5.0 mm.</p>
Full article ">Figure 3
<p>Name-bearing types of <span class="html-italic">Bardesanes signatus</span> Distant, 1909 and <span class="html-italic">Caunus noctulus</span> Hsiao, 1977, habitus with labels: (<b>A</b>–<b>C</b>) <span class="html-italic">B. signatus</span>, lectotype, male; (<b>D</b>–<b>F</b>) <span class="html-italic">C. noctulus</span>, holotype, male. (<b>A</b>,<b>D</b>) Dorsal; (<b>B</b>,<b>E</b>) lateral; (<b>C</b>,<b>F</b>) ventral. Scale bar: 5.0 mm. ©BMNH (Figure 3A–C) and ©IZAS (Figure 3D–F).</p>
Full article ">Figure 4
<p><span class="html-italic">Argolis signata</span> (Distant, 1909), <b>comb. nov.</b>, habitus: (<b>A</b>–<b>C</b>) non-type male; (<b>D</b>–<b>F</b>) non-type female. (<b>A</b>,<b>D</b>) Dorsal; (<b>B</b>,<b>E</b>) lateral; (<b>C</b>,<b>F</b>) ventral. Scale bar: 5.0 mm.</p>
Full article ">Figure 5
<p>Morphological characters of two Asian <span class="html-italic">Argolis</span> species: (<b>A</b>–<b>D</b>,<b>I</b>) <span class="html-italic">A. farinator</span> (Reuter, 1882); (<b>E</b>–<b>H</b>,<b>J</b>) <span class="html-italic">A. signata</span> (Distant, 1909), <b>comb. nov.</b> (<b>A</b>–<b>H</b>) Anterior part of body; (<b>I</b>,<b>J</b>) lateral margin of pronotum. (<b>A</b>,<b>B</b>,<b>E</b>,<b>F</b>,<b>I</b>,<b>J</b>) Non-type male; (<b>C</b>,<b>D</b>,<b>G</b>,<b>H</b>) non-type female. (<b>A</b>,<b>C</b>,<b>E</b>,<b>G</b>) Dorsal; (<b>B</b>,<b>D</b>,<b>F</b>,<b>H</b>–<b>J</b>) lateral. Scale bar of (<b>A</b>–<b>H</b>) = 2.0 mm; of (<b>I</b>,<b>J</b>) = 1.0 mm.</p>
Full article ">Figure 6
<p>Hemelytron of two Asian <span class="html-italic">Argolis</span> species: (<b>A</b>) <span class="html-italic">A. farinator</span> (Reuter, 1882), non-type male; (<b>B</b>) <span class="html-italic">A. signata</span> (Distant, 1909), <b>comb. nov.</b>, non-type male. Scale bar of 2.5 mm.</p>
Full article ">Figure 7
<p>Male genitalia of <span class="html-italic">Argolis farinator</span> (Reuter, 1882): (<b>A</b>–<b>C</b>) pygophore; (<b>D</b>–<b>F</b>) paramere; (<b>G</b>–<b>I</b>) phallus. (<b>A</b>,<b>G</b>) Dorsal; (<b>B</b>,<b>H</b>) lateral; (<b>C</b>) caudal; (<b>I</b>) ventral. Scale bar: 0.5 mm.</p>
Full article ">Figure 8
<p>Male genitalia of <span class="html-italic">Argolis signata</span> (Distant, 1909), <b>comb. nov.</b>: (<b>A</b>–<b>C</b>) pygophore; (<b>D</b>–<b>F</b>) paramere; (<b>G</b>–<b>I</b>) phallus. (<b>A</b>,<b>G</b>) Dorsal; (<b>B</b>,<b>H</b>) lateral; (<b>C</b>) caudal; (<b>I</b>) ventral. Scale bar: 0.5 mm.</p>
Full article ">Figure 9
<p>Female genitalia of two Asian <span class="html-italic">Argolis</span> species: (<b>A</b>–<b>C</b>) <span class="html-italic">A. farinator</span> (Reuter, 1882); (<b>D</b>–<b>F</b>) <span class="html-italic">A. signata</span> (Distant, 1909), <b>comb. nov.</b> (<b>A</b>,<b>B</b>,<b>D</b>,<b>E</b>) Dorsal; (<b>C</b>,<b>F</b>) ventral. Scale bar: 1.0 mm.</p>
Full article ">Figure 10
<p>Known distribution of <span class="html-italic">Argolis</span> species from Asia. Red circle = <span class="html-italic">A. farinator</span> (Reuter, 1882); yellow circle = <span class="html-italic">A. signata</span> (Distant, 1909), <b>comb. nov.</b></p>
Full article ">
33 pages, 9019 KiB  
Article
Are Appearances Deceiving? Morpho-Genetic Complexity of the Eumerus tricolor Group (Diptera: Syrphidae) in Europe, with a Focus on the Iberian Peninsula
by Pablo Aguado-Aranda, Antonio Ricarte, Zorica Nedeljković, Scott Kelso, André P. W. van Eck, Jeffrey H. Skevington and María Ángeles Marcos-García
Insects 2023, 14(6), 541; https://doi.org/10.3390/insects14060541 - 10 Jun 2023
Cited by 3 | Viewed by 1489
Abstract
Eumerus Meigen, 1822 is one of the largest Syrphidae genera in the Palaearctic Region, with the highest levels of taxonomic diversity found in the Eumerus tricolor species group. Despite its high diversity, the interspecific levels of morphological variability can be low. Additionally, some [...] Read more.
Eumerus Meigen, 1822 is one of the largest Syrphidae genera in the Palaearctic Region, with the highest levels of taxonomic diversity found in the Eumerus tricolor species group. Despite its high diversity, the interspecific levels of morphological variability can be low. Additionally, some species may show certain levels of intraspecific variability. Hence, species delimitation may become challenging. In this work, we assessed the diversity of the E. tricolor group in the Iberian Peninsula through an integrative analysis of nomenclature, morphology and the 5′ (COI-5′) and 3′ (COI-3′) end regions of the Cytochrome c oxidase subunit I gene. Two new species, Eumerus ancylostylus Aguado-Aranda & Ricarte sp. n. and Eumerus petrarum Aguado-Aranda, Nedeljković & Ricarte sp. n., were described, and their intra- and interspecific variations discussed. In addition, the first barcodes of Iberian members of the E. tricolor group were obtained, and the distribution ranges of all species were mapped within the study area. The systematic position of the new species is discussed based on the resulting COI-based trees. The male genitalia of Eumerus hispanicus van der Goot, 1966 and Eumerus bayardi Séguy, 1961 were studied and illustrated. A lectotype was designated for Eumerus lateralis (Zetterstedt, 1819). An updated dichotomous key for all known European species of the E. tricolor group is provided. The egg of E. petrarum sp. n. is also described. Full article
(This article belongs to the Section Insect Systematics, Phylogeny and Evolution)
Show Figures

Figure 1

Figure 1
<p>Maximum Likelihood tree based on COI-5′. DNA vouchers of specimens analyzed for this work are highlighted in bold. Bootstrap values &gt; 50 are shown near nodes. Branch lengths are measured in the number of substitutions per site.</p>
Full article ">Figure 2
<p>Neighbor-Joining tree based on COI (COI-5′+COI-3′). DNA vouchers of specimens analyzed for this work are highlighted in bold. Bootstrap values &gt; 50 are shown near nodes. Branch lengths are measured in the number of substitutions per site.</p>
Full article ">Figure 3
<p><span class="html-italic">Eumerus ancylostylus</span> sp. n., male (holotype): (<b>A</b>) Habitus, lateral view. (<b>B</b>) Habitus, dorsal view. (<b>C</b>) Head, lateral view. (<b>D</b>) Eye contiguity (indicated by an arrow). Scale bars = (<b>A</b>) 1 mm; (<b>B</b>) 2 mm; (<b>C</b>,<b>D</b>) 500 µm.</p>
Full article ">Figure 4
<p>Male, vertical triangle: (<b>A</b>) <span class="html-italic">E. ancylostylus</span> sp. n. (holotype). (<b>B</b>) <span class="html-italic">E. grandis</span> (specimen from Montenegro). (<b>C</b>) <span class="html-italic">E. lateralis</span> (lectotype). Vertical triangle width (mm): <span class="html-italic">a</span> = 0.58, <span class="html-italic">b</span> = 0.43, <span class="html-italic">c</span> = 0.5. Scale bar = 500 µm.</p>
Full article ">Figure 5
<p><span class="html-italic">Eumerus ancylostylus</span> sp. n. (holotype), male genitalia: (<b>A</b>) Hypandrium, ventral view. (<b>B</b>) Hypandrium, lateral view (right side). (<b>C</b>) Epandrium, lateral view (right side). Legend: de, dentate expansion; psl, posterior surstylar lobe; rb, rounded bulges. Scale bar = 250 µm.</p>
Full article ">Figure 6
<p>Surstylus, lateral view (right side): (<b>A</b>) <span class="html-italic">E. ancylostylus</span> sp. n. (holotype). (<b>B</b>) <span class="html-italic">E. grandis</span> (specimen from Montenegro). (<b>C</b>) <span class="html-italic">E. lateralis</span> (lectotype). Male genitalia, lateral view (right side): (<b>D</b>) <span class="html-italic">E. ancylostylus</span> sp. n. (<b>E</b>) <span class="html-italic">E. grandis</span>. (<b>F</b>) <span class="html-italic">E. lateralis</span>. An arrow indicates the posterior surstylar lobe, which is enlarged in the images above. Scale bar (<b>D</b>–<b>F</b>) = 250 µm.</p>
Full article ">Figure 7
<p>Distribution ranges of the Iberian members of the <span class="html-italic">E. tricolor</span> species group. Confirmed records are indicated with a square. Unconfirmed published records are indicated with a triangle.</p>
Full article ">Figure 8
<p><span class="html-italic">Eumerus lateralis</span>, male (lectotype): (<b>A</b>) Habitus, lateral view. (<b>B</b>) Head, lateral view. (<b>C</b>) Original labels. Female (paralectotype): (<b>D</b>) Habitus, lateral view. (<b>E</b>) Head, lateral view. (<b>F</b>) Original labels. Scale bars = (<b>A</b>,<b>D</b>) 1 mm; (<b>B</b>,<b>E</b>) 500 µm.</p>
Full article ">Figure 9
<p><span class="html-italic">Eumerus petrarum</span> sp. n., male (holotype), habitus: (<b>A</b>) Lateral view. (<b>B</b>) Dorsal view. Female (paratype), habitus: (<b>C</b>) Lateral view. (<b>D</b>) Dorsal view. Scale bars = (<b>A</b>–<b>C</b>) 1 mm; (<b>D</b>) 2 mm.</p>
Full article ">Figure 10
<p><span class="html-italic">Eumerus petrarum</span> sp. n., head: (<b>A</b>) Male (holotype). (<b>B</b>) Female (paratype). Head, lateral view: (<b>C</b>) Male. (<b>D</b>) Female. Head, dorsal view: (<b>E</b>) Male. (<b>F</b>) Female. Scale bar = 500 µm.</p>
Full article ">Figure 11
<p><span class="html-italic">Eumerus petrarum</span> sp. n., male genitalia (holotype): (<b>A</b>) Hypandrium, lateral view (right side). (<b>B</b>) Epandrium, lateral view (right side). (<b>C</b>) Surstylus, intraspecific variation. (<b>D</b>) Epandrium, ventral view. Legend: ial, interior accessory lobe. Scale bars = (<b>A</b>,<b>D</b>) 250 µm; (<b>B</b>,<b>C</b>) 100 µm.</p>
Full article ">Figure 12
<p><span class="html-italic">Eumerus petrarum</span> sp. n., egg: (<b>A</b>) Detail of the chorionic sculpture. (<b>B</b>) Units conforming to the chorionic sculpture. Units may touch each other in some parts because the egg was not uniformly turgid. Legend: col, columns.</p>
Full article ">Figure 13
<p><span class="html-italic">Eumerus sabulonum</span>, male genitalia: (<b>A</b>) Hypandrium, lateral view (right side). (<b>B</b>) Epandrium, lateral view (right side). (<b>C</b>) Surstylus, intraspecific variation. (<b>D</b>) Epandrium, ventral view. Legend: ial, interior accessory lobe. Scale bars = (<b>A</b>,<b>B</b>,<b>D</b>) 250 µm; (<b>C</b>) 100 µm.</p>
Full article ">Figure 14
<p><span class="html-italic">Eumerus litoralis</span>, male (syntype), habitus: (<b>A</b>) Lateral view. (<b>B</b>) Dorsal view. Photos by Simon Hinkley (MMV).</p>
Full article ">Figure 15
<p>Mesonotum, pilosity (male): (<b>A</b>) <span class="html-italic">E. azabense</span>. (<b>B</b>) <span class="html-italic">E. tricolor</span>. Scale bars = (<b>A</b>) 750 µm; (<b>B</b>) 500 µm.</p>
Full article ">Figure 16
<p>Basoflagellomere, female: (<b>A</b>) <span class="html-italic">E. ovatus</span>. (<b>B</b>) <span class="html-italic">E. azabense</span>. Scale bars = 500 µm.</p>
Full article ">Figure 17
<p><span class="html-italic">Eumerus bayardi</span>, male: (<b>A</b>) Habitus, lateral view. (<b>B</b>) Habitus, dorsal view. (<b>C</b>) Head. (<b>D</b>) Metafemur. Scale bars = (<b>A</b>) 1 mm; (<b>B</b>) 2 mm; (<b>C</b>,<b>D</b>) 500 µm.</p>
Full article ">Figure 18
<p><span class="html-italic">Eumerus bayardi</span>, male, genitalia: (<b>A</b>) Hypandrium, lateral view (right side). (<b>B</b>) Epandrium, lateral view (right side). (<b>C</b>) Epandrium, ventral view. Legend: se, serrated expansion; vb, ventral bulge. Scale bars = (<b>A</b>,<b>B</b>) 250 µm; (<b>C</b>) 100 µm.</p>
Full article ">Figure 19
<p><span class="html-italic">Eumerus hispanicus</span>, male (paratype): (<b>A</b>) Habitus, lateral view. (<b>B</b>) Habitus, dorsal view. (<b>C</b>) Head. (<b>D</b>) Original labels. Scale bars = (<b>A</b>,<b>B</b>) 1 mm; (<b>C</b>) 500 µm.</p>
Full article ">Figure 20
<p><span class="html-italic">Eumerus hispanicus</span>, male genitalia (mainly based on the paratype), hypandrium: (<b>A</b>) Ventral view. (<b>B</b>) Lateral view (right side). Epandrium: (<b>C</b>) Lateral view (right side). (<b>D</b>) Ventral view. Legend: dte, dorsal triangular expansion; vb, ventral bulge; vhe, ventral hyaline expansions. Scale bars = 250 µm.</p>
Full article ">Figure 21
<p><span class="html-italic">Eumerus sabulonum</span>, head, lateral view: (<b>A</b>) Male. (<b>B</b>) Female. An arrow indicates the orange macula. Scale bars = (<b>A</b>) 250 µm; (<b>B</b>) 500 µm.</p>
Full article ">
25 pages, 13276 KiB  
Article
Contribution to the Knowledge of Dicranoptychini (Diptera, Tipuloidea, Limoniidae) in China, with the First Mitochondrial Genome of the Tribe and Its Phylogenetic Implications
by Yuanyuan Xu, Shenglin Zhang, Yaru Chen, Guoquan Wang, Ding Yang and Xiao Zhang
Insects 2023, 14(6), 535; https://doi.org/10.3390/insects14060535 - 7 Jun 2023
Cited by 1 | Viewed by 1590
Abstract
Dicranoptychini is a tribe in the subfamily Limoniinae (Diptera, Tipuloidea, and Limoniidae) and includes only the genus Dicranoptycha Osten Sacken, 1860. However, the species diversity of the tribe in China was seriously underestimated, and the taxonomic status of Dicranoptycha has long been controversial. [...] Read more.
Dicranoptychini is a tribe in the subfamily Limoniinae (Diptera, Tipuloidea, and Limoniidae) and includes only the genus Dicranoptycha Osten Sacken, 1860. However, the species diversity of the tribe in China was seriously underestimated, and the taxonomic status of Dicranoptycha has long been controversial. In this study, types of Chinese Dicranoptycha species and specimens collected from several localities in China were examined, and the first mitochondrial (mt) genome of the tribe Dicranoptychini is presented. Two Dicranoptycha species, D. jiufengshana sp. nov. and D. shandongensis sp. nov., from China, are described and illustrated as new to science. A Palaearctic species, D. prolongata Alexander, 1938, is recorded in China for the first time. In addition, the complete mt genome of D. shandongensis sp. nov. is sequenced and annotated, indicating that it is a typical circular DNA molecule with a length of 16,157 bp and shows a similar gene order, nucleotide composition, and codon usage to mt genomes of other Tipuloidea species. The two pairs of repeat elements are found in its control region. Phylogenetic results confirm the sister-group relationship between Cylindrotomidae and Tipulidae, question the position of the genus Epiphragma Osten Sacken, 1860 in Limoniidae, and indicate that Dicranoptychini may be a basal lineage within Limoniinae. Full article
(This article belongs to the Section Insect Systematics, Phylogeny and Evolution)
Show Figures

Figure 1

Figure 1
<p><span class="html-italic">Dicranoptycha jiufengshana</span> sp. Nov. (<b>a</b>) Habitus of male, lateral view; (<b>b</b>) head, lateral view; (<b>c</b>) thorax, dorsal view; (<b>d</b>) wing. Scale bars: 2.0 mm (<b>a</b>); 0.5 mm (<b>b</b>,<b>c</b>); 1.5 mm (<b>d</b>).</p>
Full article ">Figure 2
<p><span class="html-italic">Dicranoptycha jiufengshana</span> sp. Nov. (<b>a</b>) Male hypopygium, dorsal view; (<b>b</b>) male hypopygium, ventral view. Scale bar: 0.2 mm.</p>
Full article ">Figure 3
<p><span class="html-italic">Dicranoptycha jiufengshana</span> sp. Nov. (<b>a</b>) Complex of aedeagus, dorsal view; (<b>b</b>) complex of aedeagus, lateral view; (<b>c</b>) complex of aedeagus, ventral view; (<b>d</b>) female ovipositor, dorsal view; (<b>e</b>) female ovipositor, lateral view; (<b>f</b>) female ovipositor, ventral view; (<b>g</b>) vaginal apodeme. Scale bars: 0.2 mm (<b>a</b>–<b>c</b>,<b>g</b>); 0.5 mm (<b>d</b>–<b>f</b>).</p>
Full article ">Figure 4
<p><span class="html-italic">Dicranoptycha prolongata</span> Alexander, 1938. (<b>a</b>) Habitus of male, lateral view; (<b>b</b>) head, lateral view; (<b>c</b>) thorax, dorsal view; (<b>d</b>) wing. Scale bars: 2.0 mm (<b>a</b>); 0.5 mm (<b>b</b>,<b>c</b>); 1.5 mm (<b>d</b>).</p>
Full article ">Figure 5
<p><span class="html-italic">Dicranoptycha prolongata</span> Alexander, 1938. (<b>a</b>) Male hypopygium, dorsal view; (<b>b</b>) male hypopygium, ventral view. Scale bar: 0.2 mm.</p>
Full article ">Figure 6
<p><span class="html-italic">Dicranoptycha prolongata</span> Alexander, 1938. (<b>a</b>) Complex of aedeagus, dorsal view; (<b>b</b>) complex of aedeagus, lateral view; (<b>c</b>) complex of aedeagus, ventral view; (<b>d</b>) female ovipositor, dorsal view; (<b>e</b>) female ovipositor, lateral view; (<b>f</b>) female ovipositor, ventral view; (<b>g</b>) vaginal apodeme. Scale bars: 0.2 mm (<b>a</b>–<b>c</b>,<b>g</b>); 0.5 mm (<b>d</b>–<b>f</b>).</p>
Full article ">Figure 7
<p><span class="html-italic">Dicranoptycha shandongensis</span> sp. nov. (<b>a</b>) Habitus of male, lateral view; (<b>b</b>) head, lateral view; (<b>c</b>) thorax, dorsal view; (<b>d</b>) wing. Scale bars: 2.0 mm (<b>a</b>); 0.5 mm (<b>b</b>,<b>c</b>); 1.5 mm (<b>d</b>).</p>
Full article ">Figure 8
<p><span class="html-italic">Dicranoptycha shandongensis</span> sp. nov. (<b>a</b>) Male hypopygium, dorsal view; (<b>b</b>) male hypopygium, ventral view. Scale bar: 0.2 mm.</p>
Full article ">Figure 9
<p><span class="html-italic">Dicranoptycha shandongensis</span> sp. nov. (<b>a</b>) Complex of aedeagus, dorsal view; (<b>b</b>) complex of aedeagus, lateral view; (<b>c</b>) complex of aedeagus, ventral view; (<b>d</b>) female ovipositor, dorsal view; (<b>e</b>) female ovipositor, lateral view; (<b>f</b>) female ovipositor, ventral view; (<b>g</b>) vaginal apodeme. Scale bars: 0.2 mm (<b>a</b>–<b>c</b>,<b>g</b>); 0.5 mm (<b>d</b>–<b>f</b>).</p>
Full article ">Figure 10
<p><span class="html-italic">Dicranoptycha shandongensis</span> sp. nov. (<b>a</b>) Habitat of Zhongshan Temple, Mengyin, Shandong, China; (<b>b</b>) habitat of Beijiushui, Mount Laoshan, Laoshan, Shandong, China.</p>
Full article ">Figure 11
<p>Gene map (<b>a</b>) and control region (<b>b</b>) of the mitochondrial genome of <span class="html-italic">Dicranoptycha shandongensis</span> sp. nov.</p>
Full article ">Figure 12
<p>Relative synonymous codon usage (RSCU) of the protein-coding genes in the mitochondrial genome of <span class="html-italic">Dicranoptycha shandongensis</span> sp. nov. Leu1 = Leu (UUR); Leu2 = Leu (CUN); Ser1 = Ser (AGN); Ser2 = Ser (UCN).</p>
Full article ">Figure 13
<p>Phylogenetic trees of Tipuloidea inferred from the datasets (<b>a</b>) PCGRNA, (<b>b</b>) PCG12RNA, (<b>c</b>) PCG, and (<b>d</b>) PCG12 under the Bayesian inference (BI) method. The number at each node is the posterior probability (PP).</p>
Full article ">Figure 14
<p>Phylogenetic trees of Tipuloidea inferred from the datasets (<b>a</b>) PCGRNA, (<b>b</b>) PCG12RNA, (<b>c</b>) PCG, and (<b>d</b>) PCG12 under the maximum likelihood (ML) method. The number at each node is the bootstrap value (BV).</p>
Full article ">
Back to TopTop