[go: up one dir, main page]

 
 
Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (312)

Search Parameters:
Keywords = LHC

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 1407 KiB  
Article
Searching for Extra Higgs Boson Effects in General Two-Higgs Doublet Model (2HDM)
by George Wei-Shu Hou
Symmetry 2024, 16(8), 1013; https://doi.org/10.3390/sym16081013 - 8 Aug 2024
Viewed by 269
Abstract
Starting from our current impasse at the LHC, of observing an SM-like Higgs boson but nothing beyond, we focus on the General 2HDM (G2HDM), which possesses extra sets of Yukawa couplings as a likely Next New Physics. After expounding its merits, we [...] Read more.
Starting from our current impasse at the LHC, of observing an SM-like Higgs boson but nothing beyond, we focus on the General 2HDM (G2HDM), which possesses extra sets of Yukawa couplings as a likely Next New Physics. After expounding its merits, we explore our “Decadal Mission of the New Higgs/Flavor era”, reporting on an Academic Summit Project (ASP) in Taiwan that conducts a four-pronged pursuit of G2HDM: CMS and Belle II searches, a lattice study of first-order electroweak phase transition, and phenomenology. The ASP Midterm report is based on ATLAS and CMS searches for cgtH/tAttc¯, where H and A are exotic neutral scalar bosons, and now progressing onto a post-Midterm cgbH+btb¯ search, where H+ is the exotic charged Higgs boson, plus a few other searches at the LHC, all with discovery potential. We then discuss a plethora of flavor observables that can be explored by CMS and Belle II, as well as other dedicated experiments. Finally, we elucidate why G2HDM, providing myriad new dynamics, can remain well hidden so far. This brief report summarizes the progress of the ASP of the NSTC of Taiwan. Full article
(This article belongs to the Special Issue Feature Papers in 'Physics' Section 2024)
Show Figures

Figure 1

Figure 1
<p>Two-loop Barr–Zee diagrams for eEDM, where the top loop and the <span class="html-italic">W</span> loop naturally tend to cancel, effectively a <math display="inline"><semantics> <mi>ϕ</mi> </semantics></math>-<math display="inline"><semantics> <mi>γ</mi> </semantics></math>-<math display="inline"><semantics> <msup> <mi>γ</mi> <mo>*</mo> </msup> </semantics></math> insertion, where <math display="inline"><semantics> <mi>ϕ</mi> </semantics></math> runs over <span class="html-italic">h</span>, <span class="html-italic">H</span>, <span class="html-italic">A</span>, and even <math display="inline"><semantics> <msup> <mi>H</mi> <mo>+</mo> </msup> </semantics></math>.</p>
Full article ">Figure 2
<p>Figure 10 as taken from ATLAS paper [<a href="#B38-symmetry-16-01013" class="html-bibr">38</a>].</p>
Full article ">Figure 3
<p>Figure 1 as taken from CMS paper [<a href="#B39-symmetry-16-01013" class="html-bibr">39</a>]. Note that <math display="inline"><semantics> <mrow> <mi>H</mi> <mo>/</mo> <mi>A</mi> <mo>→</mo> <mi>t</mi> <mover accent="true"> <mi>t</mi> <mo stretchy="false">¯</mo> </mover> </mrow> </semantics></math> is also possible.</p>
Full article ">Figure 4
<p>Table 3 as taken from CMS paper [<a href="#B39-symmetry-16-01013" class="html-bibr">39</a>].</p>
Full article ">Figure 5
<p>Observed 95% CL upper limit on signal strength vs <math display="inline"><semantics> <msub> <mi>m</mi> <mi>A</mi> </msub> </semantics></math> and <math display="inline"><semantics> <msub> <mi>ρ</mi> <mrow> <mi>t</mi> <mi>u</mi> </mrow> </msub> </semantics></math> (<b>left</b>) and <math display="inline"><semantics> <msub> <mi>ρ</mi> <mrow> <mi>t</mi> <mi>c</mi> </mrow> </msub> </semantics></math> (<b>right</b>) for G2HDM without <span class="html-italic">A</span>–<span class="html-italic">H</span> interference, for the combination of <math display="inline"><semantics> <mrow> <msup> <mi>e</mi> <mo>±</mo> </msup> <msup> <mi>e</mi> <mo>±</mo> </msup> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <msup> <mi>μ</mi> <mo>±</mo> </msup> <msup> <mi>μ</mi> <mo>±</mo> </msup> </mrow> </semantics></math>, and <math display="inline"><semantics> <mrow> <msup> <mi>e</mi> <mo>±</mo> </msup> <msup> <mi>μ</mi> <mo>±</mo> </msup> </mrow> </semantics></math> categories. The color axis represents the observed upper limit on the signal strength. Expected (dashed) and observed (solid) exclusion contours are also shown (taken from Figure 6 of Ref. [<a href="#B39-symmetry-16-01013" class="html-bibr">39</a>]).</p>
Full article ">Figure 6
<p>Same as <a href="#symmetry-16-01013-f005" class="html-fig">Figure 5</a>, but with <span class="html-italic">A</span>–<span class="html-italic">H</span> interference (taken from Figure 7 of Ref. [<a href="#B39-symmetry-16-01013" class="html-bibr">39</a>]).</p>
Full article ">Figure 7
<p>The <math display="inline"><semantics> <mrow> <mrow> <mo stretchy="false">|</mo> </mrow> <msub> <mi>V</mi> <mrow> <mi>t</mi> <mi>b</mi> </mrow> </msub> <mo>/</mo> <msub> <mi>V</mi> <mrow> <mi>c</mi> <mi>b</mi> </mrow> </msub> <mrow> <mo stretchy="false">|</mo> </mrow> </mrow> </semantics></math> enhancement of <math display="inline"><semantics> <mrow> <mi>c</mi> <mi>g</mi> <mo>→</mo> <mi>b</mi> <msup> <mi>H</mi> <mo>+</mo> </msup> </mrow> </semantics></math> process w.r.t. 2HDM-II. <math display="inline"><semantics> <mrow> <msup> <mi>H</mi> <mo>+</mo> </msup> <mo>→</mo> <mi>t</mi> <mover accent="true"> <mi>b</mi> <mo stretchy="false">¯</mo> </mover> </mrow> </semantics></math> decay receives the same CKM factor <math display="inline"><semantics> <msub> <mi>V</mi> <mrow> <mi>t</mi> <mi>b</mi> </mrow> </msub> </semantics></math> multiplying <math display="inline"><semantics> <msub> <mi>ρ</mi> <mrow> <mi>t</mi> <mi>t</mi> </mrow> </msub> </semantics></math> [<a href="#B37-symmetry-16-01013" class="html-bibr">37</a>].</p>
Full article ">Figure 8
<p><math display="inline"><semantics> <mrow> <msup> <mi>B</mi> <mo>+</mo> </msup> <mo>→</mo> <msup> <mi>μ</mi> <mo>+</mo> </msup> <mi>ν</mi> </mrow> </semantics></math> decay, where the extra Yukawa coupling <math display="inline"><semantics> <msub> <mi>ρ</mi> <mrow> <mi>τ</mi> <mi>μ</mi> </mrow> </msub> </semantics></math> enters the process.</p>
Full article ">Figure 9
<p>A picture table of the <span class="html-italic">new flavor era</span> of G2HDM in the coming decades [<a href="#B48-symmetry-16-01013" class="html-bibr">48</a>]. The five gray boxes are remnants of <span class="html-italic">B</span>-<span class="html-italic">anomalies</span>, which evaporated with disappearance of <math display="inline"><semantics> <msub> <mi>R</mi> <mi>K</mi> </msub> </semantics></math> and <math display="inline"><semantics> <msub> <mi>R</mi> <msup> <mi>K</mi> <mo>*</mo> </msup> </msub> </semantics></math> “<span class="html-italic">anomalies</span>” [<a href="#B47-symmetry-16-01013" class="html-bibr">47</a>]. Blue circles are the experimental limits as of 8/2020, while orange circles are projected limits. The downward red arrow depicts the G2HDM expectation according to the “Rule of Thumb” of Equation (<a href="#FD8-symmetry-16-01013" class="html-disp-formula">8</a>) below, which explains why G2HDM effects are well-hidden when lighter generations are involved. The red stars reflect SM expectations, and the green boxes are SM-G2HDM interference ranges.</p>
Full article ">Figure 10
<p>Illustration of the “Road Not Taken”: sub-TeV <span class="html-italic">H</span>, <span class="html-italic">A</span>, and <math display="inline"><semantics> <msup> <mi>H</mi> <mo>±</mo> </msup> </semantics></math> exotic Higgs bosons.</p>
Full article ">
19 pages, 4709 KiB  
Review
SU(3) Gauge Symmetry: An Experimental Review of Diffractive Physics in e+p, p+p, p+A, and A+A Collision Systems
by Krista L. Smith
Symmetry 2024, 16(7), 898; https://doi.org/10.3390/sym16070898 - 15 Jul 2024
Viewed by 784
Abstract
This review focuses on diffractive physics, which involves the long-range interactions of strong nuclear force at high energies described by SU(3) gauge symmetry. It is expected that diffractive processes account for nearly 40% of the total cross-section at LHC energies. These processes consist [...] Read more.
This review focuses on diffractive physics, which involves the long-range interactions of strong nuclear force at high energies described by SU(3) gauge symmetry. It is expected that diffractive processes account for nearly 40% of the total cross-section at LHC energies. These processes consist of soft-scale physics where perturbation theory cannot be applied. Although highly successful and often described as a perfect theory, quantum chromodynamics relies heavily on perturbation theory, a model best suited for hard-scale physics. The study of pomerons could help bridge the soft and hard processes and provide a complete description of the theory of the strong interaction across the full momentum spectrum. Here, we will discuss some of the features of diffractive physics, experimental results from SPS, HERA, and the LHC, and where the field could potentially lead. With the recent publication of the odderon discovery in 2021 by the D0 and TOTEM collaborations and the new horizon of physics that lies ahead with the upcoming Electron-Ion Collider at Brookhaven National Laboratory, interest is seemingly piquing in high energy diffractive physics. Full article
Show Figures

Figure 1

Figure 1
<p>A collection of experimental measurements of strong coupling <math display="inline"><semantics> <mrow> <msub> <mi>α</mi> <mi>s</mi> </msub> <mrow> <mo>(</mo> <mi>Q</mi> <mo>)</mo> </mrow> </mrow> </semantics></math> are shown as a function of momentum transfer <span class="html-italic">Q</span>. Reprinted with permission from Elsevier [<a href="#B12-symmetry-16-00898" class="html-bibr">12</a>].</p>
Full article ">Figure 2
<p>Diagram of the squared momentum transfer versus parton density, where pomerons occupy the non-perturbative region of high parton density and strong coupling. Reprinted with permission from IOP Publishing [<a href="#B21-symmetry-16-00898" class="html-bibr">21</a>].</p>
Full article ">Figure 3
<p>PHENIX [<a href="#B40-symmetry-16-00898" class="html-bibr">40</a>,<a href="#B41-symmetry-16-00898" class="html-bibr">41</a>,<a href="#B42-symmetry-16-00898" class="html-bibr">42</a>] and ALICE [<a href="#B43-symmetry-16-00898" class="html-bibr">43</a>] <math display="inline"><semantics> <msup> <mi>π</mi> <mn>0</mn> </msup> </semantics></math> invariant cross-section measurements in <span class="html-italic">p</span>+<span class="html-italic">p</span> collisions at different center-of-mass energies are fit with either a power law function (<math display="inline"><semantics> <mrow> <msub> <mi>p</mi> <mi>T</mi> </msub> <mo>&gt;</mo> <mn>2</mn> </mrow> </semantics></math> GeV/c) or an exponential function (<math display="inline"><semantics> <mrow> <msub> <mi>p</mi> <mi>T</mi> </msub> <mo>&lt;</mo> <mn>1</mn> </mrow> </semantics></math> GeV/c). The PHENIX experiment recorded data in <span class="html-italic">p</span>+<span class="html-italic">p</span>, <span class="html-italic">p</span>+A, and A+A collisions from 2000–2016. Inset: An exponential function cannot describe the data above transverse momentum of <math display="inline"><semantics> <mrow> <mo>∼</mo> <mn>2</mn> </mrow> </semantics></math> GeV/c. Image Credit: Christian Klein-Boesing, Ph.D. Thesis (University of Munster) [<a href="#B44-symmetry-16-00898" class="html-bibr">44</a>].</p>
Full article ">Figure 4
<p>From top to bottom, the cross-section measurements for the <math display="inline"><semantics> <mi>ρ</mi> </semantics></math> meson, <math display="inline"><semantics> <mi>ω</mi> </semantics></math> meson, <math display="inline"><semantics> <mrow> <mi>ϕ</mi> <mo>(</mo> <mn>1020</mn> <mo>)</mo> </mrow> </semantics></math> meson, <math display="inline"><semantics> <mrow> <mi>J</mi> <mo>/</mo> <mi>ψ</mi> </mrow> </semantics></math> meson, and <math display="inline"><semantics> <mrow> <mo>Υ</mo> <mo>(</mo> <mn>1</mn> <mi>S</mi> <mo>)</mo> </mrow> </semantics></math> meson as a function of <math display="inline"><semantics> <msub> <mi>W</mi> <mrow> <mi>γ</mi> <mi>p</mi> </mrow> </msub> </semantics></math>, the total center-of-mass energy of the <math display="inline"><semantics> <mi>γ</mi> </semantics></math>−<span class="html-italic">p</span> system. Image Credit: Petra Merkel, Ph.D. Thesis (University of Hamburg) [<a href="#B49-symmetry-16-00898" class="html-bibr">49</a>].</p>
Full article ">Figure 5
<p>The squared mass <math display="inline"><semantics> <msup> <mi>M</mi> <mn>2</mn> </msup> </semantics></math> versus total spin <math display="inline"><semantics> <mrow> <mi>J</mi> <mo>=</mo> <mi>L</mi> <mo>+</mo> <mi>S</mi> </mrow> </semantics></math> is shown for three families of light unflavored mesons, which all fall along a Regge trajectory. Reprinted with permission from the American Physical Society [<a href="#B57-symmetry-16-00898" class="html-bibr">57</a>].</p>
Full article ">Figure 6
<p>Central exclusive production of vector mesons through interactions between a virtual photon and two gluons (or a pomeron <math display="inline"><semantics> <mrow> <mi mathvariant="normal">I</mi> <mspace width="-0.166667em"/> <mi mathvariant="normal">P</mi> </mrow> </semantics></math>). From left to right: (<b>a</b>) elastic interaction, (<b>b</b>) inelastic interaction with gluon radiation, (<b>c</b>) inelastic interaction with target dissociation, and (<b>d</b>) inelastic interaction with projectile dissociation. Reprinted with permission from IOP Publishing [<a href="#B79-symmetry-16-00898" class="html-bibr">79</a>].</p>
Full article ">Figure 7
<p>ATLAS experiment observes photon-induced <math display="inline"><semantics> <mrow> <msup> <mi>W</mi> <mo>+</mo> </msup> <msup> <mi>W</mi> <mo>−</mo> </msup> </mrow> </semantics></math> production in <span class="html-italic">p</span>+<span class="html-italic">p</span> collisions at <math display="inline"><semantics> <mrow> <msqrt> <mi>s</mi> </msqrt> <mo>=</mo> </mrow> </semantics></math> 13 TeV [<a href="#B80-symmetry-16-00898" class="html-bibr">80</a>]. Reprinted with permission from Springer [<a href="#B84-symmetry-16-00898" class="html-bibr">84</a>].</p>
Full article ">Figure 8
<p>ATLAS experiment observes dielectron production in ultraperipheral Pb+Pb collisions at <math display="inline"><semantics> <mrow> <msqrt> <msub> <mi>s</mi> <mrow> <mi>N</mi> <mi>N</mi> </mrow> </msub> </msqrt> <mo>=</mo> </mrow> </semantics></math> 5.02 TeV. Reprinted with permission from Springer [<a href="#B81-symmetry-16-00898" class="html-bibr">81</a>].</p>
Full article ">Figure 9
<p>The <math display="inline"><semantics> <mrow> <mi mathvariant="normal">I</mi> <mspace width="-0.166667em"/> <mi mathvariant="normal">P</mi> </mrow> </semantics></math>−<math display="inline"><semantics> <mrow> <mi mathvariant="normal">I</mi> <mspace width="-0.166667em"/> <mi mathvariant="normal">P</mi> </mrow> </semantics></math> interaction shown is considered non-resonant background in the <math display="inline"><semantics> <mrow> <msup> <mi>K</mi> <mo>+</mo> </msup> <msup> <mi>K</mi> <mo>−</mo> </msup> </mrow> </semantics></math> invariant mass distribution. Reprinted with permission from the American Physical Society [<a href="#B83-symmetry-16-00898" class="html-bibr">83</a>].</p>
Full article ">Figure 10
<p>The LHCb collaboration measured the cross-section for central exclusive production of vector mesons in <span class="html-italic">p</span>+<span class="html-italic">p</span> collisions as a function of the center-of-mass energy <math display="inline"><semantics> <msub> <mi>W</mi> <mrow> <mi>γ</mi> <mi>p</mi> </mrow> </msub> </semantics></math> of the <math display="inline"><semantics> <mi>γ</mi> </semantics></math>−<span class="html-italic">p</span> system. The LHCb data are shown for both <math display="inline"><semantics> <mrow> <msqrt> <mi>s</mi> </msqrt> <mo>=</mo> <mn>7</mn> </mrow> </semantics></math> TeV (black data points) and <math display="inline"><semantics> <mrow> <msqrt> <mi>s</mi> </msqrt> <mo>=</mo> <mn>13</mn> </mrow> </semantics></math> TeV (red data points). Reprinted with permission from Springer [<a href="#B85-symmetry-16-00898" class="html-bibr">85</a>].</p>
Full article ">Figure 11
<p>CMS collaboration results (red solid data points) for the <math display="inline"><semantics> <mrow> <mi>ρ</mi> <mo>(</mo> <mn>770</mn> <mo>)</mo> </mrow> </semantics></math> cross-section in <span class="html-italic">p</span>+Pb collisions as a function of the center-of-mass energy <math display="inline"><semantics> <msub> <mi>W</mi> <mrow> <mi>γ</mi> <mi>p</mi> </mrow> </msub> </semantics></math> of the <math display="inline"><semantics> <mi>γ</mi> </semantics></math>−<span class="html-italic">p</span> system. The CMS data are compared with fixed target data (magenta open data points), where a clear difference in <math display="inline"><semantics> <msub> <mi>W</mi> <mrow> <mi>γ</mi> <mi>p</mi> </mrow> </msub> </semantics></math> dependence can be observed. Reprinted with permission from Springer [<a href="#B86-symmetry-16-00898" class="html-bibr">86</a>].</p>
Full article ">Figure 12
<p>The LHCb collaboration differential cross-section results for <math display="inline"><semantics> <mrow> <mi>J</mi> <mo>/</mo> <mi>ψ</mi> </mrow> </semantics></math> photo-production (<b>left</b>) and <math display="inline"><semantics> <mrow> <mi>ψ</mi> <mo>(</mo> <mn>2</mn> <mi>S</mi> <mo>)</mo> </mrow> </semantics></math> photo-production (<b>right</b>) as a function of rapidity <span class="html-italic">y</span> in ultra-peripheral Pb+Pb collisions at <math display="inline"><semantics> <mrow> <msqrt> <msub> <mi>s</mi> <mrow> <mi>N</mi> <mi>N</mi> </mrow> </msub> </msqrt> <mo>=</mo> <mn>5</mn> </mrow> </semantics></math> TeV. The data are compared with theoretical predictions based on perturbative quantum chromodynamic (see [<a href="#B35-symmetry-16-00898" class="html-bibr">35</a>]) and color glass condensate (see [<a href="#B39-symmetry-16-00898" class="html-bibr">39</a>]) calculations. Reprinted with permission from Springer [<a href="#B87-symmetry-16-00898" class="html-bibr">87</a>].</p>
Full article ">Figure 13
<p>The <math display="inline"><semantics> <mrow> <msup> <mi>π</mi> <mo>+</mo> </msup> <msup> <mi>π</mi> <mo>−</mo> </msup> </mrow> </semantics></math> invariant mass spectrum is shown for central production in <span class="html-italic">p</span>+<span class="html-italic">p</span> collisions at 450 GeV/<span class="html-italic">c</span> incident beam momentum by the WA102 collaboration. Inset: Measured cross-section ratios for the <math display="inline"><semantics> <mrow> <mi>ρ</mi> <mo>(</mo> <mn>770</mn> <mo>)</mo> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <msub> <mi>f</mi> <mn>0</mn> </msub> <mrow> <mo>(</mo> <mn>980</mn> <mo>)</mo> </mrow> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <msub> <mi>f</mi> <mn>2</mn> </msub> <mrow> <mo>(</mo> <mn>1270</mn> <mo>)</mo> </mrow> </mrow> </semantics></math>, and <math display="inline"><semantics> <mrow> <msub> <mi>f</mi> <mn>0</mn> </msub> <mrow> <mo>(</mo> <mn>1500</mn> <mo>)</mo> </mrow> </mrow> </semantics></math> resonances recorded at two different collision energies. Reprinted with permission from Elsevier [<a href="#B90-symmetry-16-00898" class="html-bibr">90</a>].</p>
Full article ">Figure 14
<p>The ALICE collaboration results (red data points) for the cross-section of charged particles produced through double pomeron exchange as a function of center-of-mass energy <math display="inline"><semantics> <msqrt> <mi>s</mi> </msqrt> </semantics></math>. The ALICE LHC data are compared with lower energy collider data. Reprinted with permission from Springer [<a href="#B91-symmetry-16-00898" class="html-bibr">91</a>].</p>
Full article ">Figure 15
<p>Predictions of the <math display="inline"><semantics> <mrow> <msup> <mi>K</mi> <mo>+</mo> </msup> <msup> <mi>K</mi> <mo>−</mo> </msup> </mrow> </semantics></math> invariant mass spectrum for central production in <span class="html-italic">p</span>+<span class="html-italic">p</span> collisions at <math display="inline"><semantics> <mrow> <msqrt> <mi>s</mi> </msqrt> <mo>=</mo> <mn>13</mn> </mrow> </semantics></math> TeV. The resonances shown by the blue curve include scalars <math display="inline"><semantics> <mrow> <msub> <mi>f</mi> <mn>0</mn> </msub> <mrow> <mo>(</mo> <mn>980</mn> <mo>)</mo> </mrow> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <msub> <mi>f</mi> <mn>0</mn> </msub> <mrow> <mo>(</mo> <mn>1500</mn> <mo>)</mo> </mrow> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <msub> <mi>f</mi> <mn>0</mn> </msub> <mrow> <mo>(</mo> <mn>1710</mn> <mo>)</mo> </mrow> </mrow> </semantics></math>, and the tensors <math display="inline"><semantics> <mrow> <msub> <mi>f</mi> <mn>2</mn> </msub> <mrow> <mo>(</mo> <mn>1270</mn> <mo>)</mo> </mrow> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <msubsup> <mi>f</mi> <mn>2</mn> <mo>′</mo> </msubsup> <mrow> <mo>(</mo> <mn>1525</mn> <mo>)</mo> </mrow> </mrow> </semantics></math>, and are produced via double pomeron exchange. The curve shown in red is the expected contribution from photo-production, which includes the vector meson <math display="inline"><semantics> <mrow> <mi>ϕ</mi> <mo>(</mo> <mn>1020</mn> <mo>)</mo> </mrow> </semantics></math>. Reprinted with permission from the American Physical Society [<a href="#B83-symmetry-16-00898" class="html-bibr">83</a>].</p>
Full article ">Figure 16
<p>Predictions of the energy density formed in <span class="html-italic">p</span>+<span class="html-italic">p</span> collisions at the LHC in the transverse plane. The model is based on the EPOS4 framework and includes the interactions of six pomerons. Reprinted with permission from the American Physical Society [<a href="#B93-symmetry-16-00898" class="html-bibr">93</a>].</p>
Full article ">Figure 17
<p>The predicted Regge trajectories for <math display="inline"><semantics> <mrow> <msub> <mi>f</mi> <mn>0</mn> </msub> <mrow> <mo>(</mo> <mn>500</mn> <mo>)</mo> </mrow> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <msub> <mi>f</mi> <mn>0</mn> </msub> <mrow> <mo>(</mo> <mn>980</mn> <mo>)</mo> </mrow> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <msub> <mi>f</mi> <mn>2</mn> </msub> <mrow> <mo>(</mo> <mn>1270</mn> <mo>)</mo> </mrow> </mrow> </semantics></math>, and <math display="inline"><semantics> <mrow> <msub> <mi>f</mi> <mn>1</mn> </msub> <mrow> <mo>(</mo> <mn>1450</mn> <mo>)</mo> </mrow> </mrow> </semantics></math> are shown for the <math display="inline"><semantics> <mrow> <msup> <mi>π</mi> <mo>+</mo> </msup> <msup> <mi>π</mi> <mo>−</mo> </msup> </mrow> </semantics></math> invariant mass spectrum in <span class="html-italic">p</span>+<span class="html-italic">p</span> collisions at <math display="inline"><semantics> <mrow> <msqrt> <mi>s</mi> </msqrt> <mo>=</mo> <mn>13</mn> </mrow> </semantics></math> TeV. The predicted pomeron trajectory (dashed magenta curve) is shown with the corresponding glueball states (gb). Reprinted with permission from Springer [<a href="#B64-symmetry-16-00898" class="html-bibr">64</a>].</p>
Full article ">
13 pages, 9643 KiB  
Article
Mono-Higgs and Mono-Z Production in the Minimal Vector Dark Matter Model
by Gonzalo Benítez-Irarrázabal and Alfonso Zerwekh
Universe 2024, 10(7), 288; https://doi.org/10.3390/universe10070288 - 2 Jul 2024
Cited by 1 | Viewed by 498
Abstract
The minimal vector dark matter is a viable realization of the minimal dark matter paradigm. It extends the standard model by the inclusion of a vector matter field in the adjoint representation of SU(2)L. The dark matter candidate [...] Read more.
The minimal vector dark matter is a viable realization of the minimal dark matter paradigm. It extends the standard model by the inclusion of a vector matter field in the adjoint representation of SU(2)L. The dark matter candidate corresponds to the neutral component of the new vector field (V0). Previous studies have shown that the model can explain the observed dark matter abundance while evading direct and indirect searches. At colliders, the attention has been put on the production of the charged companions of the dark matter candidate. In this work, we focus on the mono-Higgs and mono-Z signals at Hadron colliders. The new charged vectors (V±) are invisible unless a dedicated search is performed. Consequently, we assume that the mono-Higgs and mono-Z processes correspond to the pphV+,0V,0 and ppZV+,0V,0 reactions, respectively. We show that, while the pphV+,0V,0 is more important, both channels may produce significant signals at the HL-LHC and colliders running at s=27 TeV and 100 TeV, probing almost the complete parameter space. Full article
(This article belongs to the Special Issue Search for New Physics at the LHC and Future Colliders)
Show Figures

Figure 1

Figure 1
<p>Parameter space allowed by experimental and observational constraints. This includes direct and indirect dark matter searches, dark matter abundance, and consistency with perturbative unitarity. The color scale indicates the value of the relic density. Notice that we have included the case of subabundance.</p>
Full article ">Figure 2
<p>Representative diagrams of the signal process used in the analysis. The diagrams include the effective <math display="inline"><semantics> <mrow> <mi>h</mi> <mi>g</mi> <mi>g</mi> </mrow> </semantics></math> vertex generated by a loop of top quarks. (<b>a</b>) <math display="inline"><semantics> <mrow> <mi>p</mi> <mi>p</mi> <mo>→</mo> <mi>h</mi> <mi>V</mi> <mi>V</mi> </mrow> </semantics></math>; (<b>b</b>) <math display="inline"><semantics> <mrow> <mi>p</mi> <mi>p</mi> <mo>→</mo> <mi>Z</mi> <mi>V</mi> <mi>V</mi> </mrow> </semantics></math>.</p>
Full article ">Figure 3
<p>Parameter space displaying the statistical significance and satisfying the condition <math display="inline"><semantics> <mrow> <mi>S</mi> <mo>&gt;</mo> <mn>2</mn> </mrow> </semantics></math>, for the HE-LHC with an integrated luminosity <math display="inline"><semantics> <mrow> <mi>L</mi> <mo>=</mo> <mn>10</mn> <mspace width="0.166667em"/> <mi>a</mi> <msup> <mi>b</mi> <mrow> <mo>−</mo> <mn>1</mn> </mrow> </msup> </mrow> </semantics></math> under various kinematic cuts in the mono-Higgs event.</p>
Full article ">Figure 4
<p>Ratio between signal and background events for each accelerator for the process <math display="inline"><semantics> <mrow> <mi>p</mi> <mi>p</mi> <mo>→</mo> <mi>h</mi> <msup> <mi>V</mi> <mn>0</mn> </msup> <msup> <mi>V</mi> <mn>0</mn> </msup> </mrow> </semantics></math>. The dashed gray lines indicate when the ratio is 1. All the points satisfy the constrain <math display="inline"><semantics> <mrow> <mi>S</mi> <mo>&gt;</mo> <mn>2</mn> </mrow> </semantics></math>.</p>
Full article ">Figure 5
<p>Parameter space displaying the value of the ratio between signal and background events in the color scale, for each accelerator for the process <math display="inline"><semantics> <mrow> <mi>p</mi> <mi>p</mi> <mo>→</mo> <mi>h</mi> <msup> <mi>V</mi> <mn>0</mn> </msup> <msup> <mi>V</mi> <mn>0</mn> </msup> </mrow> </semantics></math>.</p>
Full article ">Figure 6
<p>Statistical significance as a function of the vector mass for the process <math display="inline"><semantics> <mrow> <mi>p</mi> <mi>p</mi> <mo>→</mo> <mi>h</mi> <msup> <mi>V</mi> <mn>0</mn> </msup> <msup> <mi>V</mi> <mn>0</mn> </msup> </mrow> </semantics></math>. The dashed gray lines indicates when the significance reaches the 68% confidence level (<math display="inline"><semantics> <mrow> <mi>S</mi> <mo>=</mo> <mn>2</mn> </mrow> </semantics></math>).</p>
Full article ">Figure 7
<p>Parameter space showing the significance in the color bar for the process <math display="inline"><semantics> <mrow> <mi>p</mi> <mi>p</mi> <mo>→</mo> <mi>h</mi> <msup> <mi>V</mi> <mn>0</mn> </msup> <msup> <mi>V</mi> <mn>0</mn> </msup> </mrow> </semantics></math> @ 13.6; 27 and 100 TeV of energy center of mass with its respective optimal kinematic cut and maximum integrated luminosity.</p>
Full article ">Figure 8
<p>Ratio between signal and background events for each accelerator for the process <math display="inline"><semantics> <mrow> <mi>p</mi> <mi>p</mi> <mo>→</mo> <mi>h</mi> <msup> <mi>V</mi> <mrow> <mo>+</mo> <mo>,</mo> <mn>0</mn> </mrow> </msup> <msup> <mi>V</mi> <mrow> <mo>−</mo> <mo>,</mo> <mn>0</mn> </mrow> </msup> </mrow> </semantics></math>. The dashed gray lines indicate when the ratio is 1. All the points satisfy the constraint <math display="inline"><semantics> <mrow> <mi>S</mi> <mo>&gt;</mo> <mn>2</mn> </mrow> </semantics></math>.</p>
Full article ">Figure 9
<p>Statistical significance as a function of the vector mass for the process <math display="inline"><semantics> <mrow> <mi>p</mi> <mi>p</mi> <mo>→</mo> <mi>h</mi> <msup> <mi>V</mi> <mrow> <mo>+</mo> <mo>,</mo> <mn>0</mn> </mrow> </msup> <msup> <mi>V</mi> <mrow> <mo>−</mo> <mo>,</mo> <mn>0</mn> </mrow> </msup> </mrow> </semantics></math>. The dashed gray lines indicates when the significance reaches the 68% confidence level (<math display="inline"><semantics> <mrow> <mi>S</mi> <mo>=</mo> <mn>2</mn> </mrow> </semantics></math>).</p>
Full article ">Figure 10
<p>Parameter space showing the Significance in the color bar for the process <math display="inline"><semantics> <mrow> <mi>p</mi> <mi>p</mi> <mo>→</mo> <mi>h</mi> <msup> <mi>V</mi> <mrow> <mo>+</mo> <mo>,</mo> <mn>0</mn> </mrow> </msup> <msup> <mi>V</mi> <mrow> <mo>−</mo> <mo>,</mo> <mn>0</mn> </mrow> </msup> </mrow> </semantics></math> @ 13.6; 27 and 100 TeV of energy center of mass with its respective optimal kinematic cut and maximum integrated luminosity.</p>
Full article ">Figure 11
<p>Parameter space displaying the value of the ratio between signal and background events in the color scale, for each accelerator for the process <math display="inline"><semantics> <mrow> <mi>p</mi> <mi>p</mi> <mo>→</mo> <mi>h</mi> <msup> <mi>V</mi> <mrow> <mo>+</mo> <mo>,</mo> <mn>0</mn> </mrow> </msup> <msup> <mi>V</mi> <mrow> <mo>−</mo> <mo>,</mo> <mn>0</mn> </mrow> </msup> </mrow> </semantics></math>.</p>
Full article ">Figure 12
<p>Statistical significance in the parameter space for <math display="inline"><semantics> <mrow> <mi>p</mi> <mi>p</mi> <mo>→</mo> <mi>Z</mi> <msup> <mi>V</mi> <mn>0</mn> </msup> <msup> <mi>V</mi> <mn>0</mn> </msup> </mrow> </semantics></math>.</p>
Full article ">Figure 13
<p>Parameter space displaying the value of the ratio between signal and background events in the color scale, for each accelerator in the process <math display="inline"><semantics> <mrow> <mi>p</mi> <mi>p</mi> <mo>→</mo> <mi>Z</mi> <msup> <mi>V</mi> <mrow> <mo>+</mo> <mo>,</mo> <mn>0</mn> </mrow> </msup> <msup> <mi>V</mi> <mrow> <mo>−</mo> <mo>,</mo> <mn>0</mn> </mrow> </msup> </mrow> </semantics></math>.</p>
Full article ">Figure 14
<p>Parameter space showing the significance in the color bar for the process <math display="inline"><semantics> <mrow> <mi>p</mi> <mi>p</mi> <mo>→</mo> <mi>Z</mi> <msup> <mi>V</mi> <mrow> <mo>+</mo> <mo>,</mo> <mn>0</mn> </mrow> </msup> <msup> <mi>V</mi> <mrow> <mo>−</mo> <mo>,</mo> <mn>0</mn> </mrow> </msup> </mrow> </semantics></math> @ 13.6; 27 and 100 TeV of energy center of mass with its respective optimal kinematic cut and maximum integrated luminosity.</p>
Full article ">
13 pages, 5904 KiB  
Article
Integrative Transcriptomics and Proteomics Analysis of a Cotton Mutant yl1 with a Chlorophyll-Reduced Leaf
by Hejun Lu, Yuyang Xiao, Yuxin Liu, Jiachen Zhang and Yanyan Zhao
Plants 2024, 13(13), 1789; https://doi.org/10.3390/plants13131789 - 28 Jun 2024
Viewed by 494
Abstract
Leaf color mutants serve as ideal materials for studying photosynthesis, chlorophyll metabolism, and other physiological processes. Here, we identified a spontaneous yellow-leaf mutant (yl1) with chlorophyll-reduced leaves from G. hirsutum L. cv ZM24. Compare to wild type ZM24 with green leaves, [...] Read more.
Leaf color mutants serve as ideal materials for studying photosynthesis, chlorophyll metabolism, and other physiological processes. Here, we identified a spontaneous yellow-leaf mutant (yl1) with chlorophyll-reduced leaves from G. hirsutum L. cv ZM24. Compare to wild type ZM24 with green leaves, yl1 exhibited patchy yellow leaves and reduced chlorophyll content. To further explore the mechanisms of the patchy yellow phenotype of the mutant plant, the transcriptomics and proteomics profiles were conducted for the mutant and wild types. A total of 9247 differentially expressed genes (DEGs) and 1368 differentially accumulated proteins (DAPs) were identified. Following gene ontology (GO) annotation and KEGG enrichment, the DEGs/DAPs were found to be significantly involved in multiple important pathways, including the obsolete oxidation-reduction process, photosynthesis, light-harvesting, the microtubule-based process, cell redox homeostasis, and the carbohydrate metabolic process. In photosynthesis and the light-harvesting pathway, a total of 39 DAPs/DEGs were identified, including 9 genes in the PSI, 7 genes in the PS II, 9 genes in the light-harvesting chlorophyll protein complex (LHC), 10 genes in the PsbP family, and 4 genes in the cytochrome b6/f complex. To validate the reliability of the omics data, GhPPD1, a DAPs in the PsbP family, was knocked down in cotton using the TRV-based VIGS system, and it was observed that the GhPPD1-silenced plants exhibited patchy yellow color, accompanied by a significant decrease in chlorophyll content. In conclusion, this study integrated transcriptomic and proteomic approaches to gain a deeper understanding of the mechanisms underlying the chlorophyll-reduced leaf phenotype. Full article
(This article belongs to the Collection Exploration and Application of Useful Agricultural Genes)
Show Figures

Figure 1

Figure 1
<p>Plant phenotypes and pigment content (chlorophyll and carotenoid) of ZM24 and <span class="html-italic">yl1</span>. (<b>A</b>) Phenotype of <span class="html-italic">yl1</span> at three-leaf stage; (<b>B</b>) phenotype of ZM24 at three-leaf stage; (<b>C</b>) ultrastructure of the chloroplast of the wild-type and <span class="html-italic">yl1</span> leaves though TEM, CH, chloroplast; CW, cell wall; O, osmiophilic globule; G, grana lamella; SG, starch granule; (<b>D</b>) pigment (chlorophyll and carotenoid) content in young leaves of ZM24 and <span class="html-italic">yl1</span>. Leaves were picked from three plants of ZM24 and <span class="html-italic">yl1</span> for pigment content quantification, respectively. The asterisks indicate statistically significant differences, as determined by a Student’s two-tailed <span class="html-italic">t</span>-test (* <span class="html-italic">p</span> &lt; 0.05, ** <span class="html-italic">p</span> &lt; 0.01).</p>
Full article ">Figure 2
<p>Gene ontology (GO) annotation and KEGG pathway enrichment of DEGs (q-value (FDR) of ≤0.01) between ZM24 and <span class="html-italic">yl1</span>. (<b>A</b>) Gene ontology (GO) annotation of DEGs between ZM24 and <span class="html-italic">yl1</span>; (<b>B</b>) KEGG pathway enrichment of DEGs between ZM24 and <span class="html-italic">yl1</span>.</p>
Full article ">Figure 3
<p>Gene ontology (GO) annotation and KEGG pathway enrichment of DAPs between ZM24 and <span class="html-italic">yl1</span>. (<b>A</b>) Gene ontology (GO) annotation of DAPs between ZM24 and <span class="html-italic">yl1</span>; (<b>B</b>) KEGG pathway enrichment of DAPs between ZM24 and <span class="html-italic">yl1</span>.</p>
Full article ">Figure 4
<p>DEGs and DAPs association analysis. (<b>A</b>) Venn diagram of gene quantified in the transcriptome and proteome, DEGs, and DAPs. (<b>B</b>) Nine-quadrant map of gene and protein associations. Each dot represents a gene or protein; the values corresponding to each point in the horizontal and vertical coordinates indicate mRNA and protein expression differences, respectively.</p>
Full article ">Figure 5
<p>GO and KEGG cluster analysis of DAPs that showed differential expression at the protein level, but not the mRNA level. (<b>A</b>) Gene ontology (GO) annotation of DAPs; (<b>B</b>) KEGG pathway enrichment of DAPs.</p>
Full article ">Figure 6
<p>Heat map of the differential expression of DEGs and DAPs related to photosynthesis and light harvesting. (<b>A</b>) Differential expression of the genes between <span class="html-italic">yl1</span> and ZM24 in regards to mRNA level; (<b>B</b>) differential expression of the genes between <span class="html-italic">yl1</span> and ZM24 in regards to protein level.</p>
Full article ">Figure 7
<p>Effect of silencing of <span class="html-italic">GhPPD1</span> in cotton. (<b>A</b>) Relative expression level of <span class="html-italic">GhPPD1</span> in the leaves of <span class="html-italic">GhPPD1</span>-silenced (TRV::<span class="html-italic">GhPPD1</span>) and control (TRV::156) cotton; (<b>B</b>) pigment (chlorophyll and carotenoid) content in young leaves of <span class="html-italic">GhPPD1</span>-silenced cotton and control cotton; (<b>C</b>) phenotypes of whole plants (<b>top</b>) and the corresponding leaves (<b>bottom</b>) of <span class="html-italic">GhPPD1</span>-silenced and control cotton. For the qPCR and pigment content analysis, three biological repeats from each treatment were tested. The asterisks indicate statistically significant differences, as determined by a Student’s two-tailed <span class="html-italic">t</span>-test (* <span class="html-italic">p</span> &lt; 0.05, ** <span class="html-italic">p</span> &lt; 0.01).</p>
Full article ">Figure 8
<p>Protein expression changes occur in the processes of chlorophyll formation and carotenoid metabolism. (<b>A</b>) The proteins of CHLI1 (Ghir_A10G002740) and CHLM (Ghir_A07G005290) increased in the mutant leaves in comparison with green leaves; (<b>B</b>) Zeaxanthin epoxidase (ZEP, Ghir_A05G007800) was downregulated in protein level in mutant leaves compared with green leaves.</p>
Full article ">
41 pages, 6388 KiB  
Review
Forward & Far-Forward Heavy Hadrons with Jethad: A High-Energy Viewpoint
by Francesco Giovanni Celiberto
Particles 2024, 7(3), 502-542; https://doi.org/10.3390/particles7030029 - 24 Jun 2024
Viewed by 471
Abstract
Inspired by recent findings that semi-inclusive detections of heavy hadrons exhibit fair stabilization patterns in high-energy resummed distributions against (missing) higher-order corrections, we review and extend our studies on the hadroproduction of light and heavy hadrons tagged in forward and far-forward rapidity ranges. [...] Read more.
Inspired by recent findings that semi-inclusive detections of heavy hadrons exhibit fair stabilization patterns in high-energy resummed distributions against (missing) higher-order corrections, we review and extend our studies on the hadroproduction of light and heavy hadrons tagged in forward and far-forward rapidity ranges. We analyze the NLL/NLO+ behavior of rapidity rates and angular multiplicities via the Jethad method, where the resummation of next-to-leading energy logarithms and beyond is consistently embodied in the collinear picture. We explore kinematic regions that are within LHC typical acceptances, as well as novel sectors accessible thanks the combined tagging of a far-forward light or heavy hadron at future Forward Physics Facilities and a of central particle at LHC experiments via a precise timing-coincidence setup. Full article
(This article belongs to the Special Issue Feature Papers for Particles 2023)
Show Figures

Figure 1

Figure 1
<p>Diagrammatic representation of the hybrid factorization at work for the <math display="inline"><semantics> <msup> <mi>π</mi> <mo>±</mo> </msup> </semantics></math> + <math display="inline"><semantics> <msub> <mi mathvariant="script">H</mi> <mi>b</mi> </msub> </semantics></math> (<b>a</b>, left) and <math display="inline"><semantics> <msup> <mi>D</mi> <mrow> <mo>∗</mo> <mo>±</mo> </mrow> </msup> </semantics></math> + <math display="inline"><semantics> <msub> <mi mathvariant="script">H</mi> <mi>b</mi> </msub> </semantics></math> (<b>b</b>, right) channels. The big yellow ovals denote collinear PDFs. Maroon (navy blue) blobs stand for <math display="inline"><semantics> <msup> <mi>π</mi> <mo>±</mo> </msup> </semantics></math> (<math display="inline"><semantics> <msup> <mi>D</mi> <mrow> <mo>∗</mo> <mo>±</mo> </mrow> </msup> </semantics></math> meson collinear FFs, while green rectangles depict <math display="inline"><semantics> <msub> <mi mathvariant="script">H</mi> <mi>b</mi> </msub> </semantics></math> hadron collinear FFs. The high-energy Green’s function (red oval blob) is connected to singly off-shell coefficient functions by Reggeon zigzag lines.</p>
Full article ">Figure 2
<p>(<b>a</b>): A typical forward-backward hadron-jet tag in standard LHC rapidity ranges. (<b>b</b>): concurrent detection of a far-forward hadron at FPFs [<a href="#B1-particles-07-00029" class="html-bibr">1</a>,<a href="#B2-particles-07-00029" class="html-bibr">2</a>] and a central one at an LHC experiment thanks a narrow timing coincidence.</p>
Full article ">Figure 3
<p>Rapidity-interval rate for the inclusive <math display="inline"><semantics> <msup> <mi>π</mi> <mo>±</mo> </msup> </semantics></math> + <math display="inline"><semantics> <msub> <mi mathvariant="script">H</mi> <mi>b</mi> </msub> </semantics></math> production at <math display="inline"><semantics> <mrow> <msqrt> <mi>s</mi> </msqrt> <mo>=</mo> <mn>14</mn> </mrow> </semantics></math> TeV LHC (<b>left</b>) and FPF + LHC (<b>right</b>). Upper (lower) plots were obtained by using <tt>NNFF1.0</tt> (<tt>MAPFF1.0</tt>) pion NLO FFs together with <tt>KKSS07</tt> <span class="html-italic">b</span>-hadron NLO FFs, and <tt>NNPDF4.0</tt> NLO proton PDFs.</p>
Full article ">Figure 4
<p>Rapidity-interval rate for the inclusive <math display="inline"><semantics> <msup> <mi>D</mi> <mrow> <mo>∗</mo> <mo>±</mo> </mrow> </msup> </semantics></math> + <math display="inline"><semantics> <msub> <mi mathvariant="script">H</mi> <mi>b</mi> </msub> </semantics></math> production at <math display="inline"><semantics> <mrow> <msqrt> <mi>s</mi> </msqrt> <mo>=</mo> <mn>14</mn> </mrow> </semantics></math> TeV LHC (<b>left</b>) and FPF + LHC (<b>right</b>). Plots were obtained by using <tt>KKKS08</tt> <span class="html-italic">D</span>-meson NLO FFs together with <tt>KKSS07</tt> <span class="html-italic">b</span>-hadron NLO FFs, and <tt>NNPDF4.0</tt> NLO proton PDFs.</p>
Full article ">Figure 5
<p>Angular multiplicity for the inclusive <math display="inline"><semantics> <msup> <mi>π</mi> <mo>±</mo> </msup> </semantics></math> + <math display="inline"><semantics> <msub> <mi mathvariant="script">H</mi> <mi>b</mi> </msub> </semantics></math> production at <math display="inline"><semantics> <mrow> <msqrt> <mi>s</mi> </msqrt> <mo>=</mo> <mn>14</mn> </mrow> </semantics></math> TeV LHC (<b>left</b>) and FPF + LHC (<b>right</b>). Upper (lower) panels are for the <math display="inline"><semantics> <mrow> <mi>NLL</mi> <mo>/</mo> <msup> <mi>NLO</mi> <mo>+</mo> </msup> </mrow> </semantics></math> (<math display="inline"><semantics> <mrow> <mi>LL</mi> <mo>/</mo> <mi>LO</mi> </mrow> </semantics></math>) case. Plots were obtained by using <tt>NNFF1.0</tt> pion NLO FFs together with <tt>KKSS07</tt> <span class="html-italic">b</span>-hadron NLO FFs, and <tt>NNPDF4.0</tt> NLO proton PDFs.</p>
Full article ">Figure 6
<p>Angular multiplicity for the inclusive <math display="inline"><semantics> <msup> <mi>π</mi> <mo>±</mo> </msup> </semantics></math> + <math display="inline"><semantics> <msub> <mi mathvariant="script">H</mi> <mi>b</mi> </msub> </semantics></math> production at <math display="inline"><semantics> <mrow> <msqrt> <mi>s</mi> </msqrt> <mo>=</mo> <mn>14</mn> </mrow> </semantics></math> TeV LHC (<b>left</b>) and FPF + LHC (<b>right</b>). Upper (lower) panels are for the <math display="inline"><semantics> <mrow> <mi>NLL</mi> <mo>/</mo> <msup> <mi>NLO</mi> <mo>+</mo> </msup> </mrow> </semantics></math> (<math display="inline"><semantics> <mrow> <mi>LL</mi> <mo>/</mo> <mi>LO</mi> </mrow> </semantics></math>) case. Plots were obtained by using <tt>MAPFF1.0</tt> pion NLO FFs together with <tt>KKSS07</tt> <span class="html-italic">b</span>-hadron NLO FFs, and <tt>NNPDF4.0</tt> NLO proton PDFs.</p>
Full article ">Figure 7
<p>Angular multiplicity for the inclusive <math display="inline"><semantics> <msup> <mi>D</mi> <mrow> <mo>∗</mo> <mo>±</mo> </mrow> </msup> </semantics></math> + <math display="inline"><semantics> <msub> <mi mathvariant="script">H</mi> <mi>b</mi> </msub> </semantics></math> production at <math display="inline"><semantics> <mrow> <msqrt> <mi>s</mi> </msqrt> <mo>=</mo> <mn>14</mn> </mrow> </semantics></math> TeV LHC (<b>left</b>) and FPF + LHC (<b>right</b>). Upper (lower) panels are for the <math display="inline"><semantics> <mrow> <mi>NLL</mi> <mo>/</mo> <msup> <mi>NLO</mi> <mo>+</mo> </msup> </mrow> </semantics></math> (<math display="inline"><semantics> <mrow> <mi>LL</mi> <mo>/</mo> <mi>LO</mi> </mrow> </semantics></math>) case. Plots were obtained by using <tt>KKKS08</tt> <span class="html-italic">D</span>-meson NLO FFs together with <tt>KKSS07</tt> <span class="html-italic">b</span>-hadron NLO FFs, and <tt>NNPDF4.0</tt> NLO proton PDFs.</p>
Full article ">
18 pages, 1775 KiB  
Article
A Lightweight Algorithm to Model Radiation Damage Effects in Monte Carlo Events for High-Luminosity Large Hadron Collider Experiments
by Keerthi Nakkalil and Marco Bomben
Sensors 2024, 24(12), 3976; https://doi.org/10.3390/s24123976 - 19 Jun 2024
Viewed by 437
Abstract
Radiation damage significantly impacts the performance of silicon tracking detectors in Large Hadron Collider (LHC) experiments such as ATLAS and CMS, with signal reduction being the most critical effect; adjusting sensor bias voltage and detection thresholds can help mitigate these effects, generating simulated [...] Read more.
Radiation damage significantly impacts the performance of silicon tracking detectors in Large Hadron Collider (LHC) experiments such as ATLAS and CMS, with signal reduction being the most critical effect; adjusting sensor bias voltage and detection thresholds can help mitigate these effects, generating simulated data that accurately mirror the performance evolution with the accumulation of luminosity, hence fluence, is crucial. The ATLAS and CMS collaborations have developed and implemented algorithms to correct simulated Monte Carlo (MC) events for radiation damage effects, achieving impressive agreement between collision data and simulated events. In preparation for the high-luminosity phase (HL-LHC), the demand for a faster ATLAS MC production algorithm becomes imperative due to escalating collision, events, tracks, and particle hit rates, imposing stringent constraints on available computing resources. This article outlines the philosophy behind the new algorithm, its implementation strategy, and the essential components involved. The results from closure tests indicate that the events simulated using the new algorithm agree with fully simulated events at the level of few %. The first tests on computing performance show that the new algorithm is as fast as it is when no radiation damage corrections are applied. Full article
Show Figures

Figure 1

Figure 1
<p>Comparison of the evolution of CCE with integrated luminosity for IBL planar sensors in data (points) and MC events (bands) [<a href="#B18-sensors-24-03976" class="html-bibr">18</a>]; the corresponding radiation fluence is also indicated. The vertical bands include the estimated uncertainty affecting the input parameters of TCAD radiation damage model and of the trapping constants.</p>
Full article ">Figure 2
<p>ATLAS ITk layout. (<b>a</b>) Full detector; pixels/strips parts are in red/blue. (<b>b</b>) Pixel part. The <span class="html-italic">z</span> coordinate is measured along the beam axis and <span class="html-italic">r</span> is the radial distance from the center of ATLAS, from [<a href="#B21-sensors-24-03976" class="html-bibr">21</a>].</p>
Full article ">Figure 3
<p>A schematic diagram of carrier dynamics in silicon planar pixel sensors. As a MIP crosses the sensor (at an angle <math display="inline"><semantics> <msub> <mi>φ</mi> <mrow> <mi>t</mi> <mi>r</mi> <mi>k</mi> </mrow> </msub> </semantics></math>), electron–hole pairs are created and transported to their respective electrodes under the influence of electric and magnetic fields. Electrons and holes may be trapped before reaching the electrodes, but still induce a charge on the primary and neighbor electrodes.</p>
Full article ">Figure 4
<p>Modified Allpix<sup>2</sup> simulation chain with a single detector for radiation damage digitizer.</p>
Full article ">Figure 5
<p>(<b>a</b>) Depicts one-quarter of a <math display="inline"><semantics> <mrow> <mn>3</mn> <mo>×</mo> <mn>3</mn> </mrow> </semantics></math> pixel matrix structure simulated in TCAD and (<b>b</b>) illustrates the extracted electric field distribution as a function of charge generation depth of the structure in (<b>a</b>) irradiated at a fluence of 4 × 10<sup>15</sup> n<sub>eq</sub>cm<sup>−2</sup> at 600 V bias voltage. (<b>c</b>) A 2D projection of the weighting potential for the simulated structure.</p>
Full article ">Figure 6
<p>(top) Illustration of deposited (propagated) charge <math display="inline"><semantics> <mrow> <msub> <mi>q</mi> <mrow> <mi>d</mi> <mi>e</mi> <mi>p</mi> </mrow> </msub> <mrow> <mo>(</mo> <msub> <mi>q</mi> <mrow> <mi>p</mi> <mi>r</mi> <mi>o</mi> <mi>p</mi> </mrow> </msub> <mo>)</mo> </mrow> </mrow> </semantics></math> and position <math display="inline"><semantics> <mrow> <msub> <mover accent="true"> <mi>r</mi> <mo stretchy="false">→</mo> </mover> <mrow> <mi>d</mi> <mi>e</mi> <mi>p</mi> </mrow> </msub> <mrow> <mo>(</mo> <msub> <mover accent="true"> <mi>r</mi> <mo stretchy="false">→</mo> </mover> <mrow> <mi>p</mi> <mi>r</mi> <mi>o</mi> <mi>o</mi> <mi>p</mi> </mrow> </msub> <mo>)</mo> </mrow> </mrow> </semantics></math>. (bottom) Illustration of the 3 × 3 matrix used to evaluate the induced signal; the central pixel is the one containing <math display="inline"><semantics> <msub> <mi>q</mi> <mrow> <mi>p</mi> <mi>r</mi> <mi>o</mi> <mi>p</mi> </mrow> </msub> </semantics></math>; hence, <math display="inline"><semantics> <msub> <mover accent="true"> <mi>r</mi> <mo stretchy="false">→</mo> </mover> <mrow> <mi>p</mi> <mi>r</mi> <mi>o</mi> <mi>p</mi> </mrow> </msub> </semantics></math>.</p>
Full article ">Figure 7
<p>Distribution of observables for charge injected close to the sensor midplane. (<b>a</b>) Distribution of simulated CCE. (<b>b</b>) Distribution of simulated <math display="inline"><semantics> <mrow> <mo>Δ</mo> <mi>z</mi> </mrow> </semantics></math>. (<b>c</b>) Visualization of electron drift <math display="inline"><semantics> <mrow> <mo>Δ</mo> <mi>x</mi> </mrow> </semantics></math> vs. <math display="inline"><semantics> <mrow> <mo>Δ</mo> <mi>z</mi> </mrow> </semantics></math> towards the pixel side. The red line represents the fit of a straight line to the electron drift, and the average <math display="inline"><semantics> <mrow> <mo form="prefix">tan</mo> <msub> <mi>θ</mi> <mrow> <mi>L</mi> <mi>A</mi> </mrow> </msub> </mrow> </semantics></math> is estimated as the slope of the fitted line.</p>
Full article ">Figure 8
<p>LUTs for each of the three observables. The <span class="html-italic">z</span> = 0(100) μm corresponds to the pixel (backside) position of sensor. (<b>a</b>) CCE(<span class="html-italic">z</span>); (<b>b</b>) <math display="inline"><semantics> <mrow> <mo>Δ</mo> <mi>z</mi> <mo>(</mo> <mi>z</mi> <mo>)</mo> </mrow> </semantics></math>; (<b>c</b>) <math display="inline"><semantics> <mrow> <mo form="prefix">tan</mo> <msub> <mi>θ</mi> <mrow> <mi>L</mi> <mi>A</mi> </mrow> </msub> <mrow> <mo>(</mo> <mi>z</mi> <mo>)</mo> </mrow> </mrow> </semantics></math>.</p>
Full article ">Figure 9
<p>Cluster charge distribution for pions with <math display="inline"><semantics> <msub> <mi>p</mi> <mi>T</mi> </msub> </semantics></math> = 1 GeV/c impinging at <math display="inline"><semantics> <mi>η</mi> </semantics></math> = 0. (<b>a</b>) Full simulation; (<b>b</b>) LUT-based simulation.</p>
Full article ">Figure 10
<p>Cluster charge distribution for pions with <math display="inline"><semantics> <msub> <mi>p</mi> <mi>T</mi> </msub> </semantics></math> = 1 GeV/c impinging at <math display="inline"><semantics> <mi>η</mi> </semantics></math> = 1. (<b>a</b>) Full simulation; (<b>b</b>) LUT-based simulation.</p>
Full article ">Figure 11
<p>Cluster charge distribution for pions with <math display="inline"><semantics> <msub> <mi>p</mi> <mi>T</mi> </msub> </semantics></math> = 1 GeV/c impinging at <math display="inline"><semantics> <mi>η</mi> </semantics></math> = 1.4. (<b>a</b>) Full simulation; (<b>b</b>) LUT-based simulation.</p>
Full article ">Figure 12
<p>Cluster size distribution in the transverse direction for pions with <math display="inline"><semantics> <msub> <mi>p</mi> <mi>T</mi> </msub> </semantics></math> = 1 GeV/c impinging at <math display="inline"><semantics> <mi>η</mi> </semantics></math> = 0. (<b>a</b>) Full simulation; (<b>b</b>) LUT-based simulation.</p>
Full article ">Figure 13
<p>Cluster size distribution in the transverse direction for pions with <math display="inline"><semantics> <msub> <mi>p</mi> <mi>T</mi> </msub> </semantics></math> = 1 GeV/c impinging at <math display="inline"><semantics> <mi>η</mi> </semantics></math> = 1. (<b>a</b>) Full simulation; (<b>b</b>) LUT-based simulation.</p>
Full article ">Figure 14
<p>Cluster size distribution in the transverse direction for pions with <math display="inline"><semantics> <msub> <mi>p</mi> <mi>T</mi> </msub> </semantics></math> = 1 GeV/c impinging at <math display="inline"><semantics> <mi>η</mi> </semantics></math> = 1.4. (<b>a</b>) Full simulation; (<b>b</b>) LUT-based simulation.</p>
Full article ">Figure 15
<p>Cluster size distribution in the longitudinal direction for pions with <math display="inline"><semantics> <msub> <mi>p</mi> <mi>T</mi> </msub> </semantics></math> = 1 GeV/c impinging at <math display="inline"><semantics> <mi>η</mi> </semantics></math> = 0. (<b>a</b>) Full simulation; (<b>b</b>) LUT-based simulation.</p>
Full article ">Figure 16
<p>Cluster size distribution in the longitudinal direction for pions with <math display="inline"><semantics> <msub> <mi>p</mi> <mi>T</mi> </msub> </semantics></math> = 1 GeV/c impinging at <math display="inline"><semantics> <mi>η</mi> </semantics></math> = 1. (<b>a</b>) Full simulation; (<b>b</b>) LUT-based simulation.</p>
Full article ">Figure 17
<p>Cluster size distribution in the longitudinal direction for pions with <math display="inline"><semantics> <msub> <mi>p</mi> <mi>T</mi> </msub> </semantics></math> = 1 GeV/c impinging at <math display="inline"><semantics> <mi>η</mi> </semantics></math> = 1.4. (<b>a</b>) Full simulation; (<b>b</b>) LUT-based simulation.</p>
Full article ">
13 pages, 7107 KiB  
Article
Results and Perspectives from the First Two Years of Neutrino Physics at the LHC by the SND@LHC Experiment
by D. Abbaneo, S. Ahmad, R. Albanese, A. Alexandrov, F. Alicante, K. Androsov, A. Anokhina, T. Asada, C. Asawatangtrakuldee, M. A. Ayala Torres, C. Battilana, A. Bay, A. Bertocco, C. Betancourt, D. Bick, R. Biswas, A. Blanco Castro, V. Boccia, M. Bogomilov, D. Bonacorsi, W. M. Bonivento, P. Bordalo, A. Boyarsky, S. Buontempo, M. Campanelli, T. Camporesi, V. Canale, A. Castro, D. Centanni, F. Cerutti, M. Chernyavskiy, K.-Y. Choi, S. Cholak, F. Cindolo, M. Climescu, A. P. Conaboy, G. M. Dallavalle, D. Davino, P. T. de Bryas, G. De Lellis, M. De Magistris, A. De Roeck, A. De Rújula, M. De Serio, D. De Simone, A. Di Crescenzo, D. Di Ferdinando, R. Donà, O. Durhan, F. Fabbri, F. Fedotovs, M. Ferrillo, M. Ferro-Luzzi, R. A. Fini, A. Fiorillo, R. Fresa, W. Funk, F. M. Garay Walls, A. Golovatiuk, A. Golutvin, E. Graverini, A. M. Guler, V. Guliaeva, G. J. Haefeli, C. Hagner, J. C. Helo Herrera, E. van Herwijnen, P. Iengo, S. Ilieva, A. Infantino, A. Iuliano, R. Jacobsson, C. Kamiscioglu, A. M. Kauniskangas, E. Khalikov, S. H. Kim, Y. G. Kim, G. Klioutchnikov, M. Komatsu, N. Konovalova, S. Kuleshov, L. Krzempek, H. M. Lacker, O. Lantwin, F. Lasagni Manghi, A. Lauria, K. Y. Lee, K. S. Lee, S. Lo Meo, V. P. Loschiavo, S. Marcellini, A. Margiotta, A. Mascellani, F. Mei, A. Miano, A. Mikulenko, M. C. Montesi, F. L. Navarria, W. Nuntiyakul, S. Ogawa, N. Okateva, M. Ovchynnikov, G. Paggi, B. D. Park, A. Pastore, A. Perrotta, D. Podgrudkov, N. Polukhina, A. Prota, A. Quercia, S. Ramos, A. Reghunath, T. Roganova, F. Ronchetti, T. Rovelli, O. Ruchayskiy, T. Ruf, M. Sabate Gilarte, Z. Sadykov, M. Samoilov, V. Scalera, W. Schmidt-Parzefall, O. Schneider, G. Sekhniaidze, N. Serra, M. Shaposhnikov, V. Shevchenko, T. Shchedrina, L. Shchutska, H. Shibuya, S. Simone, G. P. Siroli, G. Sirri, G. Soares, J. Y. Sohn, O. J. Soto Sandoval, M. Spurio, N. Starkov, J. Steggemann, I. Timiryasov, V. Tioukov, F. Tramontano, C. Trippl, E. Ursov, A. Ustyuzhanin, G. Vankova-Kirilova, G. Vasquez, V. Verguilov, N. Viegas Guerreiro Leonardo, C. Vilela, C. Visone, R. Wanke, E. Yaman, Z. Yang, C. Yazici, C. S. Yoon, E. Zaffaroni, J. Zamora Saa and the SND@LHC Collaborationadd Show full author list remove Hide full author list
Symmetry 2024, 16(6), 702; https://doi.org/10.3390/sym16060702 - 6 Jun 2024
Viewed by 1122
Abstract
After rapid approval and installation, the SND@LHC Collaboration was able to gather data successfully in 2022 and 2023. Neutrino interactions from νμs originating at the LHC IP1 were observed. Since muons constitute the major background for neutrino interactions, the muon flux [...] Read more.
After rapid approval and installation, the SND@LHC Collaboration was able to gather data successfully in 2022 and 2023. Neutrino interactions from νμs originating at the LHC IP1 were observed. Since muons constitute the major background for neutrino interactions, the muon flux entering the acceptance was also measured. To improve the rejection power of the detector and to increase the fiducial volume, a third Veto plane was recently installed. The energy resolution of the calorimeter system was measured in a test beam. This will help with the identification of νe interactions that can be used to probe charm production in the pseudo-rapidity range of SND@LHC (7.2 < η < 8.4). Events with three outgoing muons have been observed and are being studied. With no vertex in the target, these events are very likely from muon trident production in the rock before the detector. Events with a vertex in the detector could be from trident production, photon conversion, or positron annihilation. To enhance SND@LHC’s physics case, an upgrade is planned for HL-LHC that will increase the statistics and reduce the systematics. The installation of a magnet will allow the separation of νμ from ν¯μ Full article
Show Figures

Figure 1

Figure 1
<p>Schematic layout of the SND@LHC detector. The pseudo-rapidity <math display="inline"><semantics> <mi>η</mi> </semantics></math> values are the limits for particles hitting the lower left and the upper right corner of the ECC. The side view includes an illustration of a simulated <math display="inline"><semantics> <msub> <mi>ν</mi> <mi>μ</mi> </msub> </semantics></math> CC interaction.</p>
Full article ">Figure 2
<p>Display of a <math display="inline"><semantics> <msub> <mi>ν</mi> <mi>μ</mi> </msub> </semantics></math> CC candidate event. Hits in the SciFi (grey), and hadronic calorimeter and muon system (green) are shown as blue markers and black bars, respectively, and the line represents the reconstructed muon track. The dotted line in red shows the collision axis. The Veto (red) appears in front of the SciFi.</p>
Full article ">Figure 3
<p>Distribution of SciFi tracks at the most upstream detector plane (<b>left</b>). Distribution of DS tracks at the most upstream detector plane (<b>right</b>). The distributions are normalized to unit integral. Horizontal stripes of lower counts in the central part of the detector are caused by scintillator bar inefficiencies. The red border delimits the region considered for the DS muon flux measurement.</p>
Full article ">Figure 4
<p>The extrapolated position of the reconstructed Scifi track at Veto plane 0 (<b>left</b>) and Veto plane 1 (<b>right</b>) for events with less than 13 fired Veto channels. The red square encloses the fiducial area used for the observation of neutrino interactions.</p>
Full article ">Figure 5
<p>Current Veto system layout with two planes with horizontal bars (<b>left</b>). The upgraded Veto system with a third plane with vertical bars (<b>right</b>).</p>
Full article ">Figure 6
<p>The detector used for the energy calibration.</p>
Full article ">Figure 7
<p>The SciFi response for particles of various energy. The different colors denote the starting point of the shower (blue indicates wall 1, red 2, and pink 3) (<b>left</b>). The energy response of the SciFi vs. the US for 180 <math display="inline"><semantics> <mrow> <mi>Ge</mi> <mspace width="-1.00006pt"/> <mi mathvariant="normal">V</mi> </mrow> </semantics></math> pions (<b>right</b>).</p>
Full article ">Figure 8
<p>Preliminary results for the reconstructed energy from the 2023 test beam.</p>
Full article ">Figure 9
<p>Muon trident–ike events detected at SND@LHC. The event on the left belongs to category (<b>A</b>) (three almost parallel tracks entering the detector). The event on the right belongs to category (<b>B</b>) (an incoming track, a vertex in the target with three outgoing tracks).</p>
Full article ">Figure 10
<p>The proposed AdvSND detectors.</p>
Full article ">Figure 11
<p>The AdvSND-Far detector (<b>left</b>) and its position in TI18 (<b>right</b>).</p>
Full article ">Figure 12
<p><math display="inline"><semantics> <msub> <mi>ν</mi> <mi>μ</mi> </msub> </semantics></math> flux in the acceptance of the AdvSND-Far target.</p>
Full article ">Figure 13
<p>The AdvSND-Near detector (<b>left</b>) and a possible location in the UJ57 cavern (<b>right</b>).</p>
Full article ">
21 pages, 1039 KiB  
Article
Charmonium Transport in Heavy-Ion Collisions at the LHC
by Biaogang Wu and Ralf Rapp
Universe 2024, 10(6), 244; https://doi.org/10.3390/universe10060244 - 31 May 2024
Cited by 1 | Viewed by 430
Abstract
We provide an update on our semi-classical transport approach for quarkonium production in high-energy heavy-ion collisions, focusing on J/ψ and ψ(2S) mesons in 5.02 TeV Pb-Pb collisions at the Large Hadron Collider (LHC) at both forward and [...] Read more.
We provide an update on our semi-classical transport approach for quarkonium production in high-energy heavy-ion collisions, focusing on J/ψ and ψ(2S) mesons in 5.02 TeV Pb-Pb collisions at the Large Hadron Collider (LHC) at both forward and mid-rapidity. In particular, we employ the most recent charm-production cross sections reported in pp collisions, which are pivotal for the magnitude of the regeneration contribution, and their modifications due to cold-nuclear-matter (CNM) effects. Multi-differential observables are calculated in terms of nuclear modification factors as a function of centrality, transverse momentum, and rapidity, including the contributions from feeddown from bottom hadron decays. For our predictions for ψ(2S) production, the mechanism of sequential regeneration relative to the more strongly bound J/ψ meson plays an important role in interpreting recent ALICE data. Full article
Show Figures

Figure 1

Figure 1
<p>Charm–quark mass (<b>left panel</b>) and charmonium binding energies (<b>right panel</b>) as a function of temperature.</p>
Full article ">Figure 2
<p>Dissociation rates of charmonia in the medium as a function of momentum at different temperatures (<b>left panel</b>) and as a function of temperature at <span class="html-italic">p</span> = 0 and <math display="inline"><semantics> <mrow> <mn>3</mn> <mspace width="0.166667em"/> <mi>GeV</mi> <mo>/</mo> <mi>c</mi> </mrow> </semantics></math> (<b>right panel</b>).</p>
Full article ">Figure 3
<p>Gluo-dissociation rates of charmonia in the QGP as a function of momentum (<b>left panel</b>) for three different temperatures and as a function of temperature at <math display="inline"><semantics> <mrow> <mi>p</mi> <mo>=</mo> <mn>0</mn> </mrow> </semantics></math> (<b>right panel</b>) where they are also compared to the quasifree rates.</p>
Full article ">Figure 4
<p>Our parameterizations of the suppression of the <math display="inline"><semantics> <mrow> <mi>c</mi> <mover accent="true"> <mi>c</mi> <mo>¯</mo> </mover> </mrow> </semantics></math> production cross section due to nuclear shadowing of the parton distribution functions as a function of <math display="inline"><semantics> <msub> <mi>p</mi> <mi mathvariant="normal">T</mi> </msub> </semantics></math> (<b>left panel</b>) in p-Pb collisions in terms of the product at forward and backward rapidities and compared to ALICE data [<a href="#B45-universe-10-00244" class="html-bibr">45</a>] and versus <math display="inline"><semantics> <msub> <mi>N</mi> <mi>part</mi> </msub> </semantics></math> in Pb-Pb collisions (<b>right panel</b>).</p>
Full article ">Figure 5
<p>Fraction of bottom hadron decay feeddown to inclusive <math display="inline"><semantics> <mrow> <mi>J</mi> <mo>/</mo> <mi>ψ</mi> </mrow> </semantics></math> production as measured by ALICE, ATLAS, and CMS in pp collisions at the LHC [<a href="#B48-universe-10-00244" class="html-bibr">48</a>]; our functional fit is shown by the solid line.</p>
Full article ">Figure 6
<p>The temperature evolution of the fireball model at forward rapidity in 5.02 TeV Pb-Pb collisions at different centralities.</p>
Full article ">Figure 7
<p>Time evolution of charmonium kinetics in central (<b>left panel</b>) and peripheral (<b>right panel</b>) Pb-Pb collisions at the LHC at forward rapidity. Blue and orange lines represent the direct <math display="inline"><semantics> <mrow> <mi>J</mi> <mo>/</mo> <mi>ψ</mi> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <mi>ψ</mi> <mo>(</mo> <mn>2</mn> <mi>S</mi> <mo>)</mo> </mrow> </semantics></math> yields, respectively, where the dashed and solid lines correspond to the suppressed primordial and regenerated contributions, respectively, while the dashed–dotted lines are the pertinent equilibrium limits (including the thermal relaxation time correction). The calculations are carried out for a charm cross section of <math display="inline"><semantics> <mrow> <mi mathvariant="normal">d</mi> <msub> <mi>σ</mi> <mrow> <mi>c</mi> <mover accent="true"> <mi>c</mi> <mo>¯</mo> </mover> </mrow> </msub> <mo>/</mo> <mi mathvariant="normal">d</mi> <mi>y</mi> <mo>=</mo> <mn>0.72</mn> <mspace width="0.166667em"/> </mrow> </semantics></math> mb (the central value at forward rapidity, recall <a href="#universe-10-00244-t001" class="html-table">Table 1</a>) including an up to 20% shadowing in central collisions (which is down to about 4% at 60–90% centrality).</p>
Full article ">Figure 8
<p>Centrality dependence of charmonium <math display="inline"><semantics> <msub> <mi>R</mi> <mi>AA</mi> </msub> </semantics></math> in Pb-Pb(5.02 TeV) collisions at the LHC. The upper (lower) panels are for mid- (forward) rapidities, and the left (right) panels are for <math display="inline"><semantics> <mrow> <mi>J</mi> <mo>/</mo> <mi>ψ</mi> </mrow> </semantics></math> (<math display="inline"><semantics> <mrow> <mi>ψ</mi> <mo>(</mo> <mn>2</mn> <mi>S</mi> <mo>)</mo> </mrow> </semantics></math>). The bands for the primordial (orange), regenerated (red), and total (blue) components include uncertainties from the initial charm cross section and the shadowing effect (added in quadrature). The experimental cuts in pair <math display="inline"><semantics> <msub> <mi>p</mi> <mi mathvariant="normal">T</mi> </msub> </semantics></math> serve to suppress the contribution from coherent photoproduction and are also applied to our calculations based on the <math display="inline"><semantics> <msub> <mi>p</mi> <mi mathvariant="normal">T</mi> </msub> </semantics></math> spectra computed in <a href="#sec4-universe-10-00244" class="html-sec">Section 4</a>. The calculations are compared to ALICE <math display="inline"><semantics> <mrow> <mi>J</mi> <mo>/</mo> <mi>ψ</mi> </mrow> </semantics></math> data from 2018 (brown) and 2023 (black) [<a href="#B6-universe-10-00244" class="html-bibr">6</a>,<a href="#B7-universe-10-00244" class="html-bibr">7</a>,<a href="#B8-universe-10-00244" class="html-bibr">8</a>], and <math display="inline"><semantics> <mrow> <mi>ψ</mi> <mo>(</mo> <mn>2</mn> <mi>S</mi> <mo>)</mo> </mrow> </semantics></math> data [<a href="#B9-universe-10-00244" class="html-bibr">9</a>].</p>
Full article ">Figure 9
<p>The ratio of <math display="inline"><semantics> <mrow> <mi>ψ</mi> <mo>(</mo> <mn>2</mn> <mi>S</mi> <mo>)</mo> </mrow> </semantics></math> over <math display="inline"><semantics> <mrow> <mi>J</mi> <mo>/</mo> <mi>ψ</mi> </mrow> </semantics></math> as a function of <math display="inline"><semantics> <msub> <mi>N</mi> <mi>part</mi> </msub> </semantics></math> in Pb-Pb(5.02 TeV) collisions at forward rapidity, compared to ALICE data [<a href="#B9-universe-10-00244" class="html-bibr">9</a>]. The bands indicate the uncertainty of the <math display="inline"><semantics> <mrow> <mi>ψ</mi> <mo>(</mo> <mn>2</mn> <mi>S</mi> <mo>)</mo> </mrow> </semantics></math> dissociation temperature around the mixed phase, <math display="inline"><semantics> <msub> <mi>T</mi> <mi>diss</mi> </msub> </semantics></math> =179–180 MeV.</p>
Full article ">Figure 10
<p>The time evolution (<b>left panel</b>) and centrality dependence (<b>right panel</b>, additionally including <span class="html-italic">B</span> feeddown) of the regenerated (red), primordial (orange), and total (blue) <math display="inline"><semantics> <mrow> <mi>J</mi> <mo>/</mo> <mi>ψ</mi> </mrow> </semantics></math> production, with the bands illustrating the uncertainty as to whether gluo-dissociation rates are accounted for or not. The same values for shadowing and the <math display="inline"><semantics> <mrow> <mi>c</mi> <mover accent="true"> <mi>c</mi> <mo>¯</mo> </mover> </mrow> </semantics></math> cross section as in <a href="#universe-10-00244-f007" class="html-fig">Figure 7</a> are used, and the ALICE data are from Ref. [<a href="#B8-universe-10-00244" class="html-bibr">8</a>].</p>
Full article ">Figure 11
<p>Normalized <math display="inline"><semantics> <msub> <mi>p</mi> <mi mathvariant="normal">T</mi> </msub> </semantics></math> spectra fitted to ALICE data of inclusive <math display="inline"><semantics> <mrow> <mi>J</mi> <mo>/</mo> <mi>ψ</mi> </mrow> </semantics></math> production in pp collisions at mid-rapidity [<a href="#B43-universe-10-00244" class="html-bibr">43</a>,<a href="#B53-universe-10-00244" class="html-bibr">53</a>,<a href="#B54-universe-10-00244" class="html-bibr">54</a>] (<b>left panel</b>), forward rapidity [<a href="#B44-universe-10-00244" class="html-bibr">44</a>] (<b>middle panel</b>), and inclusive <math display="inline"><semantics> <mrow> <mi>ψ</mi> <mo>(</mo> <mn>2</mn> <mi>S</mi> <mo>)</mo> </mrow> </semantics></math> at forward rapidity [<a href="#B44-universe-10-00244" class="html-bibr">44</a>].</p>
Full article ">Figure 12
<p>Transverse momentum spectra (<b>upper panels</b>) and pertinent nuclear modification factors (<b>lower panels</b>) of inclusive <math display="inline"><semantics> <mrow> <mi>J</mi> <mo>/</mo> <mi>ψ</mi> </mrow> </semantics></math> production in central (<b>left panels</b>) and semi-central (<b>right panels</b>) Pb-Pb (5.02 TeV) collisions at mid-rapidity, compared to ALICE data [<a href="#B7-universe-10-00244" class="html-bibr">7</a>,<a href="#B8-universe-10-00244" class="html-bibr">8</a>]. The spectra in pp collisions, scaled by the pertinent binary collision number, <math display="inline"><semantics> <mrow> <msub> <mi>N</mi> <mi>coll</mi> </msub> <mrow> <mo>(</mo> <mi>b</mi> <mo>)</mo> </mrow> </mrow> </semantics></math>, are shown as dashed lines in the upper panels. The bands and the colors of the data have the same meaning as in <a href="#universe-10-00244-f008" class="html-fig">Figure 8</a>.</p>
Full article ">Figure 13
<p>Same as <a href="#universe-10-00244-f012" class="html-fig">Figure 12</a> but for <math display="inline"><semantics> <mrow> <mi>ψ</mi> <mo>(</mo> <mn>2</mn> <mi>S</mi> <mo>)</mo> </mrow> </semantics></math> (and without experimental data).</p>
Full article ">Figure 14
<p>Forward rapidity <math display="inline"><semantics> <mrow> <mi>J</mi> <mo>/</mo> <mi>ψ</mi> </mrow> </semantics></math><math display="inline"><semantics> <msub> <mi>p</mi> <mi mathvariant="normal">T</mi> </msub> </semantics></math> spectra (<b>upper panels</b>) and <math display="inline"><semantics> <msub> <mi>R</mi> <mi>AA</mi> </msub> </semantics></math> (<b>lower panels</b>) compared to ALICE data [<a href="#B8-universe-10-00244" class="html-bibr">8</a>,<a href="#B10-universe-10-00244" class="html-bibr">10</a>] for 3 centrality selections. Bands and lines have the same meaning as in <a href="#universe-10-00244-f008" class="html-fig">Figure 8</a>.</p>
Full article ">Figure 15
<p>Same as <a href="#universe-10-00244-f014" class="html-fig">Figure 14</a> but for <math display="inline"><semantics> <mrow> <mi>ψ</mi> <mo>(</mo> <mn>2</mn> <mi>S</mi> <mo>)</mo> </mrow> </semantics></math> for 4 different centralities.</p>
Full article ">Figure 16
<p>Nuclear modification factor as a function of <math display="inline"><semantics> <msub> <mi>p</mi> <mi mathvariant="normal">T</mi> </msub> </semantics></math> for inclusive <math display="inline"><semantics> <mrow> <mi>J</mi> <mo>/</mo> <mi>ψ</mi> </mrow> </semantics></math> (blue) and <math display="inline"><semantics> <mrow> <mi>ψ</mi> <mo>(</mo> <mn>2</mn> <mi>S</mi> <mo>)</mo> </mrow> </semantics></math> (red) production at forward rapidity in 0–90% Pb-Pb (5.02 TeV) collisions, compared to ALICE data [<a href="#B9-universe-10-00244" class="html-bibr">9</a>].</p>
Full article ">Figure 17
<p>Transverse momentum dependent <math display="inline"><semantics> <mrow> <mi>ψ</mi> <mo>(</mo> <mn>2</mn> <mi>S</mi> <mo>)</mo> </mrow> </semantics></math> over <math display="inline"><semantics> <mrow> <mi>J</mi> <mo>/</mo> <mi>ψ</mi> </mrow> </semantics></math> ratio (<b>left panel</b>) and their <math display="inline"><semantics> <msub> <mi>R</mi> <mi>AA</mi> </msub> </semantics></math> double ratio (<b>right panel</b>) at forward rapidity compared to ALICE data [<a href="#B9-universe-10-00244" class="html-bibr">9</a>].</p>
Full article ">Figure 18
<p>Inclusive <math display="inline"><semantics> <mrow> <mi>J</mi> <mo>/</mo> <mi>ψ</mi> </mrow> </semantics></math> nuclear modification factor as a function of <math display="inline"><semantics> <msub> <mi>N</mi> <mi>part</mi> </msub> </semantics></math> for Pb-Pb collisions at 5.02 TeV for four <math display="inline"><semantics> <msub> <mi>p</mi> <mi mathvariant="normal">T</mi> </msub> </semantics></math> intervals, compared with data [<a href="#B10-universe-10-00244" class="html-bibr">10</a>].</p>
Full article ">Figure 19
<p><math display="inline"><semantics> <mrow> <mo>〈</mo> <msub> <mi>p</mi> <mi mathvariant="normal">T</mi> </msub> <mo>〉</mo> </mrow> </semantics></math> (<b>upper left</b>) and <math display="inline"><semantics> <mrow> <mo>〈</mo> <msubsup> <mi>p</mi> <mrow> <mi mathvariant="normal">T</mi> </mrow> <mn>2</mn> </msubsup> <mo>〉</mo> </mrow> </semantics></math> (<b>upper right</b>) of <math display="inline"><semantics> <mrow> <mi>J</mi> <mo>/</mo> <mi>ψ</mi> </mrow> </semantics></math> in 5.02 TeV pp and Pb-Pb collisions at mid-rapidity. Their ratios relative to the pp results are shown in the lower panels; ALICE data are from Refs. [<a href="#B9-universe-10-00244" class="html-bibr">9</a>,<a href="#B11-universe-10-00244" class="html-bibr">11</a>].</p>
Full article ">
15 pages, 2655 KiB  
Article
Strange Things in Bottom-to-Strange Decays: The Standard Model Turned Upside Down?
by Martin Andersson, Alexander Mclean Marshall, Konstantinos A. Petridis and Eluned Smith
Symmetry 2024, 16(6), 638; https://doi.org/10.3390/sym16060638 - 21 May 2024
Viewed by 651
Abstract
The flavour anomalies are a set of experimental deviations from the Standard Model (SM) predictions in several observables involving decays of bottom quarks. In particular, tensions between theory and experiment in measurements involving a bottom quark decaying into a strange quark and a [...] Read more.
The flavour anomalies are a set of experimental deviations from the Standard Model (SM) predictions in several observables involving decays of bottom quarks. In particular, tensions between theory and experiment in measurements involving a bottom quark decaying into a strange quark and a pair of muons have motivated much theoretical work to explore possible new physics explanations. This review summarises the tumultuous evolution of these tensions, focusing on the most recent experimental results and their implications for physics beyond the SM. We also discuss the prospects for future measurements and tests of the flavour anomalies at the LHC and other facilities. Full article
(This article belongs to the Special Issue Symmetries and Anomalies in Flavour Physics)
Show Figures

Figure 1

Figure 1
<p>Example SM Feynman diagram of the decay <math display="inline"><semantics> <mrow> <msup> <mi>B</mi> <mn>0</mn> </msup> <mo>→</mo> <msup> <mi>K</mi> <mrow> <mo>*</mo> <mn>0</mn> </mrow> </msup> <msup> <mi>μ</mi> <mo>+</mo> </msup> <msup> <mi>μ</mi> <mo>−</mo> </msup> </mrow> </semantics></math> (<b>left</b>), and a potential new physics contribution including a leptoquark (<b>right</b>).</p>
Full article ">Figure 2
<p>Overview of branching fraction measurements, taken from Refs. [<a href="#B18-symmetry-16-00638" class="html-bibr">18</a>,<a href="#B19-symmetry-16-00638" class="html-bibr">19</a>,<a href="#B20-symmetry-16-00638" class="html-bibr">20</a>,<a href="#B21-symmetry-16-00638" class="html-bibr">21</a>,<a href="#B25-symmetry-16-00638" class="html-bibr">25</a>,<a href="#B26-symmetry-16-00638" class="html-bibr">26</a>]. The SM predictions are given by the solid boxes or bands and are taken from Refs. [<a href="#B6-symmetry-16-00638" class="html-bibr">6</a>,<a href="#B25-symmetry-16-00638" class="html-bibr">25</a>,<a href="#B26-symmetry-16-00638" class="html-bibr">26</a>,<a href="#B27-symmetry-16-00638" class="html-bibr">27</a>,<a href="#B28-symmetry-16-00638" class="html-bibr">28</a>,<a href="#B29-symmetry-16-00638" class="html-bibr">29</a>,<a href="#B30-symmetry-16-00638" class="html-bibr">30</a>,<a href="#B31-symmetry-16-00638" class="html-bibr">31</a>].</p>
Full article ">Figure 3
<p>A comparison of inclusive and semi-inclusive combinations of measurements with an SM prediction in the <math display="inline"><semantics> <msup> <mi>q</mi> <mn>2</mn> </msup> </semantics></math> region above 15<math display="inline"><semantics> <mrow> <mspace width="0.277778em"/> <msup> <mrow> <mi>GeV</mi> </mrow> <mn>2</mn> </msup> </mrow> </semantics></math> [<a href="#B35-symmetry-16-00638" class="html-bibr">35</a>].</p>
Full article ">Figure 4
<p>Measurements of the observables <math display="inline"><semantics> <msub> <mi>S</mi> <mn>5</mn> </msub> </semantics></math>, <math display="inline"><semantics> <mrow> <msub> <mi>S</mi> <mrow> <mn>6</mn> <mi>s</mi> </mrow> </msub> <mo>≡</mo> <mfrac> <mn>4</mn> <mn>3</mn> </mfrac> <msub> <mi>A</mi> <mrow> <mi>F</mi> <mi>B</mi> </mrow> </msub> </mrow> </semantics></math>, and <math display="inline"><semantics> <msubsup> <mi>P</mi> <mn>5</mn> <mo>′</mo> </msubsup> </semantics></math> in <math display="inline"><semantics> <mrow> <mi>B</mi> <mo>→</mo> <msup> <mi>K</mi> <mrow> <mo>*</mo> <mn>0</mn> </mrow> </msup> <msup> <mi>μ</mi> <mo>+</mo> </msup> <msup> <mi>μ</mi> <mo>−</mo> </msup> </mrow> </semantics></math> decays. The upper row shows results from Ref. [<a href="#B41-symmetry-16-00638" class="html-bibr">41</a>] only. The lower row shows results from Refs. [<a href="#B41-symmetry-16-00638" class="html-bibr">41</a>,<a href="#B42-symmetry-16-00638" class="html-bibr">42</a>,<a href="#B43-symmetry-16-00638" class="html-bibr">43</a>,<a href="#B44-symmetry-16-00638" class="html-bibr">44</a>,<a href="#B46-symmetry-16-00638" class="html-bibr">46</a>]. The solid boxes denote the SM predictions from Refs. [<a href="#B6-symmetry-16-00638" class="html-bibr">6</a>,<a href="#B27-symmetry-16-00638" class="html-bibr">27</a>] (<b>upper row</b>) and Refs [<a href="#B13-symmetry-16-00638" class="html-bibr">13</a>,<a href="#B51-symmetry-16-00638" class="html-bibr">51</a>] (<b>lower row</b>).</p>
Full article ">Figure 5
<p>Results of <math display="inline"><semantics> <msup> <mi>q</mi> <mn>2</mn> </msup> </semantics></math> unbinned angular analyses of <math display="inline"><semantics> <mrow> <msup> <mi>B</mi> <mn>0</mn> </msup> <mo>→</mo> <msup> <mi>K</mi> <mrow> <mo>*</mo> <mn>0</mn> </mrow> </msup> <msup> <mi>μ</mi> <mo>+</mo> </msup> <msup> <mi>μ</mi> <mo>−</mo> </msup> </mrow> </semantics></math> decays in terms of the dimuon vector (<math display="inline"><semantics> <msub> <mi mathvariant="script">C</mi> <mn>9</mn> </msub> </semantics></math>) and axial-vector (<math display="inline"><semantics> <msub> <mi mathvariant="script">C</mi> <mn>10</mn> </msub> </semantics></math>) Wilson coefficients using two different data-driven models of <math display="inline"><semantics> <mrow> <mi>b</mi> <mo>→</mo> <mi>c</mi> <mover accent="true"> <mi>c</mi> <mo stretchy="false">¯</mo> </mover> <mi>s</mi> <mo>→</mo> <msup> <mi>μ</mi> <mo>+</mo> </msup> <msup> <mi>μ</mi> <mo>−</mo> </msup> <mi>s</mi> </mrow> </semantics></math> contributions [<a href="#B54-symmetry-16-00638" class="html-bibr">54</a>,<a href="#B55-symmetry-16-00638" class="html-bibr">55</a>].</p>
Full article ">Figure 6
<p>Presented in black are the most up-to-date LFU results from LHCb [<a href="#B56-symmetry-16-00638" class="html-bibr">56</a>,<a href="#B57-symmetry-16-00638" class="html-bibr">57</a>,<a href="#B58-symmetry-16-00638" class="html-bibr">58</a>], with the SM prediction for each observable in red. Legacy LHCb results of Refs. [<a href="#B59-symmetry-16-00638" class="html-bibr">59</a>,<a href="#B60-symmetry-16-00638" class="html-bibr">60</a>] are presented in grey for easy comparison. Results from Belle, BaBar, and CMS are excluded for clarity; these can be found within Refs. [<a href="#B24-symmetry-16-00638" class="html-bibr">24</a>,<a href="#B61-symmetry-16-00638" class="html-bibr">61</a>,<a href="#B62-symmetry-16-00638" class="html-bibr">62</a>,<a href="#B63-symmetry-16-00638" class="html-bibr">63</a>].</p>
Full article ">Figure 7
<p>Example global fit for the muon-specific Wilson coefficients <math display="inline"><semantics> <msub> <mi mathvariant="script">C</mi> <mrow> <mn>9</mn> <mi>μ</mi> </mrow> </msub> </semantics></math> and <math display="inline"><semantics> <msub> <mi mathvariant="script">C</mi> <mrow> <mn>10</mn> <mi>μ</mi> </mrow> </msub> </semantics></math> (here presented as <math display="inline"><semantics> <mrow> <msubsup> <mi mathvariant="script">C</mi> <mrow> <mi>i</mi> <mi>μ</mi> </mrow> <mrow> <mi>N</mi> <mi>P</mi> </mrow> </msubsup> <mo>=</mo> <msub> <mi mathvariant="script">C</mi> <mrow> <mi>i</mi> <mi>μ</mi> </mrow> </msub> <mo>−</mo> <msubsup> <mi mathvariant="script">C</mi> <mrow> <mi>i</mi> <mi>μ</mi> </mrow> <mrow> <mi>S</mi> <mi>M</mi> </mrow> </msubsup> </mrow> </semantics></math>), multiple limits are presented including various combinations of different observables, from Ref. [<a href="#B10-symmetry-16-00638" class="html-bibr">10</a>].</p>
Full article ">
18 pages, 980 KiB  
Article
Dip-Bump Structure in Proton’s Single Diffractive Dissociation at the Large Hadron Collider
by László Jenkovszky, Rainer Schicker and István Szanyi
Universe 2024, 10(5), 208; https://doi.org/10.3390/universe10050208 - 7 May 2024
Viewed by 735
Abstract
By extending the dipole Pomeron (DP) model, successful in describing elastic nucleon–nucleon scattering, to proton single diffractive dissociation (SD), we predict a dip-bump structure in the squared four-momentum transfer (t) distribution of proton’s SD. Structures in the t distribution of single [...] Read more.
By extending the dipole Pomeron (DP) model, successful in describing elastic nucleon–nucleon scattering, to proton single diffractive dissociation (SD), we predict a dip-bump structure in the squared four-momentum transfer (t) distribution of proton’s SD. Structures in the t distribution of single diffractive dissociation are predicted around t=4GeV2 at LHC energies in the range of 3 GeV2|t| 7 GeV2. Apart from the dependence on s (total energy squared) and t (squared momentum transfer), we predict also a dependence on missing masses. We include the minimum set of Regge trajectories, namely the Pomeron and the Odderon, indispensable at the LHC. Further generalization, e.g., by the inclusion of non-leading Regge trajectories, is straightforward. The present model contains two types of Regge trajectories: those connected with t-channel exchanges (the Pomeron, the Odderon, and non-leading (secondary) reggeons) appearing at small and moderate t, where they are real and nearly linear, as well as direct-channel trajectories α(M2) related to missing masses. In this paper, we concentrate on structures in t neglecting (for the time being) resonances in M2. Full article
(This article belongs to the Special Issue Multiparticle Dynamics)
Show Figures

Figure 1

Figure 1
<p>Iterating the Veneziano amplitude in the complex <math display="inline"><semantics> <mrow> <mi>s</mi> </mrow> </semantics></math>-plane.</p>
Full article ">Figure 2
<p>Iterating DAMA in the complex <math display="inline"><semantics> <mrow> <mi>s</mi> </mrow> </semantics></math>-plane.</p>
Full article ">Figure 3
<p>Differential cross section of elastic <math display="inline"><semantics> <mrow> <mi>p</mi> <mi>p</mi> </mrow> </semantics></math> scattering at TeV energies in the dipole Pomeron and Odderon model.</p>
Full article ">Figure 4
<p>Total cross section of <math display="inline"><semantics> <mrow> <mi>p</mi> <mi>p</mi> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <mi>p</mi> <mover accent="true"> <mi>p</mi> <mo>¯</mo> </mover> </mrow> </semantics></math> scattering at TeV energies.</p>
Full article ">Figure 5
<p>Contribution of various components of the amplitude to the differential cross section at <math display="inline"><semantics> <mrow> <msqrt> <mi>s</mi> </msqrt> <mo>=</mo> <mn>8</mn> </mrow> </semantics></math> TeV in the dipole Pomeron (DP) and Odderon models.</p>
Full article ">Figure 6
<p>Position of the dip and bump as function of <span class="html-italic">b</span>.</p>
Full article ">Figure 7
<p>Predicted dip-bump structure in the <span class="html-italic">t</span> distribution of the <math display="inline"><semantics> <mi>ξ</mi> </semantics></math> integrated differential cross section of SD at <math display="inline"><semantics> <mrow> <msqrt> <mi>s</mi> </msqrt> <mo>=</mo> </mrow> </semantics></math> 546 GeV, with various contributions shown separately.</p>
Full article ">Figure 8
<p>Prediction of the energy dependence of the dip-bump structure in the <span class="html-italic">t</span> distribution of the double differential cross section of SD at <math display="inline"><semantics> <mrow> <msup> <mi>M</mi> <mn>2</mn> </msup> <mo>=</mo> </mrow> </semantics></math> 1000 <math display="inline"><semantics> <msup> <mi>GeV</mi> <mn>2</mn> </msup> </semantics></math>.</p>
Full article ">Figure 9
<p>Predicted dip-bump structure in the <span class="html-italic">t</span> distribution of the double differential cross section of SD at <math display="inline"><semantics> <mrow> <mi>ξ</mi> <mo>=</mo> <mn>0.05</mn> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <msqrt> <mi>s</mi> </msqrt> <mo>=</mo> </mrow> </semantics></math> 630 GeV.</p>
Full article ">Figure 10
<p>Our prediction of the <math display="inline"><semantics> <msup> <mi>M</mi> <mn>2</mn> </msup> </semantics></math> dependence of the dip-bump structure of the <span class="html-italic">t</span> distribution of the double differential cross section of SD at <math display="inline"><semantics> <mrow> <msqrt> <mi>s</mi> </msqrt> <mo>=</mo> </mrow> </semantics></math> 14 TeV.</p>
Full article ">Figure 11
<p>Predicted double differential cross section of proton–antiproton SD at fixed values of <math display="inline"><semantics> <mi>ξ</mi> </semantics></math> and at <math display="inline"><semantics> <mrow> <msqrt> <mi>s</mi> </msqrt> <mo>=</mo> <mn>630</mn> </mrow> </semantics></math> GeV as function of <math display="inline"><semantics> <mrow> <mo>−</mo> <mi>t</mi> </mrow> </semantics></math>.</p>
Full article ">Figure 12
<p>Integrated differential cross section of proton–proton SD at <math display="inline"><semantics> <mrow> <msqrt> <mi>s</mi> </msqrt> <mo>=</mo> <mn>7</mn> <mspace width="4pt"/> <mi>and</mi> <mspace width="4pt"/> <mn>8</mn> </mrow> </semantics></math> TeV.</p>
Full article ">Figure 13
<p>Our prediction of the dip-bump structure in the <span class="html-italic">t</span> distribution of the <math display="inline"><semantics> <mi>ξ</mi> </semantics></math> integrated differential cross section of SD at <math display="inline"><semantics> <mrow> <msqrt> <mi>s</mi> </msqrt> <mo>=</mo> </mrow> </semantics></math> 8 TeV.</p>
Full article ">Figure 14
<p>Dependence of the position of the dip (red line) and bump (blue line) on the missing mass.</p>
Full article ">
40 pages, 1973 KiB  
Review
Exotic Tetraquarks at the HL-LHC with JETHAD: A High-Energy Viewpoint
by Francesco Giovanni Celiberto
Symmetry 2024, 16(5), 550; https://doi.org/10.3390/sym16050550 - 2 May 2024
Cited by 6 | Viewed by 721
Abstract
We review the semi-inclusive hadroproduction of a neutral hidden-flavor tetraquark with light and heavy quark flavor at the HL-LHC, accompanied by another heavy hadron or a light-flavored jet. We make use of the novel TQHL1.0 determinations of leading-twist fragmentation functions to describe the [...] Read more.
We review the semi-inclusive hadroproduction of a neutral hidden-flavor tetraquark with light and heavy quark flavor at the HL-LHC, accompanied by another heavy hadron or a light-flavored jet. We make use of the novel TQHL1.0 determinations of leading-twist fragmentation functions to describe the formation mechanism of a tetraquark state within the next-to-leading order perturbative QCD. This framework builds on the basis of a spin physics-inspired model, taken as a proxy for the lowest-scale input of the constituent heavy-quark fragmentation channel. Then, all parton-to-tetraquark fragmentation functions are consistently obtained via the above-threshold DGLAP evolution in a variable-flavor number scheme. We provide predictions for a series of differential distributions calculated by the hands of the JETHAD method, well-adapted to NLL/NLO+ hybrid-factorization studies, where the resummation of next-to-leading energy logarithms and beyond is included in the collinear picture. We provide corroborating evidence that high-energy observables sensitive to semi-inclusive tetraquark emissions at the HL-LHC exhibit a fair stability under radiative corrections, as well as MHOU studies. Our analysis constitutes a prime contact point between QCD resummations and the exotic matter. Full article
Show Figures

Figure 1

Figure 1
<p>Pictorial representation of the tetraquark + hadron (<b>left</b>) and tetraquark + jet (<b>right</b>) semi-inclusive hadroproduction within the hybrid collinear and high-energy factorization (figures realized with <tt>JaxoDraw 2.0</tt> [<a href="#B283-symmetry-16-00550" class="html-bibr">283</a>]). Red blobs depict collinear FFs. The off-shell hard factor, part of the hadron (jet) emission function, is represented by green (violet) ovals. Tetraquark (<span class="html-italic">Q</span>-hadron) emissions are portrayed by orange (firebrick) arrows. The large blue blob at the center of each diagram represents the BFKL Green’s function.</p>
Full article ">Figure 2
<p>Leading diagram for the fragmentation of a heavy quark, <span class="html-italic">Q</span>, into a <math display="inline"><semantics> <msub> <mi>X</mi> <mrow> <mi>Q</mi> <mi>q</mi> <mover accent="true"> <mi>Q</mi> <mo>¯</mo> </mover> <mover accent="true"> <mi>q</mi> <mo>¯</mo> </mover> </mrow> </msub> </semantics></math> tetraquark. The orange blob portrays the nonperturbative hadronization of the <math display="inline"><semantics> <mrow> <mo>(</mo> <mi>Q</mi> <mi>q</mi> <mover accent="true"> <mi>Q</mi> <mo>¯</mo> </mover> <mover accent="true"> <mi>q</mi> <mo>¯</mo> </mover> <mo>)</mo> </mrow> </semantics></math> system into the bound state. The diagram was made using <tt>JaxoDraw 2.0</tt> [<a href="#B283-symmetry-16-00550" class="html-bibr">283</a>].</p>
Full article ">Figure 3
<p>Dependence on <math display="inline"><semantics> <msub> <mo mathvariant="italic">μ</mo> <mi>F</mi> </msub> </semantics></math> of the four <tt>TQHL1.0</tt> collinear FF sets describing <math display="inline"><semantics> <msub> <mi>X</mi> <mrow> <mi>Q</mi> <mi>q</mi> <mover accent="true"> <mi>Q</mi> <mo>¯</mo> </mover> <mover accent="true"> <mi>q</mi> <mo>¯</mo> </mover> </mrow> </msub> </semantics></math> tetraquark formation at <math display="inline"><semantics> <mrow> <mi>z</mi> <mo>≃</mo> <mo>〈</mo> <mi>z</mi> <mo>〉</mo> <mo>=</mo> <mn>0.5</mn> </mrow> </semantics></math>.</p>
Full article ">Figure 4
<p><math display="inline"><semantics> <mrow> <mi>NLL</mi> <mo>/</mo> <msup> <mi>NLO</mi> <mo>+</mo> </msup> </mrow> </semantics></math> versus <math display="inline"><semantics> <mrow> <mi>HE</mi> <mtext>-</mtext> <msup> <mi>NLO</mi> <mo>+</mo> </msup> </mrow> </semantics></math><math display="inline"><semantics> <mrow> <mo>Δ</mo> <mi>Y</mi> </mrow> </semantics></math>-rates for <math display="inline"><semantics> <mrow> <msub> <mi>X</mi> <mrow> <mi>c</mi> <mi>q</mi> <mover accent="true"> <mi>c</mi> <mo>¯</mo> </mover> <mover accent="true"> <mi>q</mi> <mo>¯</mo> </mover> </mrow> </msub> <mo>+</mo> <msub> <mi mathvariant="script">H</mi> <mi>Q</mi> </msub> </mrow> </semantics></math> (<b>upper</b>) and <math display="inline"><semantics> <mrow> <msub> <mi>X</mi> <mrow> <mi>c</mi> <mi>q</mi> <mover accent="true"> <mi>c</mi> <mo>¯</mo> </mover> <mover accent="true"> <mi>q</mi> <mo>¯</mo> </mover> </mrow> </msub> <mo>+</mo> <mi>jet</mi> </mrow> </semantics></math> (<b>lower</b>) reactions at 14 TeV LHC. An extended study of MHOUs in the range <math display="inline"><semantics> <mrow> <mn>1</mn> <mo>&lt;</mo> <msub> <mi>C</mi> <mo mathvariant="italic">μ</mo> </msub> <mo>&lt;</mo> <mn>30</mn> </mrow> </semantics></math> is illustrated.</p>
Full article ">Figure 5
<p><math display="inline"><semantics> <mrow> <mi>NLL</mi> <mo>/</mo> <msup> <mi>NLO</mi> <mo>+</mo> </msup> </mrow> </semantics></math> versus <math display="inline"><semantics> <mrow> <mi>HE</mi> <mtext>-</mtext> <msup> <mi>NLO</mi> <mo>+</mo> </msup> </mrow> </semantics></math><math display="inline"><semantics> <mrow> <mo>Δ</mo> <mi>Y</mi> </mrow> </semantics></math>-rates for <math display="inline"><semantics> <mrow> <msub> <mi>X</mi> <mrow> <mi>b</mi> <mi>q</mi> <mover accent="true"> <mi>b</mi> <mo>¯</mo> </mover> <mover accent="true"> <mi>q</mi> <mo>¯</mo> </mover> </mrow> </msub> <mo>+</mo> <msub> <mi mathvariant="script">H</mi> <mi>Q</mi> </msub> </mrow> </semantics></math> (<b>upper</b>) and <math display="inline"><semantics> <mrow> <msub> <mi>X</mi> <mrow> <mi>b</mi> <mi>q</mi> <mover accent="true"> <mi>b</mi> <mo>¯</mo> </mover> <mover accent="true"> <mi>q</mi> <mo>¯</mo> </mover> </mrow> </msub> <mo>+</mo> <mi>jet</mi> </mrow> </semantics></math> (<b>lower</b>) reactions at 14 TeV LHC. An extended study of MHOUs in the range <math display="inline"><semantics> <mrow> <mn>1</mn> <mo>&lt;</mo> <msub> <mi>C</mi> <mo mathvariant="italic">μ</mo> </msub> <mo>&lt;</mo> <mn>30</mn> </mrow> </semantics></math> is illustrated.</p>
Full article ">Figure 6
<p><math display="inline"><semantics> <mrow> <mi>NLL</mi> <mo>/</mo> <msup> <mi>NLO</mi> <mo>+</mo> </msup> </mrow> </semantics></math> versus <math display="inline"><semantics> <mrow> <mi>HE</mi> <mtext>-</mtext> <msup> <mi>NLO</mi> <mo>+</mo> </msup> </mrow> </semantics></math><math display="inline"><semantics> <mrow> <mo>Δ</mo> <mi>Y</mi> </mrow> </semantics></math>-rates for <math display="inline"><semantics> <mrow> <msub> <mi>X</mi> <mrow> <mi>Q</mi> <mi>q</mi> <mover accent="true"> <mi>Q</mi> <mo>¯</mo> </mover> <mover accent="true"> <mi>q</mi> <mo>¯</mo> </mover> </mrow> </msub> <mo>+</mo> <msub> <mi mathvariant="script">H</mi> <mi>Q</mi> </msub> </mrow> </semantics></math> (<b>upper</b>) and <math display="inline"><semantics> <mrow> <msub> <mi>X</mi> <mrow> <mi>Q</mi> <mi>q</mi> <mover accent="true"> <mi>Q</mi> <mo>¯</mo> </mover> <mover accent="true"> <mi>q</mi> <mo>¯</mo> </mover> </mrow> </msub> <mo>+</mo> <mi>jet</mi> </mrow> </semantics></math> (<b>lower</b>) reactions at 14 TeV LHC. Uncertainty bands are for the combined effect of MHOUs and errors on numeric integrations.</p>
Full article ">Figure 7
<p><math display="inline"><semantics> <mrow> <mi>NLL</mi> <mo>/</mo> <msup> <mi>NLO</mi> <mo>+</mo> </msup> </mrow> </semantics></math> transverse momentum rates for <math display="inline"><semantics> <mrow> <msub> <mi>X</mi> <mrow> <mi>Q</mi> <mi>q</mi> <mover accent="true"> <mi>Q</mi> <mo>¯</mo> </mover> <mover accent="true"> <mi>q</mi> <mo>¯</mo> </mover> </mrow> </msub> <mo>+</mo> <msub> <mi mathvariant="script">H</mi> <mi>Q</mi> </msub> </mrow> </semantics></math> (<b>upper</b>) and <math display="inline"><semantics> <mrow> <msub> <mi>X</mi> <mrow> <mi>Q</mi> <mi>q</mi> <mover accent="true"> <mi>Q</mi> <mo>¯</mo> </mover> <mover accent="true"> <mi>q</mi> <mo>¯</mo> </mover> </mrow> </msub> <mo>+</mo> <mi>jet</mi> </mrow> </semantics></math> (<b>lower</b>) reactions at 14 TeV LHC. Uncertainty bands are for the combined effect of MHOUs and errors on numeric integrations.</p>
Full article ">
17 pages, 26887 KiB  
Article
The Effects of Soybean–Tea Intercropping on the Photosynthesis Activity of Tea Seedlings Based on Canopy Spectral, Transcriptome and Metabolome Analyses
by Xiaojiang Li, Yang Xu, Yilin Mao, Shuangshuang Wang, Litao Sun, Jiazhi Shen, Xiuxiu Xu, Yu Wang and Zhaotang Ding
Agronomy 2024, 14(4), 850; https://doi.org/10.3390/agronomy14040850 - 18 Apr 2024
Viewed by 1169
Abstract
Intercropping soybean in tea plantations is a sustainable cultivation system that can improve the growing environment of tea plants compared to monoculture tea. However, the effects of this system on the photosynthesis activity of tea seedlings have yet to be reported. Therefore, we [...] Read more.
Intercropping soybean in tea plantations is a sustainable cultivation system that can improve the growing environment of tea plants compared to monoculture tea. However, the effects of this system on the photosynthesis activity of tea seedlings have yet to be reported. Therefore, we used tea cultivar ‘Zhongcha108’ as experimental materials to investigate the effects of intercropping soybean on the canopy spectral parameters and photosynthesis activity of tea seedlings. Canopy spectral reflectance data showed that soybean–tea intercropping (STS) improved the reflectance of 720, 750 and 840 nm bands in tea seedlings’ canopy. The vegetation indexes (VIs) value related to photosynthetic pigments in STS was obviously higher than monoculture tea (T). In addition, the Fv/Fm and SPAD value in STS were also clearly higher. Transcriptome analysis data indicated that STS induced the expression of light-harvesting complex (LHC) genes, photosystem subunit (Psbs and Psas) genes and dark reaction biological process genes (FBP1, RPE, Calvin cycle protein CP12-1 and transketolase). These results indicate that STS enhanced the photosynthesis activity. The metabolome analysis showed that STS promoted the accumulation of carbohydrate metabolites, which further provided evidence for the enhancement of photosynthesis in the leaves of tea seedlings. This study enhanced our understanding of how intercropping soybeans in a young tea plantation improves the photosynthesis activity to promote tea seedlings’ growth and development. Full article
(This article belongs to the Special Issue Beverage Crops Breeding: For Wine, Tea, Juices, Cocoa and Coffee)
Show Figures

Figure 1

Figure 1
<p>The geographical location of the experimental area and the RGB images of sampling position. The letter T indicates monoculture tea. The letter STS indicates soybean–tea intercropping.</p>
Full article ">Figure 2
<p>Spectral reflectance (<b>A</b>) and spectral indexes (<b>B</b>) of tea seedlings canopy with T and STS. Asterisks * indicate the difference level at <span class="html-italic">p</span> &lt; 0.05; ** indicates the difference level at <span class="html-italic">p</span> &lt; 0.01; *** indicates the difference level at <span class="html-italic">p</span> &lt; 0.001.</p>
Full article ">Figure 3
<p>SPAD (<b>A</b>), <span class="html-italic">F<sub>v</sub></span>/<span class="html-italic">F<sub>m</sub></span> (<b>B</b>) and canopy tempereture (<b>C</b>) of tea seedlings canopy with T and STS. Asterisks *** indicates the difference level at <span class="html-italic">p</span> &lt; 0.001.</p>
Full article ">Figure 4
<p>Photosynthesis-antenna proteins and photosynthesis pathways based on the KEGG pathway analysis. (<b>A</b>) The total number of DEGs in STS vs. T. (<b>B</b>) The number of DEGs in photosynthesis-antenna proteins and photosynthesis pathways. (<b>C</b>) Partial diagram of photosynthesis-antenna protein pathway. The red boxes in are associated with up-regulated genes, while green is associated with down-regulated genes. (<b>D</b>) Partial diagram of photosynthesis pathway. The blue boxes are associated with both up-regulated and down-regulated genes. The red and green boxes are the same as subfigure C. (<b>E</b>) Heatmap of the DEGs involved in the photosynthesis-antenna protein pathway. Expression differences in genes are represented by different colors, ranging from low (green) to high (red), based on log2foldchange. (<b>F</b>) Heatmap of the DEGs involved in the photosynthesis pathway. Color difference is the same as (<b>E</b>).</p>
Full article ">Figure 5
<p>GO analysis related to photosynthesis. (<b>A</b>) The number of DEGs involved in 19 GO terms. (<b>B</b>) Heatmap of DEGs in the “photosynthesis, light harvesting” pathway. (<b>C</b>) Heatmap of DEGs in “photosynthesis, dark reaction”. (<b>D</b>) Heatmap of DEGs in PS II. (<b>E</b>) Heatmap of DEGs in PS I. Expression differences between genes are represented by different colors, ranging from low (green) to high (red), based on log<sub>2</sub>foldchange.</p>
Full article ">Figure 6
<p>Relative expression levels of four LHC antenna genes and four PSII subunit genes in the tender buds and leaves of T and STS planting patterns. Asterisks * indicate the difference level at <span class="html-italic">p</span> &lt; 0.05; ** indicates the difference level at <span class="html-italic">p</span> &lt; 0.01; *** indicates the difference level at <span class="html-italic">p</span> &lt; 0.001; **** indicates the difference level at <span class="html-italic">p</span> &lt; 0.0001.</p>
Full article ">Figure 7
<p>Identification of metabolites and components. (<b>A</b>) Total metabolites and their components, identified from the buds of tea seedlings. (<b>B</b>) Differential metabolites and their classification in STS vs. T. (<b>C</b>) Heatmap of saccharides changes in T and STS. (<b>D</b>) Heatmap of differential metabolites in saccharides. The asterisks * in (<b>C</b>,<b>D</b>) indicate that the metabolite has an isomer.</p>
Full article ">
13 pages, 767 KiB  
Article
Revisiting a Realistic Intersecting D6-Brane with Modified Soft SUSY Terms
by Imtiaz Khan, Waqas Ahmed, Tianjun Li and Shabbar Raza
Universe 2024, 10(4), 176; https://doi.org/10.3390/universe10040176 - 11 Apr 2024
Viewed by 809
Abstract
Because there are a few typos in the supersymmetry-breaking sfermion masses and trilinear soft term, regarding the current Large Hadron Collider (LHC) and dark matter searches, we revisit a three-family Pati–Salam model based on intersecting D6-branes in Type IIA string theory on a [...] Read more.
Because there are a few typos in the supersymmetry-breaking sfermion masses and trilinear soft term, regarding the current Large Hadron Collider (LHC) and dark matter searches, we revisit a three-family Pati–Salam model based on intersecting D6-branes in Type IIA string theory on a T6/(Z2×Z2) orientifold with a realistic phenomenology. We study the viable parameter space and discuss the spectrum consistent with the current LHC Supersymmetry searches and the dark matter relic density bounds from the Planck 2018 data. For the gluinos and first two generations of sfermions, we observe that the gluino mass is in the range [2, 14] TeV, the squarks mass range is [2, 13] TeV and the sleptons mass is in the range [1, 5] TeV. We achieve the cold dark matter relic density consistent with 5σ Planck 2018 bounds via A-funnel and coannihilation channels such as stop–neutralino, stau–neutralino, and chargino–neutralino. Except for a few chargino–neutralino coannihilation solutions, these solutions satisfy current nucleon-neutralino spin-independent and spin-dependent scattering cross-sections and may be probed by future dark matter searches. Full article
Show Figures

Figure 1

Figure 1
<p>Grey points satisfy the REWSB and yield LSP neutralinos. The blue points are the subset of gray points that satisfy the LEP bound, Higgs mass bound, B-physics, and LHC sparticle mass bounds. Red points are a subset of blue points that satisfy 5<math display="inline"><semantics> <mi>σ</mi> </semantics></math> Planck relic density bounds.</p>
Full article ">Figure 2
<p>Plots of results in <math display="inline"><semantics> <msub> <mi>M</mi> <mn>1</mn> </msub> </semantics></math>–<math display="inline"><semantics> <msub> <mi>M</mi> <mn>2</mn> </msub> </semantics></math>, <math display="inline"><semantics> <msub> <mi>M</mi> <mn>1</mn> </msub> </semantics></math>–<math display="inline"><semantics> <msub> <mi>M</mi> <mn>3</mn> </msub> </semantics></math>, and <math display="inline"><semantics> <msub> <mi>M</mi> <mn>3</mn> </msub> </semantics></math>–<math display="inline"><semantics> <msub> <mi>M</mi> <mn>2</mn> </msub> </semantics></math> planes. The color coding and the panel description are the same as in <a href="#universe-10-00176-f001" class="html-fig">Figure 1</a>.</p>
Full article ">Figure 3
<p>Plots in <math display="inline"><semantics> <mrow> <mo form="prefix">tan</mo> <mi>β</mi> </mrow> </semantics></math>–<math display="inline"><semantics> <msub> <mover accent="true"> <mi>m</mi> <mo stretchy="false">˜</mo> </mover> <msub> <mi>H</mi> <mrow> <mi>u</mi> <mo>,</mo> <mi>d</mi> </mrow> </msub> </msub> </semantics></math>, <math display="inline"><semantics> <mrow> <msub> <mi>A</mi> <mn>0</mn> </msub> <mo>−</mo> <msub> <mi>m</mi> <mrow> <mn>3</mn> <mo>/</mo> <mn>2</mn> </mrow> </msub> </mrow> </semantics></math>, and <math display="inline"><semantics> <msub> <mover accent="true"> <mi>m</mi> <mo stretchy="false">˜</mo> </mover> <mi>L</mi> </msub> </semantics></math>–<math display="inline"><semantics> <msub> <mover accent="true"> <mi>m</mi> <mo stretchy="false">˜</mo> </mover> <mi>R</mi> </msub> </semantics></math> planes. The color coding and the panel description are the same as in <a href="#universe-10-00176-f001" class="html-fig">Figure 1</a>.</p>
Full article ">Figure 4
<p>Plots of results in <math display="inline"><semantics> <mrow> <msub> <mover accent="true"> <mi>t</mi> <mo stretchy="false">˜</mo> </mover> <mn>1</mn> </msub> <mo>−</mo> <msub> <mi>m</mi> <mover accent="true"> <mi>g</mi> <mo>^</mo> </mover> </msub> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <msub> <mi>m</mi> <mi>h</mi> </msub> <mo>−</mo> <mi>μ</mi> </mrow> </semantics></math> planes. The color coding and the panel description are the same as in <a href="#universe-10-00176-f001" class="html-fig">Figure 1</a>.</p>
Full article ">Figure 5
<p>Plots in <math display="inline"><semantics> <msub> <mi>m</mi> <msubsup> <mover accent="true"> <mi>χ</mi> <mo stretchy="false">˜</mo> </mover> <mn>1</mn> <mn>0</mn> </msubsup> </msub> </semantics></math>–<math display="inline"><semantics> <msub> <mi>m</mi> <mi>A</mi> </msub> </semantics></math>, <math display="inline"><semantics> <msub> <mi>m</mi> <msubsup> <mover accent="true"> <mi>χ</mi> <mo stretchy="false">˜</mo> </mover> <mn>1</mn> <mn>0</mn> </msubsup> </msub> </semantics></math>–<math display="inline"><semantics> <msub> <mi>m</mi> <msubsup> <mover accent="true"> <mi>χ</mi> <mo stretchy="false">˜</mo> </mover> <mn>1</mn> <mo>±</mo> </msubsup> </msub> </semantics></math>, <math display="inline"><semantics> <msub> <mi>m</mi> <msubsup> <mover accent="true"> <mi>χ</mi> <mo stretchy="false">˜</mo> </mover> <mn>1</mn> <mn>0</mn> </msubsup> </msub> </semantics></math>–<math display="inline"><semantics> <msub> <mi>m</mi> <msub> <mover accent="true"> <mi>τ</mi> <mo stretchy="false">˜</mo> </mover> <mn>1</mn> </msub> </msub> </semantics></math> and <math display="inline"><semantics> <msub> <mi>m</mi> <msubsup> <mover accent="true"> <mi>χ</mi> <mo stretchy="false">˜</mo> </mover> <mn>1</mn> <mn>0</mn> </msubsup> </msub> </semantics></math>–<math display="inline"><semantics> <msub> <mi>m</mi> <msub> <mover accent="true"> <mi>t</mi> <mo stretchy="false">˜</mo> </mover> <mn>1</mn> </msub> </msub> </semantics></math> planes. Color coding and panel description are the same as in <a href="#universe-10-00176-f001" class="html-fig">Figure 1</a>.</p>
Full article ">Figure 6
<p>The spin-independent (<b>left</b>) and spin-dependent (<b>right</b>) neutralino–proton scattering cross-section vs. the neutralino mass. In the left panel, the solid black and orange lines depict the current LUX [<a href="#B66-universe-10-00176" class="html-bibr">66</a>] and XENON1T [<a href="#B67-universe-10-00176" class="html-bibr">67</a>,<a href="#B68-universe-10-00176" class="html-bibr">68</a>] bounds, and the solid green and red lines show the projection of future limits [<a href="#B69-universe-10-00176" class="html-bibr">69</a>] of XENON1T with 2 <math display="inline"><semantics> <mrow> <mi>t</mi> <mo>·</mo> <mi>y</mi> </mrow> </semantics></math> exposure and XENONnT with 20 <math display="inline"><semantics> <mrow> <mi>t</mi> <mo>·</mo> <mi>y</mi> </mrow> </semantics></math> exposure, respectively. In the right panel, the black solid line is the current LUX bound [<a href="#B70-universe-10-00176" class="html-bibr">70</a>], the blue solid line represents the IceCube DeepCore [<a href="#B72-universe-10-00176" class="html-bibr">72</a>], and the orange line shows the future LZ bound [<a href="#B71-universe-10-00176" class="html-bibr">71</a>]. The color code in the description is the same as in the <a href="#universe-10-00176-f001" class="html-fig">Figure 1</a>.</p>
Full article ">
17 pages, 1804 KiB  
Article
Jets Studies in Central and Forward Regions at Current and Expected Large Hadron Collider Future Energies
by M. A. Mahmoud, Somaia Hamdi, A. Radi, M. A. El-Borie and E. A. Tayel
Universe 2024, 10(4), 154; https://doi.org/10.3390/universe10040154 - 25 Mar 2024
Viewed by 977
Abstract
The present work presents a study of jet production in the central region (|η| < 2.5) and the forward region (3 < |η| < 5) in proton–proton collisions at different energies: s = 13.6 TeV, s = 20 [...] Read more.
The present work presents a study of jet production in the central region (|η| < 2.5) and the forward region (3 < |η| < 5) in proton–proton collisions at different energies: s = 13.6 TeV, s = 20 TeV, and s = 27 TeV. These energies are the present and expected future energies of the Large Hadron Collider. In addition, the measurement of dijets—where the dijet selected is the one leading the jet in the central region and the second jet is the one with the sub-leading role in the forward region—was investigated with the same collision energies. Jets are reconstructed with the anti-kT (R = 0.5) algorithm in the transverse momentum range pT = 15–1000 GeV/c. Different Monte Carlo event generators were used: PYTHIA, HERWIG, and EPOS-LHC. The momentum, multiplicity, energy, pseudorapidity, and azimuthal angle of the jets were measured. In addition, the dijet multiplicity and the difference in the azimuthal angle were measured. The generation of events was carried out using the Rivet analysis framework. It is observed that, when the energy of the collision increases, the production of the jets in the central and forward regions and the dijets multiplicity increase; overall an agreement is observed between the three event generators. The disagreement between the different generators points to potential areas for development or additional study. Full article
(This article belongs to the Section High Energy Nuclear and Particle Physics)
Show Figures

Figure 1

Figure 1
<p>(<b>a</b>) MC comparison of central jet <math display="inline"><semantics> <msub> <mi>p</mi> <mi>T</mi> </msub> </semantics></math> (GeV/c) at <math display="inline"><semantics> <msqrt> <mi>s</mi> </msqrt> </semantics></math> = 13.6 TeV; (<b>b</b>) MC comparison of forward jet <math display="inline"><semantics> <msub> <mi>p</mi> <mi>T</mi> </msub> </semantics></math> (GeV/c) at <math display="inline"><semantics> <msqrt> <mi>s</mi> </msqrt> </semantics></math> = 13.6 TeV.</p>
Full article ">Figure 2
<p>(<b>a</b>) MC comparison of central jet <math display="inline"><semantics> <msub> <mi>p</mi> <mi>T</mi> </msub> </semantics></math> (GeV/c) at <math display="inline"><semantics> <msqrt> <mi>s</mi> </msqrt> </semantics></math> = 20 TeV; (<b>b</b>) MC comparison of forward jet <math display="inline"><semantics> <msub> <mi>p</mi> <mi>T</mi> </msub> </semantics></math> (GeV/c) at <math display="inline"><semantics> <msqrt> <mi>s</mi> </msqrt> </semantics></math> = 20 TeV.</p>
Full article ">Figure 3
<p>(<b>a</b>) MC comparison of central jet <math display="inline"><semantics> <msub> <mi>p</mi> <mi>T</mi> </msub> </semantics></math> (GeV/c) at <math display="inline"><semantics> <msqrt> <mi>s</mi> </msqrt> </semantics></math> = 27 TeV; (<b>b</b>) MC comparison of forward jet <math display="inline"><semantics> <msub> <mi>p</mi> <mi>T</mi> </msub> </semantics></math> (GeV/c) at <math display="inline"><semantics> <msqrt> <mi>s</mi> </msqrt> </semantics></math> = 27 TeV.</p>
Full article ">Figure 4
<p>(<b>a</b>) MC comparison of jet multiplicity in the central regions at <math display="inline"><semantics> <msqrt> <mi>s</mi> </msqrt> </semantics></math> = 13.6 TeV; (<b>b</b>) MC comparison of jet multiplicity in the forward regions at <math display="inline"><semantics> <msqrt> <mi>s</mi> </msqrt> </semantics></math> = 13.6 TeV.</p>
Full article ">Figure 5
<p>(<b>a</b>) MC comparison of jet multiplicity in the central regions at <math display="inline"><semantics> <msqrt> <mi>s</mi> </msqrt> </semantics></math> = 20 TeV; (<b>b</b>) MC comparison of jet multiplicity in the forward regions at <math display="inline"><semantics> <msqrt> <mi>s</mi> </msqrt> </semantics></math> = 20 TeV.</p>
Full article ">Figure 6
<p>(<b>a</b>) MC comparison of jet multiplicity in the central regions at <math display="inline"><semantics> <msqrt> <mi>s</mi> </msqrt> </semantics></math> = 27 TeV; (<b>b</b>) MC comparison of jet multiplicity in the forward regions at <math display="inline"><semantics> <msqrt> <mi>s</mi> </msqrt> </semantics></math> = 27 TeV.</p>
Full article ">Figure 7
<p>(<b>a</b>) MC comparison of central jet energy (GeV) at <math display="inline"><semantics> <msqrt> <mi>s</mi> </msqrt> </semantics></math> = 13.6 TeV; (<b>b</b>) MC comparison of forward jet energy (GeV) at <math display="inline"><semantics> <msqrt> <mi>s</mi> </msqrt> </semantics></math> = 13.6 TeV.</p>
Full article ">Figure 8
<p>(<b>a</b>) MC comparison of central jet energy (GeV) at <math display="inline"><semantics> <msqrt> <mi>s</mi> </msqrt> </semantics></math> = 20 TeV; (<b>b</b>) MC comparison of forward jet energy (GeV) at <math display="inline"><semantics> <msqrt> <mi>s</mi> </msqrt> </semantics></math> = 20 TeV.</p>
Full article ">Figure 9
<p>(<b>a</b>) MC comparison of central jet energy (GeV) at <math display="inline"><semantics> <msqrt> <mi>s</mi> </msqrt> </semantics></math> = 27 TeV; (<b>b</b>) MC comparison of forward jet energy (GeV) at <math display="inline"><semantics> <msqrt> <mi>s</mi> </msqrt> </semantics></math> = 27 TeV.</p>
Full article ">Figure 10
<p>(<b>a</b>) MC comparison of <math display="inline"><semantics> <mi>η</mi> </semantics></math> distribution in the central regions at <math display="inline"><semantics> <msqrt> <mi>s</mi> </msqrt> </semantics></math> = 13.6 TeV; (<b>b</b>) MC comparison of <math display="inline"><semantics> <mi>η</mi> </semantics></math> distribution in the forward regions at <math display="inline"><semantics> <msqrt> <mi>s</mi> </msqrt> </semantics></math> = 13.6 TeV.</p>
Full article ">Figure 11
<p>(<b>a</b>) MC comparison of <math display="inline"><semantics> <mi>η</mi> </semantics></math> distribution in the central regions at <math display="inline"><semantics> <msqrt> <mi>s</mi> </msqrt> </semantics></math> = 20 TeV; (<b>b</b>) MC comparison of <math display="inline"><semantics> <mi>η</mi> </semantics></math> distribution in the forward regions at <math display="inline"><semantics> <msqrt> <mi>s</mi> </msqrt> </semantics></math> = 20 TeV.</p>
Full article ">Figure 12
<p>(<b>a</b>) MC comparison of <math display="inline"><semantics> <mi>η</mi> </semantics></math> distribution in the central regions at <math display="inline"><semantics> <msqrt> <mi>s</mi> </msqrt> </semantics></math> = 27 TeV; (<b>b</b>) MC comparison of <math display="inline"><semantics> <mi>η</mi> </semantics></math> distribution in the forward regions at <math display="inline"><semantics> <msqrt> <mi>s</mi> </msqrt> </semantics></math> = 27 TeV.</p>
Full article ">Figure 13
<p>(<b>a</b>) MC comparison of <math display="inline"><semantics> <mi>ϕ</mi> </semantics></math> (rad) distribution in the central regions at <math display="inline"><semantics> <msqrt> <mi>s</mi> </msqrt> </semantics></math> = 13.6 TeV; (<b>b</b>) MC comparison of <math display="inline"><semantics> <mi>ϕ</mi> </semantics></math> (rad) distribution in the forward regions at <math display="inline"><semantics> <msqrt> <mi>s</mi> </msqrt> </semantics></math> = 13.6 TeV.</p>
Full article ">Figure 14
<p>(<b>a</b>) MC comparison of <math display="inline"><semantics> <mi>ϕ</mi> </semantics></math> (rad) distribution in the central regions at <math display="inline"><semantics> <msqrt> <mi>s</mi> </msqrt> </semantics></math> = 20 TeV; (<b>b</b>) MC comparison of <math display="inline"><semantics> <mi>ϕ</mi> </semantics></math> (rad) distribution in the forward regions at <math display="inline"><semantics> <msqrt> <mi>s</mi> </msqrt> </semantics></math> = 20 TeV.</p>
Full article ">Figure 15
<p>(<b>a</b>) MC comparison of <math display="inline"><semantics> <mi>ϕ</mi> </semantics></math> (rad) distribution in the central regions at <math display="inline"><semantics> <msqrt> <mi>s</mi> </msqrt> </semantics></math> = 27 TeV; (<b>b</b>) MC comparison of <math display="inline"><semantics> <mi>ϕ</mi> </semantics></math> (rad) distribution in the forward regions at <math display="inline"><semantics> <msqrt> <mi>s</mi> </msqrt> </semantics></math> = 27 TeV.</p>
Full article ">Figure 16
<p>(<b>a</b>) Dijets multiplicity at energy <math display="inline"><semantics> <msqrt> <mi>s</mi> </msqrt> </semantics></math> = 13.6 TeV; (<b>b</b>) dijets multiplicity at energy <math display="inline"><semantics> <msqrt> <mi>s</mi> </msqrt> </semantics></math> = 20 TeV; (<b>c</b>) dijets multiplicity at energy <math display="inline"><semantics> <msqrt> <mi>s</mi> </msqrt> </semantics></math> = 27 TeV.</p>
Full article ">Figure 17
<p>(<b>a</b>) <math display="inline"><semantics> <mrow> <mo>Δ</mo> <mi>ϕ</mi> </mrow> </semantics></math> (rad) distribution at energy <math display="inline"><semantics> <msqrt> <mi>s</mi> </msqrt> </semantics></math> = 13.6 TeV; (<b>b</b>) <math display="inline"><semantics> <mrow> <mo>Δ</mo> <mi>ϕ</mi> </mrow> </semantics></math> (rad) distribution at energy <math display="inline"><semantics> <msqrt> <mi>s</mi> </msqrt> </semantics></math> = 20 TeV; (<b>c</b>) <math display="inline"><semantics> <mrow> <mo>Δ</mo> <mi>ϕ</mi> </mrow> </semantics></math> (rad) distribution at energy <math display="inline"><semantics> <msqrt> <mi>s</mi> </msqrt> </semantics></math> = 27 TeV.</p>
Full article ">
12 pages, 794 KiB  
Article
Weak Scale Supersymmetry Emergent from the String Landscape
by Howard Baer, Vernon Barger, Dakotah Martinez and Shadman Salam
Entropy 2024, 26(3), 275; https://doi.org/10.3390/e26030275 - 21 Mar 2024
Cited by 2 | Viewed by 897
Abstract
Superstring flux compactifications can stabilize all moduli while leading to an enormous number of vacua solutions, each leading to different 4d laws of physics. While the string landscape provides at present the only plausible explanation for the size of the cosmological [...] Read more.
Superstring flux compactifications can stabilize all moduli while leading to an enormous number of vacua solutions, each leading to different 4d laws of physics. While the string landscape provides at present the only plausible explanation for the size of the cosmological constant, it may also predict the form of weak scale supersymmetry which is expected to emerge. Rather general arguments suggest a power-law draw to large soft terms, but these are subject to an anthropic selection of a not-too-large value for the weak scale. The combined selection allows one to compute relative probabilities for the emergence of supersymmetric models from the landscape. Models with weak scale naturalness appear most likely to emerge since they have the largest parameter space on the landscape. For finetuned models such as high-scale SUSY or split SUSY, the required weak scale finetuning shrinks their parameter space to tiny volumes, making them much less likely to appear compared to natural models. Probability distributions for sparticle and Higgs masses from natural models show a preference for Higgs mass mh125 GeV, with sparticles typically beyond the present LHC limits, in accord with data. From these considerations, we briefly describe how natural SUSY is expected to be revealed at future LHC upgrades. This article is a contribution to the Special Edition of the journal Entropy, honoring Paul Frampton on his 80th birthday. Full article
Show Figures

Figure 1

Figure 1
<p>The ABDS-allowed window within the range of <math display="inline"><semantics> <msubsup> <mi>m</mi> <mi>Z</mi> <mrow> <mi>P</mi> <mi>U</mi> </mrow> </msubsup> </semantics></math> values.</p>
Full article ">Figure 2
<p>The <math display="inline"><semantics> <msup> <mi>μ</mi> <mrow> <mi>P</mi> <mi>U</mi> </mrow> </msup> </semantics></math> vs. <math display="inline"><semantics> <msqrt> <mrow> <mo>−</mo> <msubsup> <mi>m</mi> <mrow> <msub> <mi>H</mi> <mi>u</mi> </msub> </mrow> <mn>2</mn> </msubsup> <mrow> <mo>(</mo> <mi>w</mi> <mi>e</mi> <mi>a</mi> <mi>k</mi> <mo>)</mo> </mrow> </mrow> </msqrt> </semantics></math> parameter space in a toy model ignoring radiative corrections to the Higgs potential. The region between the red and green curves leads to <math display="inline"><semantics> <mrow> <msubsup> <mi>m</mi> <mrow> <mi>w</mi> <mi>e</mi> <mi>a</mi> <mi>k</mi> </mrow> <mrow> <mi>P</mi> <mi>U</mi> </mrow> </msubsup> <mo>&lt;</mo> <mn>4</mn> <msubsup> <mi>m</mi> <mrow> <mi>w</mi> <mi>e</mi> <mi>a</mi> <mi>k</mi> </mrow> <mrow> <mi>O</mi> <mi>U</mi> </mrow> </msubsup> </mrow> </semantics></math> so that the atomic principle is satisfied.</p>
Full article ">Figure 3
<p>The value of <math display="inline"><semantics> <mrow> <msub> <mi>m</mi> <msub> <mi>H</mi> <mi>u</mi> </msub> </msub> <mrow> <mo>(</mo> <mi>w</mi> <mi>e</mi> <mi>a</mi> <mi>k</mi> <mo>)</mo> </mrow> </mrow> </semantics></math> vs. <math display="inline"><semantics> <msup> <mi>μ</mi> <mrow> <mi>P</mi> <mi>U</mi> </mrow> </msup> </semantics></math> The green points denote vacua with appropriate EWSB and with <math display="inline"><semantics> <mrow> <msubsup> <mi>m</mi> <mrow> <mi>w</mi> <mi>e</mi> <mi>a</mi> <mi>k</mi> </mrow> <mrow> <mi>P</mi> <mi>U</mi> </mrow> </msubsup> <mo>&lt;</mo> <mn>4</mn> <msubsup> <mi>m</mi> <mrow> <mi>w</mi> <mi>e</mi> <mi>a</mi> <mi>k</mi> </mrow> <mrow> <mi>O</mi> <mi>U</mi> </mrow> </msubsup> </mrow> </semantics></math> so that the atomic principle is satisfied. Blue points have <math display="inline"><semantics> <mrow> <msubsup> <mi>m</mi> <mrow> <mi>w</mi> <mi>e</mi> <mi>a</mi> <mi>k</mi> </mrow> <mrow> <mi>P</mi> <mi>U</mi> </mrow> </msubsup> <mo>&gt;</mo> <mn>4</mn> <msubsup> <mi>m</mi> <mrow> <mi>w</mi> <mi>e</mi> <mi>a</mi> <mi>k</mi> </mrow> <mrow> <mi>O</mi> <mi>U</mi> </mrow> </msubsup> </mrow> </semantics></math>.</p>
Full article ">Figure 4
<p>Values of <math display="inline"><semantics> <msubsup> <mi>m</mi> <mi>Z</mi> <mrow> <mi>P</mi> <mi>U</mi> </mrow> </msubsup> </semantics></math> vs. <math display="inline"><semantics> <msub> <mi>μ</mi> <mrow> <mi>P</mi> <mi>U</mi> </mrow> </msub> </semantics></math> or <math display="inline"><semantics> <msub> <mi>μ</mi> <mrow> <mi>S</mi> <mi>M</mi> </mrow> </msub> </semantics></math> for various natural (RNS) and unnatural SUSY models and the SM. The ABDS window extends here from <math display="inline"><semantics> <mrow> <msubsup> <mi>m</mi> <mi>Z</mi> <mrow> <mi>P</mi> <mi>U</mi> </mrow> </msubsup> <mo>∼</mo> <mn>50</mn> </mrow> </semantics></math> to 500 GeV.</p>
Full article ">Figure 5
<p>Probability distributions for the light Higgs scalar mass <math display="inline"><semantics> <msub> <mi>m</mi> <mi>h</mi> </msub> </semantics></math> from the <math display="inline"><semantics> <mrow> <msub> <mi>f</mi> <mrow> <mi>S</mi> <mi>U</mi> <mi>S</mi> <mi>Y</mi> </mrow> </msub> <mo>=</mo> <msubsup> <mi>m</mi> <mrow> <mi>s</mi> <mi>o</mi> <mi>f</mi> <mi>t</mi> </mrow> <mrow> <mo>±</mo> <mn>1</mn> </mrow> </msubsup> </mrow> </semantics></math> distributions of soft terms in the string landscape with <math display="inline"><semantics> <mrow> <mi>μ</mi> <mo>=</mo> <mn>150</mn> </mrow> </semantics></math> GeV.</p>
Full article ">Figure 6
<p>Probability distribution for <math display="inline"><semantics> <msub> <mi>m</mi> <mover accent="true"> <mi>g</mi> <mo>˜</mo> </mover> </msub> </semantics></math> from the <math display="inline"><semantics> <mrow> <msub> <mi>f</mi> <mrow> <mi>S</mi> <mi>U</mi> <mi>S</mi> <mi>Y</mi> </mrow> </msub> <mo>=</mo> <msubsup> <mi>m</mi> <mrow> <mi>s</mi> <mi>o</mi> <mi>f</mi> <mi>t</mi> </mrow> <mrow> <mo>±</mo> <mn>1</mn> </mrow> </msubsup> </mrow> </semantics></math> distributions of soft terms in the string landscape with <math display="inline"><semantics> <mrow> <mi>μ</mi> <mo>=</mo> <mn>150</mn> </mrow> </semantics></math> GeV.</p>
Full article ">
Back to TopTop