[go: up one dir, main page]

 
 
Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (5)

Search Parameters:
Keywords = Kraus operator

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 7681 KiB  
Article
A Modified Depolarization Approach for Efficient Quantum Machine Learning
by Bikram Khanal and Pablo Rivas
Mathematics 2024, 12(9), 1385; https://doi.org/10.3390/math12091385 - 1 May 2024
Cited by 1 | Viewed by 1066
Abstract
Quantum Computing in the Noisy Intermediate-Scale Quantum (NISQ) era has shown promising applications in machine learning, optimization, and cryptography. Despite these progresses, challenges persist due to system noise, errors, and decoherence. These system noises complicate the simulation of quantum systems. The depolarization channel [...] Read more.
Quantum Computing in the Noisy Intermediate-Scale Quantum (NISQ) era has shown promising applications in machine learning, optimization, and cryptography. Despite these progresses, challenges persist due to system noise, errors, and decoherence. These system noises complicate the simulation of quantum systems. The depolarization channel is a standard tool for simulating a quantum system’s noise. However, modeling such noise for practical applications is computationally expensive when we have limited hardware resources, as is the case in the NISQ era. This work proposes a modified representation for a single-qubit depolarization channel. Our modified channel uses two Kraus operators based only on X and Z Pauli matrices. Our approach reduces the computational complexity from six to four matrix multiplications per channel execution. Experiments on a Quantum Machine Learning (QML) model on the Iris dataset across various circuit depths and depolarization rates validate that our approach maintains the model’s accuracy while improving efficiency. This simplified noise model enables more scalable simulations of quantum circuits under depolarization, advancing capabilities in the NISQ era. Full article
(This article belongs to the Special Issue Advances in Quantum Computing and Applications)
Show Figures

Figure 1

Figure 1
<p>An arbitrary single qubit quantum circuit starting at <math display="inline"><semantics> <mrow> <mo>|</mo> <mn>0</mn> <mo>〉</mo> </mrow> </semantics></math>, applying a Hadamard gate, followed by a sequence of unspecified single quantum gates, then a Pauli-X gate, and finally measurement.</p>
Full article ">Figure 2
<p>Scatter plots present the difference between the standard channel and modified depolarization channel expectation value. Each channel was applied to a quantum circuit with single qubit gates of 3, 8, and 15, respectively. The result for 3 single qubit gates is presented in plot (<b>a</b>), while plot (<b>b</b>,<b>c</b>) represent the results for 8 and 15 gates circuits, respectively. The <span class="html-italic">x</span>-axis of each plot represents the number of times the noisy channel was applied and is given by <span class="html-italic">m</span>, while the <span class="html-italic">y</span>-axis gives the varying depolarization rates.</p>
Full article ">Figure 3
<p>Feature Mapping of the Iris dataset using Amplitude Encoding and Rotational encoding method. The Rotational encoding scheme, a combination of <math display="inline"><semantics> <mrow> <mi>R</mi> <mi>X</mi> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <mi>R</mi> <mi>Y</mi> </mrow> </semantics></math>, provides better mapping results for the classification problem. The red color represents Class 1, the blue color represents Class 2, and the green color represents Class 3. (<b>a</b>) Bloch Sphere representation of the quantum states obtained by Amplitude encoding of the features vectors. (<b>b</b>) Bloch Sphere representation of the quantum states obtained by Angle encoding of the features vectors.</p>
Full article ">Figure 4
<p>Various encoding schemes for single qubits using the rotational encoding. The combination of <math display="inline"><semantics> <mrow> <mi>R</mi> <mi>Z</mi> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <mi>R</mi> <mi>X</mi> </mrow> </semantics></math> gates provides the best mapping for binary classification. The red color represents Class 1, the blue color represents Class 2, and the green color represents Class 3.</p>
Full article ">Figure 5
<p>Experimental results for decision boundary evolution presented in the right column and training dynamics in the left column for a QML model on the Iris dataset, with varied noise levels (<span class="html-italic">p</span>) and depolarization channel applied up to (<span class="html-italic">m</span>) times. The decision boundaries are plotted for depths of <math display="inline"><semantics> <mrow> <mn>1</mn> <mo>,</mo> <mn>3</mn> <mo>,</mo> <mn>5</mn> <mo>,</mo> <mn>10</mn> <mo>,</mo> </mrow> </semantics></math> and 15, at noise levels ranging from <math display="inline"><semantics> <mrow> <mn>0.0</mn> </mrow> </semantics></math> to <math display="inline"><semantics> <mrow> <mn>0.5</mn> <mo>.</mo> </mrow> </semantics></math> The results across rows are presented in chronological order in circuit depth. Accuracy and loss graphs display the model’s performance over 30 epochs, highlighting the impact of noise rate and circuit depth on learning efficacy.</p>
Full article ">
57 pages, 732 KiB  
Article
Simultaneous Measurements of Noncommuting Observables: Positive Transformations and Instrumental Lie Groups
by Christopher S. Jackson and Carlton M. Caves
Entropy 2023, 25(9), 1254; https://doi.org/10.3390/e25091254 - 23 Aug 2023
Cited by 2 | Viewed by 1390
Abstract
We formulate a general program for describing and analyzing continuous, differential weak, simultaneous measurements of noncommuting observables, which focuses on describing the measuring instrument autonomously, without states. The Kraus operators of such measuring processes are time-ordered products of fundamental differential positive transformations [...] Read more.
We formulate a general program for describing and analyzing continuous, differential weak, simultaneous measurements of noncommuting observables, which focuses on describing the measuring instrument autonomously, without states. The Kraus operators of such measuring processes are time-ordered products of fundamental differential positive transformations, which generate nonunitary transformation groups that we call instrumental Lie groups. The temporal evolution of the instrument is equivalent to the diffusion of a Kraus-operator distribution function, defined relative to the invariant measure of the instrumental Lie group. This diffusion can be analyzed using Wiener path integration, stochastic differential equations, or a Fokker-Planck-Kolmogorov equation. This way of considering instrument evolution we call the Instrument Manifold Program. We relate the Instrument Manifold Program to state-based stochastic master equations. We then explain how the Instrument Manifold Program can be used to describe instrument evolution in terms of a universal cover that we call the universal instrumental Lie group, which is independent not just of states, but also of Hilbert space. The universal instrument is generically infinite dimensional, in which case the instrument’s evolution is chaotic. Special simultaneous measurements have a finite-dimensional universal instrument, in which case the instrument is considered principal, and it can be analyzed within the differential geometry of the universal instrumental Lie group. Principal instruments belong at the foundation of quantum mechanics. We consider the three most fundamental examples: measurement of a single observable, position and momentum, and the three components of angular momentum. As these measurements are performed continuously, they converge to strong simultaneous measurements. For a single observable, this results in the standard decay of coherence between inequivalent irreducible representations. For the latter two cases, it leads to a collapse within each irreducible representation onto the classical or spherical phase space, with the phase space located at the boundary of these instrumental Lie groups. Full article
(This article belongs to the Special Issue Quantum Probability and Randomness IV)
Show Figures

Figure 1

Figure 1
<p>Schematic of a sequence of indirect, differential weak measurements; full understanding comes after reading <xref ref-type="sec" rid="sec2dot1-entropy-25-01254">Section 2.1</xref> and <xref ref-type="sec" rid="sec2dot2-entropy-25-01254">Section 2.2</xref>. A system in a state <inline-formula><mml:math id="mm927"><mml:semantics><mml:mrow><mml:mo>|</mml:mo><mml:mi>ψ</mml:mi><mml:mo>〉</mml:mo></mml:mrow></mml:semantics></mml:math></inline-formula> is indirectly measured by a sequence of weak interactions <inline-formula><mml:math id="mm928"><mml:semantics><mml:msup><mml:mi>e</mml:mi><mml:mrow><mml:mo>−</mml:mo><mml:mi>i</mml:mi><mml:mi>H</mml:mi><mml:mi>d</mml:mi><mml:mi>t</mml:mi></mml:mrow></mml:msup></mml:semantics></mml:math></inline-formula>, where each set of meters is observed after its interaction; that is, the system is continuously monitored. The incremental Kraus operator for the measurement at time <italic>t</italic>, given outcomes <inline-formula><mml:math id="mm929"><mml:semantics><mml:mrow><mml:mi>d</mml:mi><mml:msub><mml:mover accent="true"><mml:mi>W</mml:mi><mml:mo>→</mml:mo></mml:mover><mml:mi>t</mml:mi></mml:msub></mml:mrow></mml:semantics></mml:math></inline-formula>, is <inline-formula><mml:math id="mm930"><mml:semantics><mml:mrow><mml:msqrt><mml:mrow><mml:msup><mml:mi>d</mml:mi><mml:mi>n</mml:mi></mml:msup><mml:mrow><mml:mo>(</mml:mo><mml:mi>d</mml:mi><mml:msub><mml:mover accent="true"><mml:mi>W</mml:mi><mml:mo>→</mml:mo></mml:mover><mml:mi>t</mml:mi></mml:msub><mml:mo>)</mml:mo></mml:mrow></mml:mrow></mml:msqrt><mml:mfenced separators="" open="〈" close="〉"><mml:mi>d</mml:mi><mml:msub><mml:mover accent="true"><mml:mi>W</mml:mi><mml:mo>→</mml:mo></mml:mover><mml:mi>t</mml:mi></mml:msub><mml:mo>|</mml:mo><mml:msup><mml:mi>e</mml:mi><mml:mrow><mml:mo>−</mml:mo><mml:mi>i</mml:mi><mml:mi>H</mml:mi><mml:mi>d</mml:mi><mml:mi>t</mml:mi></mml:mrow></mml:msup><mml:mo>|</mml:mo><mml:mover accent="true"><mml:mn>0</mml:mn><mml:mo>→</mml:mo></mml:mover><mml:mspace width="0.166667em"/></mml:mfenced></mml:mrow></mml:semantics></mml:math></inline-formula>. Under the conditions outlined in <xref ref-type="sec" rid="sec2dot1-entropy-25-01254">Section 2.1</xref>, this Kraus operator is the differential positive transformation of Equation (<xref ref-type="disp-formula" rid="FD1-entropy-25-01254">1</xref>), that is, <inline-formula><mml:math id="mm931"><mml:semantics><mml:mrow><mml:msqrt><mml:mrow><mml:mi>d</mml:mi><mml:mi>μ</mml:mi><mml:mo>(</mml:mo><mml:mi>d</mml:mi><mml:msub><mml:mover accent="true"><mml:mi>W</mml:mi><mml:mo>→</mml:mo></mml:mover><mml:mi>t</mml:mi></mml:msub><mml:mo>)</mml:mo></mml:mrow></mml:msqrt><mml:mspace width="0.166667em"/><mml:msub><mml:mi>L</mml:mi><mml:mover accent="true"><mml:mi>X</mml:mi><mml:mo>→</mml:mo></mml:mover></mml:msub><mml:mrow><mml:mo>(</mml:mo><mml:mi>d</mml:mi><mml:msub><mml:mover accent="true"><mml:mi>W</mml:mi><mml:mo>→</mml:mo></mml:mover><mml:mi>t</mml:mi></mml:msub><mml:mo>)</mml:mo></mml:mrow></mml:mrow></mml:semantics></mml:math></inline-formula>, with <inline-formula><mml:math id="mm932"><mml:semantics><mml:mrow><mml:msub><mml:mi>L</mml:mi><mml:mover accent="true"><mml:mi>X</mml:mi><mml:mo>→</mml:mo></mml:mover></mml:msub><mml:mrow><mml:mo>(</mml:mo><mml:mi>d</mml:mi><mml:msub><mml:mover accent="true"><mml:mi>W</mml:mi><mml:mo>→</mml:mo></mml:mover><mml:mi>t</mml:mi></mml:msub><mml:mo>)</mml:mo></mml:mrow><mml:mo>=</mml:mo><mml:msup><mml:mi>e</mml:mi><mml:mrow><mml:mo>−</mml:mo><mml:msup><mml:mover accent="true"><mml:mi>X</mml:mi><mml:mo>→</mml:mo></mml:mover><mml:mn>2</mml:mn></mml:msup><mml:mi>κ</mml:mi><mml:mspace width="0.166667em"/><mml:mi>d</mml:mi><mml:mi>t</mml:mi><mml:mo>+</mml:mo><mml:mover accent="true"><mml:mi>X</mml:mi><mml:mo>→</mml:mo></mml:mover><mml:mo>·</mml:mo><mml:msqrt><mml:mi>κ</mml:mi></mml:msqrt><mml:mspace width="0.166667em"/><mml:mi>d</mml:mi><mml:msub><mml:mover accent="true"><mml:mi>W</mml:mi><mml:mo>→</mml:mo></mml:mover><mml:mi>t</mml:mi></mml:msub></mml:mrow></mml:msup></mml:mrow></mml:semantics></mml:math></inline-formula>. The incremental Kraus operators “pile up” to become, at time <italic>T</italic>, the overall Kraus operator <inline-formula><mml:math id="mm933"><mml:semantics><mml:mrow><mml:msqrt><mml:mrow><mml:mi mathvariant="script">D</mml:mi><mml:mi>μ</mml:mi><mml:mo>[</mml:mo><mml:mi>d</mml:mi><mml:msub><mml:mover accent="true"><mml:mi>W</mml:mi><mml:mo>→</mml:mo></mml:mover><mml:mrow><mml:mo>[</mml:mo><mml:mn>0</mml:mn><mml:mo>,</mml:mo><mml:mi>T</mml:mi><mml:mo>)</mml:mo></mml:mrow></mml:msub><mml:mo>]</mml:mo></mml:mrow></mml:msqrt><mml:mspace width="0.166667em"/><mml:mi>L</mml:mi><mml:mrow><mml:mo>[</mml:mo><mml:mi>d</mml:mi><mml:msub><mml:mover accent="true"><mml:mi>W</mml:mi><mml:mo>→</mml:mo></mml:mover><mml:mrow><mml:mo>[</mml:mo><mml:mn>0</mml:mn><mml:mo>,</mml:mo><mml:mi>T</mml:mi><mml:mo>)</mml:mo></mml:mrow></mml:msub><mml:mo>]</mml:mo></mml:mrow></mml:mrow></mml:semantics></mml:math></inline-formula>, which is written as a time-ordered exponential in Equation (<xref ref-type="disp-formula" rid="FD2-entropy-25-01254">2</xref>). The overall Kraus operator gives the unnormalized final state at time <italic>T</italic>, as shown in the figure. The collection of Kraus operators at time <italic>T</italic>, for all Wiener outcome paths <inline-formula><mml:math id="mm934"><mml:semantics><mml:mrow><mml:mi>d</mml:mi><mml:msub><mml:mover accent="true"><mml:mi>W</mml:mi><mml:mo>→</mml:mo></mml:mover><mml:mrow><mml:mo>[</mml:mo><mml:mn>0</mml:mn><mml:mo>,</mml:mo><mml:mi>T</mml:mi><mml:mo>)</mml:mo></mml:mrow></mml:msub></mml:mrow></mml:semantics></mml:math></inline-formula>, defines an <italic>instrument</italic>, which can be analyzed on its own, independent of system states—simply omit <inline-formula><mml:math id="mm935"><mml:semantics><mml:mrow><mml:mo>|</mml:mo><mml:mi>ψ</mml:mi><mml:mo>〉</mml:mo></mml:mrow></mml:semantics></mml:math></inline-formula> from the figure—a style of analysis we call <italic>instrument autonomy</italic>. The Kraus operators move across the manifold of an <italic>instrumental Lie group</italic>, which is generated by the measured observables. Placing the instrument within its instrumental Lie group and analyzing its evolution there is what we call the <italic>Instrument Manifold Program</italic>.</p>
Full article ">
57 pages, 592 KiB  
Article
Simultaneous Momentum and Position Measurement and the Instrumental Weyl-Heisenberg Group
by Christopher S. Jackson and Carlton M. Caves
Entropy 2023, 25(8), 1221; https://doi.org/10.3390/e25081221 - 16 Aug 2023
Cited by 2 | Viewed by 1135
Abstract
The canonical commutation relation, [Q,P]=i, stands at the foundation of quantum theory and the original Hilbert space. The interpretation of P and Q as observables has always relied on the analogies that exist between the [...] Read more.
The canonical commutation relation, [Q,P]=i, stands at the foundation of quantum theory and the original Hilbert space. The interpretation of P and Q as observables has always relied on the analogies that exist between the unitary transformations of Hilbert space and the canonical (also known as contact) transformations of classical phase space. Now that the theory of quantum measurement is essentially complete (this took a while), it is possible to revisit the canonical commutation relation in a way that sets the foundation of quantum theory not on unitary transformations but on positive transformations. This paper shows how the concept of simultaneous measurement leads to a fundamental differential geometric problem whose solution shows us the following. The simultaneous P and Q measurement (SPQM) defines a universal measuring instrument, which takes the shape of a seven-dimensional manifold, a universal covering group we call the instrumental Weyl-Heisenberg (IWH) group. The group IWH connects the identity to classical phase space in unexpected ways that are significant enough that the positive-operator-valued measure (POVM) offers a complete alternative to energy quantization. Five of the dimensions define processes that can be easily recognized and understood. The other two dimensions, the normalization and phase in the center of the IWH group, are less familiar. The normalization, in particular, requires special handling in order to describe and understand the SPQM instrument. Full article
(This article belongs to the Special Issue Quantum Probability and Randomness IV)
14 pages, 705 KiB  
Communication
Quantum State Tomography in Nonequilibrium Environments
by Haonan Chen, Tao Han, Mingli Chen, Jing Ren, Xiangji Cai, Xiangjia Meng and Yonggang Peng
Photonics 2023, 10(2), 134; https://doi.org/10.3390/photonics10020134 - 28 Jan 2023
Cited by 8 | Viewed by 1983
Abstract
We generalize an approach to studying the quantum state tomography (QST) of open systems in terms of the dynamical map in Kraus representation within the framework of dynamic generation of informationally complete positive operator-valued measures. As applications, we use the generalized approach to [...] Read more.
We generalize an approach to studying the quantum state tomography (QST) of open systems in terms of the dynamical map in Kraus representation within the framework of dynamic generation of informationally complete positive operator-valued measures. As applications, we use the generalized approach to theoretically study the QST of qubit systems in the presence of nonequilibrium environments which exhibit nonstationary and non-Markovian random telegraph noise statistical properties. We derive the time-dependent measurement operators for the quantum state reconstruction of the single qubit and two-qubit systems in terms of the polarization operator basis. It is shown that the behavior of the time-dependent measurement operators is closely associated with the dynamical map of the qubit systems. Full article
(This article belongs to the Special Issue Photonic State Tomography: Methods and Applications)
Show Figures

Figure 1

Figure 1
<p>(Color online) Trajectories of the measurement operators (<b>a</b>) <math display="inline"><semantics> <mrow> <msubsup> <mi>M</mi> <mrow> <mi>D</mi> </mrow> <mi>S</mi> </msubsup> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> </mrow> </semantics></math>, (<b>b</b>) <math display="inline"><semantics> <mrow> <msubsup> <mi>M</mi> <mrow> <mi>A</mi> </mrow> <mi>S</mi> </msubsup> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> </mrow> </semantics></math>, (<b>c</b>) <math display="inline"><semantics> <mrow> <msubsup> <mi>M</mi> <mrow> <mi>L</mi> </mrow> <mi>S</mi> </msubsup> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> </mrow> </semantics></math> and (<b>d</b>) <math display="inline"><semantics> <mrow> <msubsup> <mi>M</mi> <mrow> <mi>R</mi> </mrow> <mi>S</mi> </msubsup> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> </mrow> </semantics></math> on the Bloch sphere. The red lines stand for the Markovian dynamics regime with <math display="inline"><semantics> <mrow> <mi>ν</mi> <mo>/</mo> <mi>λ</mi> <mo>=</mo> <mn>0.8</mn> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <mi>κ</mi> <mo>/</mo> <mi>λ</mi> <mo>=</mo> <mn>2</mn> </mrow> </semantics></math> and the blue lines represent the non-Markovian dynamics regime with <math display="inline"><semantics> <mrow> <mi>ν</mi> <mo>/</mo> <mi>λ</mi> <mo>=</mo> <mn>3</mn> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <mi>κ</mi> <mo>/</mo> <mi>λ</mi> <mo>=</mo> <mn>2</mn> </mrow> </semantics></math>. The initial nonstationary parameter is chosen as <math display="inline"><semantics> <mrow> <mi>a</mi> <mo>=</mo> <mn>0.5</mn> </mrow> </semantics></math>.</p>
Full article ">Figure 2
<p>(Color online) Trajectories of the measurement operator <math display="inline"><semantics> <mrow> <msubsup> <mi>M</mi> <mrow> <mi>A</mi> </mrow> <mi>S</mi> </msubsup> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> </mrow> </semantics></math> on the Bloch sphere for for different values of the initial nonstationary parameter <span class="html-italic">a</span> in (<b>a</b>) Markovian dynamics regime with <math display="inline"><semantics> <mrow> <mi>ν</mi> <mo>/</mo> <mi>λ</mi> <mo>=</mo> <mn>0.8</mn> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <mi>κ</mi> <mo>/</mo> <mi>λ</mi> <mo>=</mo> <mn>2</mn> </mrow> </semantics></math> and (<b>b</b>) non-Markovian dynamics regime with <math display="inline"><semantics> <mrow> <mi>ν</mi> <mo>/</mo> <mi>λ</mi> <mo>=</mo> <mn>3</mn> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <mi>κ</mi> <mo>/</mo> <mi>λ</mi> <mo>=</mo> <mn>2</mn> </mrow> </semantics></math>. Blue lines for <math display="inline"><semantics> <mrow> <mi>a</mi> <mo>=</mo> <mo>±</mo> <mn>1</mn> </mrow> </semantics></math>; red lines for <math display="inline"><semantics> <mrow> <mi>a</mi> <mo>=</mo> <mo>±</mo> <mn>0.5</mn> </mrow> </semantics></math> and black lines for <math display="inline"><semantics> <mrow> <mi>a</mi> <mo>=</mo> <mn>0</mn> </mrow> </semantics></math> (the solid and dashed lines represent positive and negative values of <span class="html-italic">a</span>, respectively.)</p>
Full article ">
23 pages, 1358 KiB  
Article
Disentanglement Dynamics in Nonequilibrium Environments
by Mingli Chen, Haonan Chen, Tao Han and Xiangji Cai
Entropy 2022, 24(10), 1330; https://doi.org/10.3390/e24101330 - 21 Sep 2022
Cited by 8 | Viewed by 1557
Abstract
We theoretically study the non-Markovian disentanglement dynamics of a two-qubit system coupled to nonequilibrium environments with nonstationary and non-Markovian random telegraph noise statistical properties. The reduced density matrix of the two-qubit system can be expressed as the Kraus representation in terms of the [...] Read more.
We theoretically study the non-Markovian disentanglement dynamics of a two-qubit system coupled to nonequilibrium environments with nonstationary and non-Markovian random telegraph noise statistical properties. The reduced density matrix of the two-qubit system can be expressed as the Kraus representation in terms of the tensor products of the single qubit Kraus operators. We derive the relation between the entanglement and nonlocality of the two-qubit system which are both closely associated with the decoherence function. We identify the threshold values of the decoherence function to ensure the existences of the concurrence and nonlocal quantum correlations for an arbitrary evolution time when the two-qubit system is initially prepared in the composite Bell states and the Werner states, respectively. It is shown that the environmental nonequilibrium feature can suppress the disentanglement dynamics and reduce the entanglement revivals in non-Markovian dynamics regime. In addition, the environmental nonequilibrium feature can enhance the nonlocality of the two-qubit system. Moreover, the entanglement sudden death and rebirth phenomena and the transition between quantum and classical nonlocalities closely depend on the parameters of the initial states and the environmental parameters in nonequilibrium environments. Full article
(This article belongs to the Special Issue Quantum Information Concepts in Open Quantum Systems)
Show Figures

Figure 1

Figure 1
<p>(Color online) Non-Markovianity <math display="inline"><semantics> <msub> <mi mathvariant="script">N</mi> <mi>T</mi> </msub> </semantics></math> of a two-qubit system in nonequilibrium environments as a function of the environmental memory decay rate <math display="inline"><semantics> <mi>κ</mi> </semantics></math> and the nonstationary parameter <span class="html-italic">a</span> in (<b>a</b>) the weak coupling regime with <math display="inline"><semantics> <mrow> <mi>ν</mi> <mo>/</mo> <mi>λ</mi> <mo>=</mo> <mn>0.8</mn> </mrow> </semantics></math> and (<b>b</b>) the strong coupling regime with <math display="inline"><semantics> <mrow> <mi>ν</mi> <mo>/</mo> <mi>λ</mi> <mo>=</mo> <mn>2</mn> </mrow> </semantics></math>. The bottom panel of (<b>b</b>) is for the memoryless case <math display="inline"><semantics> <mrow> <mi>κ</mi> <mo>→</mo> <mo>+</mo> <mo>∞</mo> </mrow> </semantics></math>.</p>
Full article ">Figure 2
<p>(Color online) Time evolution of (<b>a</b>) the concurrence <math display="inline"><semantics> <mrow> <mi mathvariant="script">C</mi> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> </semantics></math> and (<b>b</b>) the Bell function <math display="inline"><semantics> <mrow> <mi mathvariant="script">B</mi> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> </semantics></math> for different values of the environmental nonstationary parameter <span class="html-italic">a</span> for the two-qubit system prepared initially in the composite Bell states with the initial state parameter <math display="inline"><semantics> <mrow> <mo>|</mo> <mi>c</mi> <mo>|</mo> <mo>=</mo> <mn>0.5</mn> </mrow> </semantics></math>. Left panel: the weak coupling regime with <math display="inline"><semantics> <mrow> <mi>ν</mi> <mo>/</mo> <mi>λ</mi> <mo>=</mo> <mn>0.8</mn> </mrow> </semantics></math>. Right panel: the strong coupling regime with <math display="inline"><semantics> <mrow> <mi>ν</mi> <mo>/</mo> <mi>λ</mi> <mo>=</mo> <mn>2</mn> </mrow> </semantics></math>. The environmental memory decay rate is given by <math display="inline"><semantics> <mrow> <mi>κ</mi> <mo>/</mo> <mi>λ</mi> <mo>=</mo> <mn>1</mn> </mrow> </semantics></math>. The threshold value corresponding to the entanglement rebirth phenomenon in the strong coupling regime in the right panel of (<b>a</b>) is <math display="inline"><semantics> <mrow> <mrow> <mo>|</mo> </mrow> <msub> <mi>a</mi> <mi>th</mi> </msub> <mrow> <mo>|</mo> <mo>=</mo> <mn>0.95</mn> </mrow> </mrow> </semantics></math>.</p>
Full article ">Figure 3
<p>(Color online) Time evolution of (<b>a</b>) the concurrence <math display="inline"><semantics> <mrow> <mi mathvariant="script">C</mi> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> </semantics></math> and (<b>b</b>) the Bell function <math display="inline"><semantics> <mrow> <mi mathvariant="script">B</mi> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> </semantics></math> for different values of the environmental memory decay rate <math display="inline"><semantics> <mi>κ</mi> </semantics></math> for the two-qubit system prepared initially in the composite Bell states with the initial state parameter <math display="inline"><semantics> <mrow> <mo>|</mo> <mi>c</mi> <mo>|</mo> <mo>=</mo> <mn>0.5</mn> </mrow> </semantics></math>. Left panel: the weak coupling regime with <math display="inline"><semantics> <mrow> <mi>ν</mi> <mo>/</mo> <mi>λ</mi> <mo>=</mo> <mn>0.8</mn> </mrow> </semantics></math>. Right panel: the strong coupling regime with <math display="inline"><semantics> <mrow> <mi>ν</mi> <mo>/</mo> <mi>λ</mi> <mo>=</mo> <mn>2</mn> </mrow> </semantics></math>. The environmental nonstationary parameter is given by <math display="inline"><semantics> <mrow> <mo>|</mo> <mi>a</mi> <mo>|</mo> <mo>=</mo> <mn>0.5</mn> </mrow> </semantics></math>. The threshold values corresponding to the entanglement rebirth phenomenon in the weak and strong coupling regimes in left and right panel of (<b>a</b>) are <math display="inline"><semantics> <mrow> <msub> <mi>κ</mi> <mi>th</mi> </msub> <mo>=</mo> <mn>0.27</mn> <mi>λ</mi> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <msub> <mi>κ</mi> <mi>th</mi> </msub> <mo>=</mo> <mn>0.87</mn> <mi>λ</mi> </mrow> </semantics></math>, respectively.</p>
Full article ">Figure 4
<p>(Color online) Time evolution of (<b>a</b>) the concurrence <math display="inline"><semantics> <mrow> <mi mathvariant="script">C</mi> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> </semantics></math> and (<b>b</b>) the Bell function <math display="inline"><semantics> <mrow> <mi mathvariant="script">B</mi> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> </semantics></math> for the two-qubit system prepared initially in the composite Bell states for different values of the initial state parameter <span class="html-italic">c</span>. Left panel: the weak coupling regime with <math display="inline"><semantics> <mrow> <mi>ν</mi> <mo>/</mo> <mi>λ</mi> <mo>=</mo> <mn>0.8</mn> </mrow> </semantics></math>. Right panel: the strong coupling regime with <math display="inline"><semantics> <mrow> <mi>ν</mi> <mo>/</mo> <mi>λ</mi> <mo>=</mo> <mn>2</mn> </mrow> </semantics></math>. The environmental nonstationary parameter is given by <math display="inline"><semantics> <mrow> <mo>|</mo> <mi>a</mi> <mo>|</mo> <mo>=</mo> <mn>0.5</mn> </mrow> </semantics></math> and the environmental memory decay rate is given by <math display="inline"><semantics> <mrow> <mi>κ</mi> <mo>/</mo> <mi>λ</mi> <mo>=</mo> <mn>1</mn> </mrow> </semantics></math>. The threshold value corresponding to the entanglement rebirth phenomenon in the strong coupling regime in right panel of (<b>a</b>) is <math display="inline"><semantics> <mrow> <mrow> <mo>|</mo> </mrow> <msub> <mi>c</mi> <mi>th</mi> </msub> <mrow> <mo>|</mo> <mo>=</mo> <mn>0.57</mn> </mrow> </mrow> </semantics></math>.</p>
Full article ">Figure 5
<p>(Color online) Time evolution of (<b>a</b>) the concurrence <math display="inline"><semantics> <mrow> <mi mathvariant="script">C</mi> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> </semantics></math> and (<b>b</b>) the Bell function <math display="inline"><semantics> <mrow> <mi mathvariant="script">B</mi> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> </semantics></math> for different values of the environmental nonstationary parameter <span class="html-italic">a</span> for the two-qubit system prepared initially in the Werner states with the initial purity parameter <math display="inline"><semantics> <mrow> <mi>r</mi> <mo>=</mo> <mn>0.8</mn> </mrow> </semantics></math>. Left panel: the weak coupling regime with <math display="inline"><semantics> <mrow> <mi>ν</mi> <mo>/</mo> <mi>λ</mi> <mo>=</mo> <mn>0.8</mn> </mrow> </semantics></math>. Right panel: the strong coupling regime with <math display="inline"><semantics> <mrow> <mi>ν</mi> <mo>/</mo> <mi>λ</mi> <mo>=</mo> <mn>2</mn> </mrow> </semantics></math>. The environmental memory decay rate is given by <math display="inline"><semantics> <mrow> <mi>κ</mi> <mo>/</mo> <mi>λ</mi> <mo>=</mo> <mn>1</mn> </mrow> </semantics></math>.</p>
Full article ">Figure 6
<p>(Color online) Time evolution of (<b>a</b>) the concurrence <math display="inline"><semantics> <mrow> <mi mathvariant="script">C</mi> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> </semantics></math> and (<b>b</b>) the Bell function <math display="inline"><semantics> <mrow> <mi mathvariant="script">B</mi> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> </semantics></math> for different values of the environmental memory decay rate <math display="inline"><semantics> <mi>κ</mi> </semantics></math> for the two-qubit system prepared initially in the extended Werner states with the initial purity parameter <math display="inline"><semantics> <mrow> <mi>r</mi> <mo>=</mo> <mn>0.8</mn> </mrow> </semantics></math>. Left panel: the weak coupling regime with <math display="inline"><semantics> <mrow> <mi>ν</mi> <mo>/</mo> <mi>λ</mi> <mo>=</mo> <mn>0.8</mn> </mrow> </semantics></math>. Right panel: the strong coupling regime with <math display="inline"><semantics> <mrow> <mi>ν</mi> <mo>/</mo> <mi>λ</mi> <mo>=</mo> <mn>2</mn> </mrow> </semantics></math>. The environmental nonstationary parameter is given by <math display="inline"><semantics> <mrow> <mo>|</mo> <mi>a</mi> <mo>|</mo> <mo>=</mo> <mn>0.5</mn> </mrow> </semantics></math>. The threshold values corresponding to the entanglement rebirth phenomenon in the weak and strong coupling regimes in left and right panel of (<b>a</b>) are <math display="inline"><semantics> <mrow> <msub> <mi>κ</mi> <mi>th</mi> </msub> <mo>=</mo> <mn>0.66</mn> <mi>λ</mi> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <msub> <mi>κ</mi> <mi>th</mi> </msub> <mo>=</mo> <mn>1.50</mn> <mi>λ</mi> </mrow> </semantics></math>, respectively.</p>
Full article ">Figure 7
<p>(Color online) Time evolution of (<b>a</b>) the concurrence <math display="inline"><semantics> <mrow> <mi mathvariant="script">C</mi> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> </semantics></math> and (<b>b</b>) the Bell function <math display="inline"><semantics> <mrow> <mi mathvariant="script">B</mi> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> </semantics></math> for the two-qubit system prepared initially in the Werner states for different values of the initial purity parameter <span class="html-italic">r</span>. Left panel: the weak coupling regime with <math display="inline"><semantics> <mrow> <mi>ν</mi> <mo>/</mo> <mi>λ</mi> <mo>=</mo> <mn>0.8</mn> </mrow> </semantics></math>. Right panel: the strong coupling regime with <math display="inline"><semantics> <mrow> <mi>ν</mi> <mo>/</mo> <mi>λ</mi> <mo>=</mo> <mn>2</mn> </mrow> </semantics></math>. The environmental nonstationary parameter is given by <math display="inline"><semantics> <mrow> <mo>|</mo> <mi>a</mi> <mo>|</mo> <mo>=</mo> <mn>0.5</mn> </mrow> </semantics></math> and the environmental memory decay rate is given by <math display="inline"><semantics> <mrow> <mi>κ</mi> <mo>/</mo> <mi>λ</mi> <mo>=</mo> <mn>1</mn> </mrow> </semantics></math>. The threshold value corresponding to the entanglement rebirth phenomenon in the strong coupling regime in right panel of (a) is <math display="inline"><semantics> <mrow> <msub> <mi>r</mi> <mi>th</mi> </msub> <mo>=</mo> <mn>0.65</mn> </mrow> </semantics></math>.</p>
Full article ">Figure 8
<p>(Color online) Time evolution of (<b>a</b>) the concurrence <math display="inline"><semantics> <mrow> <mi mathvariant="script">C</mi> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> </semantics></math> and (<b>b</b>) the Bell function <math display="inline"><semantics> <mrow> <mi mathvariant="script">B</mi> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> </semantics></math> different values of the coupling strength <math display="inline"><semantics> <mi>ν</mi> </semantics></math>. Left panel: for the two-qubit system prepared initially in the composite Bell states with the initial state parameter <math display="inline"><semantics> <mrow> <mo>|</mo> <mi>c</mi> <mo>|</mo> <mo>=</mo> <mn>0.5</mn> </mrow> </semantics></math>. Right panel: for the two-qubit system prepared initially in the Werner states with the initial purity parameter <math display="inline"><semantics> <mrow> <mi>r</mi> <mo>=</mo> <mn>0.8</mn> </mrow> </semantics></math>. The environmental nonstationary parameter is given by <math display="inline"><semantics> <mrow> <mo>|</mo> <mi>a</mi> <mo>|</mo> <mo>=</mo> <mn>0.5</mn> </mrow> </semantics></math> and the environmental memory decay rate is given by <math display="inline"><semantics> <mrow> <mi>κ</mi> <mo>/</mo> <mi>λ</mi> <mo>=</mo> <mn>1</mn> </mrow> </semantics></math>. The threshold values corresponding to the entanglement rebirth phenomenon in the composite Bell states and in the Werner states in left and right panel of (<b>a</b>) are <math display="inline"><semantics> <mrow> <msub> <mi>ν</mi> <mi>th</mi> </msub> <mo>=</mo> <mn>2.2</mn> <mi>λ</mi> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <msub> <mi>ν</mi> <mi>th</mi> </msub> <mo>=</mo> <mn>1.47</mn> <mi>λ</mi> </mrow> </semantics></math>, respectively.</p>
Full article ">
Back to TopTop