Tiny Carriers, Tremendous Hope: Nanomedicine in the Fight against Parkinson’s
"> Figure 1
<p>The image highlights key features of PD, including Lewy body formation, which involves the accumulation of abnormal α–syn protein. Neuroinflammation, driven by activated microglia and astrocytes, contributes to neuronal damage. Dysfunction of the ubiquitin-proteasome system (UPS) leads to the buildup of toxic proteins. Synaptic disruption impairs neurotransmission, exacerbating motor and cognitive symptoms. Neurodegeneration, particularly the loss of dopaminergic neurons in the substantia nigra, underlies the disease’s characteristic motor deficits.</p> "> Figure 2
<p>Therapeutic approaches for PD.</p> "> Figure 3
<p>This detailed representation explains how mitochondrial dysfunction and excessive ROS production lead to oxidative stress, impair cellular energy metabolism, disrupt calcium homeostasis, and trigger inflammatory responses, culminating in the progressive loss of dopaminergic neurons in the substantia nigra and the characteristic symptoms of PD.</p> "> Figure 4
<p>Schematic representation of the blood–brain barrier (BBB) and molecule transport mechanisms.</p> "> Figure 5
<p>Diagrammatic representation of solid lipid nanocarriers.</p> ">
Abstract
:1. Introduction
2. Etiology of Parkinson’s Disease
3. Management of Parkinson’s Disease
4. Current and Emerging Therapeutic Strategies
5. Integrating Traditional and Modern Approaches
Plant | Animal Model | Dose | Effects | References |
---|---|---|---|---|
Tinospora cordifolia | Rat treated with 6-OHDA | 400 mg/kg b.w |
| [34] |
Sesame seed oil | Mice treated with 6-OHDA | Sesame oil mix diet |
| [43] |
Carthamus tinctorius | Rat treated with MPTP | 35 mg/kg b.w |
| [33] |
Chaenomeles speciosa | Rat treated with 6-OHDA | 1000 mg/kg b.w |
| [44] |
Portulaca oleracea | Mice treated with 6-OHDA | 400 mg/kg b.w. |
| [31] |
Paeonia suffruticosa | Rat treated with MPTP | 50 mg/kg b.w |
| [45] |
Mucuna pruriens | Rat treated with 6-OHDA | 120 mg/kg b.w |
| [46] |
Hyoscyamus niger seeds | Rat treated with rotenone | 500 mg/kg b.w |
| [30] |
Hibiscus asper leaves | Rat treated with 6-OHDA | 100 mg/kg b.w |
| [47] |
Gynostemma pentaphyllum | Rat treated with MPTP | 30 mg/kg b.w |
| [48] |
Ginkgo biloba | Rat treated with 6-OHDA | 150 mg/kg b.w |
| [49] |
Fructus alpiniaoxyphylla | Zebrafish | 20% solution |
| [44] |
Delphinium denudatum | Mice treated with 6-OHDA) | 600 mg/kg b.w |
| [50] |
Bacopa monniera Linn | Mice treated with 6-OHDA) | 40 mg/kg b.w |
| [36] |
Althaea officinalis L. | Rats treated with 6-OHDA | 10 mg/kg b.w |
| [51] |
Valeriana officinalis | SH-SY5Y cells treated with rotenone | 0.049 mg/mL b.w |
| [52] |
Panax ginseng | Rat treated with rotenone | 100 mg/kg/b.w |
| [53] |
Safflower | Rat treated with 6-OHDA | 70 mg/kg/b.w |
| [54] |
Hypericum perforatum | Mice treated with MPTP | 200 mg/kg/b.w |
| [55] |
Oxalis corniculata | Mice treated with 6-OHDA | 500 mg/kg/b.w |
| [56] |
6. Overcoming the Blood–Brain Barrier: Challenges and Innovations
7. Nanomedicine for Parkinson’s Disease
8. Nanotoxicity and Safety Concerns
9. Solid Lipid Nanocarriers as Drug Delivery System
10. Recent Advances in Oral Nanomedicine for PD
11. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Blesa, J.; Trigo-Damas, I.; Quiroga-Varela, A.; Jackson-Lewis, V.R. Oxidative stress and Parkinson’s disease. Front. Neuroanat. 2021, 9, 91. [Google Scholar] [CrossRef] [PubMed]
- De Carolis, L.; Galli, S.; Bianchini, E.; Rinaldi, D.; Raju, M.; Caliò, B.; Alborghetti, M.; Pontieri, F.E. Age at Onset Influences Progression of Motor and Non-Motor Symptoms during the Early Stage of Parkinson’s Disease: A Monocentric Retrospective Study. Brain Sci. 2023, 13, 157. [Google Scholar] [CrossRef] [PubMed]
- Larkov, A.; Barreto, G.E.; Grizzell, J.A.; Echeverria, V. Strategies for the treatment of Parkinson’s disease: Beyond dopamine. Front. Aging Neurosci. 2020, 12, 4. [Google Scholar]
- Parkinsons Foundation USA. 2021. Available online: https://www.parkinson.org/sites/default/files/documents/Parkinsons_Foundation_2021_Annual_Report.pdf (accessed on 24 April 2024).
- González-Usigli, H.A.; Ortiz, G.G.; Charles-Niño, C.; Mireles-Ramírez, M.A.; Pacheco-Moisés, F.P.; Torres-Mendoza, B.M.; Hernández-Cruz, J.D.; Delgado-Lara, D.L.; Ramírez-Jirano, L.J. Neurocognitive psychiatric and neuropsychological alterations in Parkinson’s disease: A basic and clinical approach. Brain Sci. 2023, 13, 508. [Google Scholar] [CrossRef] [PubMed]
- Chiang, M.C.; Yang, Y.P.; Nicol, C.J.; Wang, C.J. Gold Nanoparticles in Neurological Diseases: A Review of Neuroprotection. Int. J. Mol. Sci. 2024, 25, 2360. [Google Scholar] [CrossRef] [PubMed]
- Qiao, R.; Fu, C.; Forgham, H.; Javed, I.; Huang, X.; Zhu, J.; Whittaker, A.K.; Davis, T.P. Magnetic iron oxide nanoparticles for brain imaging and drug delivery. Adv. Drug Deliv. Rev. 2023, 197, 114822. [Google Scholar] [CrossRef]
- Gómez-Benito, M.; Granado, N.; García-Sanz, P.; Michel, A.; Dumoulin, M.; Moratalla, R. Modeling Parkinson’s disease with the alpha-synuclein protein. Front. Pharmacol. 2020, 11, 356. [Google Scholar] [CrossRef]
- Esteves, A.R.; Silva, D.F.; Santos, D.; Candeias, E.; Filipe, F.; Cardoso, S.M. Mitochondria at the base of neuronal innate immunity in Alzheimer’s and Parkinson’s diseases. Mitochondrial Dis. 2018, 137. [Google Scholar] [CrossRef]
- Jeon, Y.M.; Kwon, Y.; Jo, M.; Lee, S.; Kim, S.; Kim, H.J. The Role of Glial Mitochondria in α-Synuclein Toxicity. Front. Cell Dev. Biol. 2020, 8, 1297. [Google Scholar] [CrossRef] [PubMed]
- Marchetti, B. Nrf2/Wnt resilience orchestrates rejuvenation of glia-neuron dialogue in Parkinson’s disease. Redox Biol. 2020, 36, 101664. [Google Scholar] [CrossRef]
- O’Hara, D.M.; Pawar, G.; Kalia, S.K.; Kalia, L.V. LRRK2 and α-Synuclein: Distinct or Synergistic Players in Parkinson’s Disease? Front. Neurosci. 2020, 14, 577. [Google Scholar] [CrossRef]
- Meade, R.M.; Fairlie, D.P.; Mason, J.M. Alpha-synuclein structure and Parkinson’s disease–lessons and emerging principles. Mol. Neurodegener. 2019, 14, 29. [Google Scholar] [CrossRef] [PubMed]
- Stoker, T.B.; Barker, R.A. Recent developments in the treatment of Parkinson’s Disease. F1000Research 2020, 9. [Google Scholar] [CrossRef] [PubMed]
- Sveinbjornsdottir, S. The clinical symptoms of Parkinson’s disease. J. Neurochem. 2016, 139, 318–324. [Google Scholar] [CrossRef] [PubMed]
- Koeglsperger, T.; Palleis, C.; Hell, F.; Mehrkens, J.H.; Bötzel, K. Deep brain stimulation programming for movement disorders: Current concepts and evidence-based strategies. Front. Neurol. 2019, 10, 410. [Google Scholar] [CrossRef] [PubMed]
- Pourahmad, R.; Saleki, K.; Esmaili, M.; Abdollahi, A.; Alijanizadeh, P.; Gholinejad, M.Z.; Banazadeh, M.; Ahmadi, M. Deep brain stimulation (DBS) as a therapeutic approach in gait disorders: What does it bring to the table? IBRO Neurosci. Rep. 2023, 14, 507–513. [Google Scholar] [CrossRef] [PubMed]
- Lee, D.J.; Dallapiazza, R.F.; De Vloo, P.; Lozano, A.M. Current surgical treatments for Parkinson’s disease and potential therapeutic targets. Neural Regen. Res. 2018, 13, 1342. [Google Scholar] [CrossRef]
- Demiryürek, B.E.; Barut, B.Ö. Surgical Treatment Methods in Movement Disorders: Mechanisms of Action and Indications. Bezmialem Sci. 2017, 5, 126–134. [Google Scholar] [CrossRef]
- Lozano, C.S.; Tam, J.; Lozano, A.M. The changing landscape of surgery for Parkinson’s Disease. Mov. Disord. 2018, 33, 36–47. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Xu, F.; Nie, Z.; Shao, L. Gut Microbiota Approach—A New Strategy to Treat Parkinson’s Disease. Front. Cell. Infect. Microbiol. 2020, 10, 570658. [Google Scholar] [CrossRef] [PubMed]
- Angelopoulou, E.; Stanitsa, E.; Karpodini, C.C.; Bougea, A.; Kontaxopoulou, D.; Fragkiadaki, S.; Koros, C.; Georgakopoulou, V.E.; Fotakopoulos, G.; Koutedakis, Y.; et al. Pharmacological and Non-Pharmacological Treatments for Depression in Parkinson’s Disease: An Updated Review. Medicina 2023, 59, 1454. [Google Scholar] [CrossRef]
- Radder, D.L.; Sturkenboom, I.H.; van Nimwegen, M.; Keus, S.H.; Bloem, B.R.; de Vries, N.M. Physical therapy and occupational therapy in Parkinson’s disease. Int. J. Neurosci. 2017, 127, 930–943. [Google Scholar] [CrossRef] [PubMed]
- Connolly, B.S.; Lang, A.E. Pharmacological treatment of Parkinson disease: A review. JAMA 2014, 311, 1670–1683. [Google Scholar] [CrossRef] [PubMed]
- Chaudhuri, K.R.; Titova, N. Societal burden and persisting unmet needs of Parkinson’s disease. Eur. Neurol. Rev. 2019, 14, 28–35. [Google Scholar] [CrossRef]
- Maiti, P.; Manna, J.; Dunbar, G.L. Current understanding of the molecular mechanisms in Parkinson’s disease: Targets for potential treatments. Transl. Neurodegener. 2017, 6, 28. [Google Scholar] [CrossRef] [PubMed]
- Halkias, I.A.; Haq, I.; Huang, Z.; Fernandez, H.H. When should levodopa therapy be initiated in patients with Parkinson’s disease? Drugs Aging 2007, 24, 261–273. [Google Scholar]
- Mordeniz, C. Introductory Chapter: Traditional and Complementary Medicine. InTraditional and Complementary Medicine; IntechOpen: London, UK, 2019. [Google Scholar]
- Chaachouay, N.; Zidane, L. Plant-Derived Natural Products: A Source for Drug Discovery and Development. Drugs Drug Candidates 2024, 3, 184–207. [Google Scholar] [CrossRef]
- Khatri, D.K.; Juvekar, A.R. Propensity of Hyoscyamus niger seeds methanolic extract to allay stereotaxically rotenone-induced Parkinson’s disease symptoms in rats. Orient. Pharm. Exp. Med. 2015, 15, 327–339. [Google Scholar] [CrossRef]
- Ebadollahi, S.; Babaei, F.; Zare, S.; Ebadollahi, M. Evaluation of antioxidant properties of hydroalcoholic extract of purslane (Portulaca oleracea) and Its protective effect on 6-hydroxydopamine induced hepatic damage in parkinsonian male rats. Qom Univ. Med. Sci. J. 2018, 12, 15–25. [Google Scholar] [CrossRef]
- Rabiei, Z.; Solati, K.; Amini-Khoei, H. Phytotherapy in treatment of Parkinson’s disease: A review. Pharm. Biol. 2019, 57, 355–362. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Li, Y.; Chen, L.; Xu, M.; Wu, J.; Zhang, P.; Nel, D.; Sun, B. Protective effect of hydroxysafflor yellow A on dopaminergic neurons against 6-hydroxydopamine, activating anti-apoptotic and anti-neuroinflammatory pathways. Pharm. Biol. 2020, 58, 686–694. [Google Scholar] [CrossRef]
- Birla, H.; Keswani, C.; Singh, S.S.; Zahra, W.; Dilnashin, H.; Rathore, A.S.; Singh, R.; Rajput, M.; Keshri, P.; Singh, S.P. Unraveling the Neuroprotective Effect of Tinospora cordifolia in a Parkinsonian Mouse Model through the Proteomics Approach. ACS Chem. Neurosci. 2021, 12, 4319–4335. [Google Scholar] [CrossRef] [PubMed]
- Khazdair, M.R.; Kianmehr, M.; Anaeigoudari, A. Effects of medicinal plants and flavonoids on Parkinson’s disease: A review on basic and clinical evidences. Adv. Pharm. Bull. 2021, 11, 224. [Google Scholar] [CrossRef] [PubMed]
- Singh, B.; Pandey, S.; Rumman, M.; Kumar, S.; Kushwaha, P.P.; Verma, R.; Mahdi, A.A. Neuroprotective and neurorescue mode of action of Bacopa monnieri (L.) Wettst in 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine-induced Parkinson’s disease: An in silico and in vivo study. Front. Pharmacol. 2021, 12, 169. [Google Scholar] [CrossRef] [PubMed]
- Zhen, C.; Li, D.; Wang, H.; Wang, P.; Zhang, W.; Yu, J.; Yu, X.; Wang, X. Tea consumption and risk of Parkinson’s disease: A meta-analysis. Neurol. Asia 2019, 24, 31–40. [Google Scholar]
- Beppe, G.J.; Dongmo, A.B.; Foyet, H.S.; Dimo, T.; Mihasan, M.; Hritcu, L. The aqueous extract of Albizia adianthifolia leaves attenuates 6-hydroxydopamine-induced anxiety, depression and oxidative stress in rat amygdala. BMC Complement. Altern. Med. 2015, 15, 374. [Google Scholar] [CrossRef] [PubMed]
- Puspita, L.; Chung, S.Y.; Shim, J.W. Oxidative stress and cellular pathologies in Parkinson’s disease. Mol. Brain 2017, 10, 53. [Google Scholar] [CrossRef] [PubMed]
- Gu, J.; Guo, M.; Huang, C.; Wang, X.; Zhu, Y.; Wang, L.; Wang, Z.; Zhou, L.; Fan, D.; Shi, L.; et al. Titanium dioxide nanoparticle affects motor behavior, neurodevelopment and axonal growth in zebrafish (Danio rerio) larvae. Sci. Total Environ. 2021, 754, 142315. [Google Scholar] [CrossRef] [PubMed]
- Wang, T.; Li, C.; Han, B.; Wang, Z.; Meng, X.; Zhang, L.; He, J.; Fu, F. Neuroprotective effects of Danshensu on rotenone-induced Parkinson’s disease models in vitro and in vivo. BMC Complement. Med. Ther. 2020, 20, 20. [Google Scholar] [CrossRef] [PubMed]
- Tancheva, L.P.; Lazarova, M.I.; Alexandrova, A.V.; Dragomanova, S.T.; Nicoletti, F.; Tzvetanova, E.R.; Hodzhev, Y.K.; Kalfin, R.E.; Miteva, S.A.; Mazzon, E.; et al. Neuroprotective mechanisms of three natural antioxidants on a rat model of parkinson’s disease: A comparative study. Antioxidants 2020, 9, 49. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, S.; Khan, M.B.; Hoda, M.N.; Bhatia, K.; Haque, R.; Fazili, I.S.; Jamal, A.; Khan, J.S.; Katare, D.P. Neuroprotective effect of e seed oil in 6-hydroxydopamine induced neurotoxicity in mice model: Cellular, biochemical and neurochemical evidence. Neurochem. Res. 2012, 37, 516–526. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.N.; Zhang, J.S.; Xiang, J.; Yu, Z.H.; Zhang, W.; Cai, M.; Li, X.T.; Wu, T.; Li, W.W.; Cai, D.F. Subcutaneous rotenone rat model of Parkinson’s disease: Dose exploration study. Brain Res. 2017, 1655, 104–113. [Google Scholar] [CrossRef] [PubMed]
- Sim, Y.; Park, G.; Eo, H.; Huh, E.; Gu, P.S.; Hong, S.P.; Pak, Y.K.; Oh, M.S. Protective effects of a herbal extract combination of Bupleurum falcatum, Paeonia suffruticosa, and Angelica dahurica against MPTP-induced neurotoxicity via regulation of nuclear receptor-related 1 protein. Neuroscience 2017, 340, 166–175. [Google Scholar] [CrossRef] [PubMed]
- Johnson, S.L.; Park, H.Y.; DaSilva, N.A.; Vattem, D.A.; Ma, H.; Seeram, N.P. Levodopa-reduced Mucuna pruriens seed extract shows neuroprotective effects against Parkinson’s disease in murine microglia and human neuroblastoma cells, Caenorhabditis elegans, and Drosophila melanogaster. Nutrients 2018, 10, 1139. [Google Scholar] [CrossRef] [PubMed]
- Hritcu, L.; Foyet, H.S.; Stefan, M.; Mihasan, M.; Asongalem, A.E.; Kamtchouing, P. Neuroprotective effect of the methanolic extract of Hibiscus asper leaves in 6-hydroxydopamine-lesioned rat model of Parkinson’s disease. J. Ethnopharmacol. 2011, 137, 585–591. [Google Scholar] [CrossRef]
- Park, H.J.; Zhao, T.T.; Kim, S.H.; Lee, C.K.; Hwang, B.Y.; Lee, K.E.; Lee, M.K. Ethanol extract from Gynostemma pentaphyllum ameliorates dopaminergic neuronal cell death in transgenic mice expressing mutant A53T human alpha-synuclein. Neural Regen. Res. 2020, 15, 361. [Google Scholar] [PubMed]
- Yu, D.; Zhang, P.; Li, J.; Liu, T.; Zhang, Y.; Wang, Q.; Zhang, J.; Lu, X.; Fan, X. Neuroprotective effects of Ginkgo biloba dropping pills in Parkinson’s disease. J. Pharm. Anal. 2021, 11, 220–231. [Google Scholar] [CrossRef]
- Ahmad, M.; Yousuf, S.; Khan, M.B.; Ahmad, A.S.; Saleem, S.; Hoda, M.N.; Islam, F. Protective effects of ethanolic extract of Delphinium denudatum in a rat model of Parkinson’s disease. Hum. Exp. Toxicol. 2006, 25, 361–368. [Google Scholar] [CrossRef] [PubMed]
- Rezaei, M.; Alirezaei, M. Protective effects of Althaea officinalis L. extract in 6-hydroxydopamine-induced hemi-Parkinsonism model: Behavioral, biochemical and histochemical evidence. J. Physiol. Sci. 2014, 64, 171–176. [Google Scholar] [CrossRef] [PubMed]
- Amaral de Brito, A.P.; Galvão de Melo, I.M.; El-Bachá, R.S.; Guedes, R.C. Valeriana officinalis counteracts rotenone effects on spreading depression in the rat brain in vivo and protects against rotenone cytotoxicity toward rat glioma C6 cells in vitro. Front. Neurosci. 2020, 14, 759. [Google Scholar] [CrossRef] [PubMed]
- Huang, X.; Li, N.; Pu, Y.; Zhang, T.; Wang, B. Neuroprotective effects of ginseng phytochemicals: Recent perspectives. Molecules 2019, 24, 2939. [Google Scholar] [CrossRef] [PubMed]
- Lei, H.; Ren, R.; Sun, Y.; Zhang, K.; Zhao, X.; Ablat, N.; Pu, X. Neuroprotective effects of safflower flavonoid extract in 6-Hydroxydopamine-induced model of Parkinson’s disease may be related to its anti-inflammatory action. Molecules 2020, 25, 5206. [Google Scholar] [CrossRef]
- Oliveira, A.I.; Pinho, C.; Sarmento, B.; Dias, A.C. Neuroprotective activity of Hypericum perforatum and its major components. Front. Plant Sci. 2016, 7, 1004. [Google Scholar] [CrossRef] [PubMed]
- Aruna, K.; Rajeswari, P.D.; Sankar, S.R. The effect of Oxalis corniculata extract against the behavioral changes induced by 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine (MPTP) in mice. J. Appl. Pharm. Sci. 2017, 7, 148–153. [Google Scholar]
- Bellettato, C.M.; Scarpa, M. Possible strategies to cross the blood–brain barrier. Ital. J. Pediatr. 2018, 44, 127–133. [Google Scholar] [CrossRef] [PubMed]
- Ahlawat, J.; Guillama Barroso, G.; Masoudi Asil, S.; Alvarado, M.; Armendariz, I.; Bernal, J.; Carabaza, X.; Chavez, S.; Cruz, P.; Escalante, V.; et al. Nanocarriers as potential drug delivery candidates for overcoming the blood–brain barrier: Challenges and possibilities. ACS Omega 2020, 5, 12583–12595. [Google Scholar] [CrossRef] [PubMed]
- Pulgar, V.M. Transcytosis to cross the blood brain barrier, new advancements and challenges. Front. Neurosci. 2019, 12, 1019. [Google Scholar] [CrossRef] [PubMed]
- Patra, J.K.; Das, G.; Fraceto, L.F.; Campos, E.V.; del Pilar Rodriguez-Torres, M.; Acosta-Torres, L.S.; Diaz-Torres, L.A.; Grillo, R.; Swamy, M.K.; Sharma, S.; et al. Nano based drug delivery systems: Recent developments and future prospects. J. Nanobiotechnol. 2018, 16, 71. [Google Scholar] [CrossRef] [PubMed]
- Yusuf, A.; Almotairy, A.R.; Henidi, H.; Alshehri, O.Y.; Aldughaim, M.S. Nanoparticles as Drug Delivery Systems: A Review of the implication of nanoparticles’ physicochemical properties on responses in biological systems. Polymers 2023, 15, 1596. [Google Scholar] [CrossRef] [PubMed]
- Baig, B.; Halim, S.A.; Farrukh, A.; Greish, Y.; Amin, A. Current status of nanomaterial-based treatment for hepatocellular carcinoma. Biomed. Pharmacother. 2019, 116, 108852. [Google Scholar] [CrossRef] [PubMed]
- Zorkina, Y.; Abramova, O.; Ushakova, V.; Morozova, A.; Zubkov, E.; Valikhov, M.; Melnikov, P.; Majouga, A.; Chekhonin, V. Nano carrier drug delivery systems for the treatment of neuropsychiatric disorders: Advantages and limitations. Molecules 2020, 25, 5294. [Google Scholar] [CrossRef] [PubMed]
- Zeb, A.; Rana, I.; Choi, H.I.; Lee, C.H.; Baek, S.W.; Lim, C.W.; Khan, N.; Arif, S.T.; Alvi, A.M.; Shah, F.A.; et al. Potential and applications of nanocarriers for efficient delivery of biopharmaceuticals. Pharmaceutics 2020, 12, 1184. [Google Scholar] [CrossRef] [PubMed]
- Joseph, T.M.; Kar Mahapatra, D.; Esmaeili, A.; Piszczyk, Ł.; Hasanin, M.S.; Kattali, M.; Haponiuk, J.; Thomas, S. Nanoparticles: Taking a unique position in medicine. Nanomaterials 2023, 13, 574. [Google Scholar] [CrossRef] [PubMed]
- Soares, S.; Sousa, J.; Pais, A.; Vitorino, C. Nanomedicine: Principles, properties, and regulatory issues. Front. Chem. 2018, 6, 360. [Google Scholar] [CrossRef] [PubMed]
- Dash, D.K.; Panik, R.K.; Sahu, A.K.; Tripathi, V. Role of Nanobiotechnology in Drug Discovery, Development and Molecular Diagnostic. In Applications of Nanobiotechnology; IntechOpen: London, UK, 2020. [Google Scholar]
- Marinelli, L.; Dimmito, M.P.; Cacciatore, I.; Toto, E.C.; Di Rienzo, A.; Palmerio, F.; Puca, V.; Di Filippo, E.S.; Fulle, S.; Di Stefano, A. Solid lipid nanoparticles for efficient delivery of capsaicin-rich extract: Potential neuroprotective effects in Parkinson’s disease. J. Drug Deliv. Sci. Technol. 2024, 91, 105097. [Google Scholar] [CrossRef]
- Ravani, L.; Sarpietro, M.G.; Esposito, E.; Di Stefano, A.; Sozio, P.; Calcagno, M.; Drechsler, M.; Contado, C.; Longo, F.; Giuffrida, M.C.; et al. Lipid nanocarriers containing a levodopa prodrug with potential antiparkinsonian activity. Mater. Sci. Eng. C 2015, 48, 294–300. [Google Scholar] [CrossRef] [PubMed]
- Esposito, E.; Fantin, M.; Marti, M.; Drechsler, M.; Paccamiccio, L.; Mariani, P.; Sivieri, E.; Lain, F.; Menegatti, E.; Morari, M.; et al. Solid lipid nanoparticles as delivery systems for bromocriptine. Pharm. Res. 2011, 25, 1521–1530. [Google Scholar] [CrossRef] [PubMed]
- Prajapati, J.B.; Patel, G.C. Nose to brain delivery of Rotigotine loaded solid lipid nanoparticles: Quality by design based optimization and characterization. J. Drug Deliv. Sci. Technol. 2021, 63, 102377. [Google Scholar] [CrossRef]
- Tsai, M.J.; Huang, Y.B.; Wu, P.C.; Fu, Y.S.; Kao, Y.R.; Fang, J.Y.; Tsai, Y.H. Oral apomorphine delivery from solid lipid nanoparticles with different monostearate emulsifiers: Pharmacokinetic and behavioral evaluations. J. Pharm. Sci. 2011, 100, 547–557. [Google Scholar] [CrossRef] [PubMed]
- Dudhipala, N.; Gorre, T. Neuroprotective effect of ropinirole lipid nanoparticles enriched hydrogel for parkinson’s disease: In vitro, ex vivo, pharmacokinetic and pharmacodynamic evaluation. Pharmaceutics 2020, 12, 448. [Google Scholar] [CrossRef] [PubMed]
- Mani, M.; Balasubramanian, S.; Manikandan, K.R.; Kulandaivel, B. Neuroprotective potential of Naringenin-loaded solid-lipid nanoparticles against rotenone-induced Parkinson’s disease model. J. Appl. Pharm. Sci. 2021, 11, 019–028. [Google Scholar]
- Monge-Fuentes, V.; Biolchi Mayer, A.; Lima, M.R.; Geraldes, L.R.; Zanotto, L.N.; Moreira, K.G.; Martins, O.P.; Piva, H.L.; Felipe, M.S.; Amaral, A.C.; et al. Dopamine-loaded nanoparticle systems circumvent the blood–brain barrier restoring motor function in mouse model for Parkinson’s Disease. Sci. Rep. 2021, 11, 15185. [Google Scholar] [CrossRef] [PubMed]
- Homayun, B.; Lin, X.; Choi, H.J. Challenges and recent progress in oral drug delivery systems for biopharmaceuticals. Pharmaceutics 2019, 11, 129. [Google Scholar] [CrossRef]
- Alshawwa, S.Z.; Kassem, A.A.; Farid, R.M.; Mostafa, S.K.; Labib, G.S. Nanocarrier drug delivery systems: Characterization, limitations, future perspectives and implementation of artificial intelligence. Pharmaceutics 2022, 14, 883. [Google Scholar] [CrossRef]
- Mishra, N.; Sharma, S.; Deshmukh, R.; Kumar, A.; Sharma, R. Development and characterization of nasal delivery of selegiline hydrochloride loaded nanolipid carriers for the management of Parkinson’s disease. Cent. Nerv. Syst. Agents Med. Chem. 2019, 19, 46–56. [Google Scholar] [CrossRef] [PubMed]
- Tzankov, B.; Voycheva, C.; Yordanov, Y.; Aluani, D.; Spassova, I.; Kovacheva, D.; Lambov, N.; Tzankova, V. Development and in vitro safety evaluation of pramipexole-loaded hollow mesoporous silica (HMS) particles. Biotechnol. Biotechnol. Equip. 2019, 33, 1204–1215. [Google Scholar] [CrossRef]
- De Giglio, E.; Trapani, A.; Cafagna, D.; Sabbatini, L.; Cometa, S. Dopamine-loaded chitosan nanoparticles: Formulation and analytical characterization. Anal. Bioanal. Chem. 2017, 400, 1997–2002. [Google Scholar] [CrossRef] [PubMed]
- Cunha, A.; Gaubert, A.; Latxague, L.; Dehay, B. PLGA-Based nanoparticles for neuroprotective drug delivery in neurodegenerative diseases. Pharmaceutics 2021, 13, 1042. [Google Scholar] [CrossRef] [PubMed]
- Cacciatore, I.; Ciulla, M.; Fornasari, E.; Marinelli, L.; Di Stefano, A. Solid lipid nanoparticles as a drug delivery system for the treatment of neurodegenerative diseases. Expert Opin. Drug Deliv. 2016, 13, 1121–1131. [Google Scholar] [CrossRef] [PubMed]
- Liang, J.; Liu, Y.; Liu, J.; Li, Z.; Fan, Q.; Jiang, Z.; Yan, F.; Wang, Z.; Huang, P.; Feng, N. Chitosan-functionalized lipid-polymer hybrid nanoparticles for oral delivery of silymarin and enhanced lipid-lowering effect in NAFLD. J. Nanobiotechnology 2018, 16, 64. [Google Scholar] [CrossRef] [PubMed]
- Gunay, M.S.; Ozer, A.Y.; Erdogan, S.; Bodard, S.; Baysal, I.; Gulhan, Z.; Guilloteau, D.; Chalon, S. Development of nanosized, pramipexole-encapsulated liposomes and niosomes for the treatment of Parkinson’s disease. J. Nanosci. Nanotechnol. 2017, 17, 5155–5167. [Google Scholar] [CrossRef]
Treatment Class | Effects | Advantages | Disadvantages |
---|---|---|---|
Monoamine oxidase inhibitors (MAOIs) | Preventing the dopamine and levodopa breakdown. |
|
|
Dopamine Drugs | It is taken orally or via intraperitoneal route (IP). |
|
|
Glial cell line-derived neurotrophic factor (GDNF) | It is a glial cell line-derived neurotrophic factor implanted in the midbrain. |
|
|
Anticholinergics | These are the oral drugs that reduce the excessive acetylcholine level and activity. |
|
|
Nanomedicine | Formulation of drug-loaded nanocarriers for the target site. |
|
|
Surgery | Incision into the hypothalamus, global pallidus, or subthalamic nucleus, which may be either unilaterally or bilaterally. |
|
|
DBS | Basal ganglia are stimulated via high electric frequency. |
|
|
Gene Therapy and Stem Cell Transplantation | Stem cell transplantation into the brain striatum and insertion of transgenes as a disease-modifying agent. |
|
|
Physical Therapy | Addresses mobility and motor-related symptoms through physical training. |
|
|
Speech Therapy | Voice exercises are required for speech improvement. |
|
|
Occupational Social Therapy | Motivate patients to engage themselves in leisure, work, and self-care activities. |
|
|
Cognitive Therapy | Behavioral training practice for symptomatic relief. |
|
|
S. No | Drugs | Studies | Details |
---|---|---|---|
1. | Levodopa | In vivo activity of lipid nanocarriers (LN) containing a levodopa prodrug (LD-PD) with therapeutic potential in PD. | Physiologically stable with better entrapment efficiency [69] (Ravani et al., 2015). |
2. | Bromocriptine | Bromocriptine encapsulated in nanostructured lipid carriers was evaluated in 6-hydroxydopamine hemilesioned rats, a model of PD. | Drug-loaded SLN was efficient in stabilizing plasma levels, increased target-site drug delivery, and improved half-life. In vivo studies demonstrated better antiparkinsonian properties compared to Bromocriptine alone [70] (Esposito et al., 2008). |
3. | Rotigotine | In vitro study of Rotigotine-loaded Solid Lipid Nanoparticles (RTG-SLNs) to improve bioavailability via nose-to-brain delivery. | Nasal route target-site drug delivery was achieved in the form of aerosol formulations. Instant antiparkinsonian results were observed [71] (Prajapati et al., 2021). |
4. | Apomorphine | The aim of this work was to investigate whether the oral bioavailability and brain regional distribution of apomorphine could be improved by utilizing solid lipid nanoparticles (SLNs) in a rat model of PD. | Orally administration of Apomorphine-loaded SLN to increase the bioavailability of the drug [72] (Tsai et al., 2011). |
5. | Ropinirole | To develop, optimize, evaluate the pharmacokinetic and pharmacodynamic activity of RP-loaded solid lipid nanoparticles (RP-SLNs) and nanostructured lipid carriers (RP-NLCs) and containing hydrogel (RP-SLN-C and RP-NLC-C) formulations for improved oral and topical delivery. | Nasal route Ropinirole-loaded SLN brain-target-site delivery, efficiency in crossing the [73] (Dudhipala et al., 2020.) |
6. | Naringenin | Neuroprotective activity of Naringenin–SLN was evaluated using the ROT-induced PD rodent model. | Oral-route brain-target-site delivery of Naringenin-loaded SLN [74] (Mani et al., 2021). |
7. | Dopamine | To design and test the neurotherapeutic potential of nanoparticle-based technology composed of albumin/PLGA nanosystems loaded with dopamine (ALNP-DA) in a 6-OHDA PD mice model. | Oral-route brain-target-site delivery of Dopamine-loaded SLN [75] (Monge et al., 2021). |
Group | Drug | Nanocarriers | Synthesis | Animal Model | Effects | References |
---|---|---|---|---|---|---|
Dopamine precursor | L-DOPA | PEGb-P (l-DOPA (OAc)2) Nanocarriers | Hot homogenization | Sprague–Dawley rats | Target-site delivery was achieved, and improvement in Akinesia and catalepsy behavior in PD. | [80] |
Chitosan Nanocarriers | Cold technique | Albino mice | The nanocarriers, unlike L-DOPA alone, considerably improved the PD symptoms, reduced toxicity, and caused no dyskinesia. Increased antioxidant activities. | [81] | ||
SLN | Solvent diffusion method | Mice | The nanocarriers, unlike L-DOPA alone, considerably improved the PD symptoms, reduced toxicity, and caused no dyskinesia. | [82] | ||
Dopamine agonist | Ropinirole | Poly (lactic-co-glycolic acid) Nanocarriers | High-pressure homogenization | Wistar rats | High therapeutic efficiency at lower doses when compared to doses of ropinirole at higher concentrations. Target-site delivery was achieved, and improvement in motor activity was observed. | [83] |
Bromocriptine | SLN | Emulsification | Sprague–Dawley rats | Improved pharmacokinetic parameters and prolonged drug action when compared to bromocriptine singly. | [70] | |
Pramipexole | Nanoparticulate Lipid dispersion | Dialysis technique | Mice albino mi | Target-site delivery was achieved, and improvement in Akinesia and catalepsy behavior in PD. | [84] | |
MAO-B inhibitor | Apomorphine | Chitosan Nanocarriers | Cold technique | Sprague–Dawley rats | Improved motor functions and increased antioxidant level. Bioavailability was increased to several folds, and target-site delivery was achieved. | [72] |
Selegiline | SLN | Emulsification Dawley rats | Wistar rats | Increase in selegiline-loaded SLN concentration in plasma and plasma compared to selegiline administered alone. | [78] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dogra, N.; Jakhmola Mani, R.; Pande Katare, D. Tiny Carriers, Tremendous Hope: Nanomedicine in the Fight against Parkinson’s. J. Dement. Alzheimer's Dis. 2024, 1, 3-21. https://doi.org/10.3390/jdad1010002
Dogra N, Jakhmola Mani R, Pande Katare D. Tiny Carriers, Tremendous Hope: Nanomedicine in the Fight against Parkinson’s. Journal of Dementia and Alzheimer's Disease. 2024; 1(1):3-21. https://doi.org/10.3390/jdad1010002
Chicago/Turabian StyleDogra, Nitu, Ruchi Jakhmola Mani, and Deepshikha Pande Katare. 2024. "Tiny Carriers, Tremendous Hope: Nanomedicine in the Fight against Parkinson’s" Journal of Dementia and Alzheimer's Disease 1, no. 1: 3-21. https://doi.org/10.3390/jdad1010002
APA StyleDogra, N., Jakhmola Mani, R., & Pande Katare, D. (2024). Tiny Carriers, Tremendous Hope: Nanomedicine in the Fight against Parkinson’s. Journal of Dementia and Alzheimer's Disease, 1(1), 3-21. https://doi.org/10.3390/jdad1010002