Evaluation of Using an Octavius 4D Measuring System for Patient-Specific VMAT Quality Assurance
<p>Linearity between the O4D detector system measured dose and Elekta infinity delivery monitor unit (MU).</p> "> Figure 2
<p>Results of output factor measured with the O4D detector array (in blue) and Semiflex detector (in red).</p> "> Figure 3
<p>%GP value of VMAT plans for simulated setup and delivery errors using 3%/3 mm and a 95% passing threshold. RS = right shift of couch, LS = left shift of couch, VS = vertical shift of couch, Rot = couch rotation angle, CR = collimator rotation, and MUv = monitor unit variation.</p> "> Figure 4
<p>%GP value of VMAT plans for simulated setup and delivery errors using 2%/2 mm and a 95% passing threshold.</p> ">
1. Introduction
2. Materials and Methods
2.1. Patient Selection and Ethics Statement
2.2. Treatment Workflow and Delivery Platform
2.3. Octavius 4D (O4D) VMAT Measurement System
2.4. O4D Performance Tests
2.5. The Gamma Index and Error Detectability Analysis
2.6. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
Appendix A
Field Size (cm × cm) | Direction | 3D Global %GP | 3D Local %GP | |||
---|---|---|---|---|---|---|
2%/2 mm | 3%/3 mm | 2%/2 mm | 3%/3 mm | %ΔD | ||
5 × 5 | Transversal | 99.9 | 100 | 99.7 | 100 | 0.9 |
Sagittal | 99.8 | 100 | 99.6 | 100 | ||
Coronal | 99.8 | 100 | 99.6 | 100 | ||
10 × 10 | Transversal | 99.8 | 100 | 98.8 | 99.9 | 0.3 |
Sagittal | 99.7 | 100 | 97.6 | 99.8 | ||
Coronal | 99.7 | 100 | 97.4 | 99.7 | ||
15 × 15 | Transversal | 97.8 | 99.9 | 95.8 | 98.6 | −0.6 |
Sagittal | 96.6 | 99.8 | 95.4 | 98.4 | ||
Coronal | 96.5 | 99.8 | 95.2 | 98.2 | ||
20 × 20 | Transversal | 95.2 | 98.7 | 85.7 | 97.8 | −0.8 |
Sagittal | 94.6 | 98.5 | 85.5 | 97.5 | ||
Coronal | 93.2 | 98.2 | 85.4 | 97.2 |
Field Size (cm × cm) | PDD Difference (%) for Different Depths | |||
---|---|---|---|---|
5 cm | 10 cm | 15 cm | 20 cm | |
5 × 5 | 0.9 | 0.6 | 0.5 | 0.4 |
10 × 10 | 1.5 | 1.2 | 0.8 | 0.3 |
15 × 15 | 1.3 | 0.9 | 0.7 | 0.3 |
20 × 20 | 1.1 | 0.8 | 0.6 | 0.5 |
25 × 25 | 1 | 0.9 | 0.7 | 0.6 |
References
- Yorke, A.A.; Williams, V.M.; Elmore, S.; Alleyne-Mike, K.; Addison, E.; Kyeremeh, P.O., Jr.; Tagoe, S.N.A.; Trauernicht, C.J.; Lazarus, G.L.; Ford, E.C. Radiation Therapy Physics Quality Assurance and Management Practices in Low- and Middle-Income Countries: An Initial Pilot Survey in Six Countries and Validation Through a Site Visit. Adv. Radiat. Oncol. 2023, 9, 101335. [Google Scholar] [CrossRef] [PubMed]
- Ezzell, G.A.; Galvin, J.M.; Low, D.; Palta, J.R.; Rosen, I.; Sharpe, M.B.; Xia, P.; Xiao, Y.; Xing, L.; Yu, C.X. IMRT subcommittee; AAPM Radiation Therapy committee. Guidance document on delivery, treatment planning, and clinical implementation of IMRT: Report of the IMRT Subcommittee of the AAPM Radiation Therapy Committee. Med. Phys. 2003, 30, 2089–2115. [Google Scholar] [CrossRef] [PubMed]
- Otto, K. Volumetric modulated arc therapy: IMRT in a single gantry arc. Med. Phys. 2008, 35, 310–317. [Google Scholar] [CrossRef] [PubMed]
- Park, J.M.; Kim, J.I.; Park, S.Y.; Oh, D.H.; Kim, S.T. Reliability of the gamma index analysis as a verification method of volumetric modulated arc therapy plans. Radiat. Oncol. 2018, 13, 175. [Google Scholar] [CrossRef]
- Rajasekaran, D.; Jeevanandam, P.; Sukumar, P.; Ranganathan, A.; Johnjothi, S.; Nagarajan, V. A study on the correlation between plan complexity and gamma index analysis in patient specific quality assurance of volumetric modulated arc therapy. Rep. Pract. Oncol. Radiother. 2015, 20, 57–65. [Google Scholar] [CrossRef]
- Barker, J.L., Jr.; Garden, A.S.; Ang, K.K.; O’Daniel, J.C.; Wang, H.; Court, L.E.; Morrison, W.H.; Rosenthal, D.I.; Chao, K.C.; Tucker, S.L.; et al. Quantification of volumetric and geometric changes occurring during fractionated radiotherapy for head-and-neck cancer using an integrated CT/linear accelerator system. Int. J. Radiat. Oncol. Biol. Phys. 2004, 59, 960–970. [Google Scholar] [CrossRef]
- Mali, S.B. Adaptive Radiotherapy for Head Neck Cancer. J. Maxillofac. Oral. Surg. 2016, 15, 549–554. [Google Scholar] [CrossRef]
- Park, J.M.; Kim, J.I.; Park, S.Y. Modulation indices and plan delivery accuracy of volumetric modulated arc therapy. J. Appl. Clin. Med. Phys. 2019, 20, 12–22. [Google Scholar] [CrossRef]
- Galvin, J.M.; Ezzell, G.; Eisbrauch, A.; Yu, C.; Butler, B.; Xiao, Y.; Rosen, I.; Rosenman, J.; Sharpe, M.; Xing, L.; et al. American Society for Therapeutic Radiology and Oncology; American Association of Physicists in Medicine. Implementing IMRT in clinical practice: A joint document of the American Society for Therapeutic Radiology and Oncology and the American Association of Physicists in Medicine. Int. J. Radiat. Oncol. Biol. Phys. 2004, 58, 1616–1634. [Google Scholar] [CrossRef]
- Tang, D.; Yang, Z.; Dai, X.; Cao, Y. Evaluation of Delta4DVH Anatomy in 3D Patient-Specific IMRT Quality Assurance. Technol. Cancer Res. Treat. 2020, 19, 1533033820945816. [Google Scholar] [CrossRef]
- Chan, G.H.; Chin, L.C.L.; Abdellatif, A.; Bissonnette, J.P.; Buckley, L.; Comsa, D.; Granville, D.; King, J.; Rapley, P.L.; Vandermeer, A. Survey of patient-specific quality assurance practice for IMRT and VMAT. J. Appl. Clin. Med. Phys. 2021, 22, 155–164. [Google Scholar] [CrossRef]
- Pulliam, K.B.; Huang, J.Y.; Howell, R.M.; Followill, D.; Bosca, R.; O’Daniel, J.; Kry, S.F. Comparison of 2D and 3D gamma analyses. Med. Phys. 2014, 41, 021710. [Google Scholar] [CrossRef]
- Mijnheer, B.; Jomehzadeh, A.; González, P.; Olaciregui-Ruiz, I.; Rozendaal, R.; Shokrani, P.; Spreeuw, H.; Tielenburg, R.; Mans, A. Error detection during VMAT delivery using EPID-based 3D transit dosimetry. Phys. Med. 2018, 54, 137–145. [Google Scholar] [CrossRef] [PubMed]
- Miften, M.; Olch, A.; Mihailidis, D.; Moran, J.; Pawlicki, T.; Molineu, A.; Li, H.; Wijesooriya, K.; Shi, J.; Xia, P.; et al. Tolerance limits and methodologies for IMRT measurement-based verification QA: Recommendations of AAPM Task Group No. 218. Med. Phys. 2018, 45, e53–e83. [Google Scholar] [CrossRef] [PubMed]
- Bossuyt, E.; Weytjens, R.; Nevens, D.; De Vos, S.; Verellen, D. Evaluation of automated pre-treatment and transit in-vivo dosimetry in radiotherapy using empirically determined parameters. Phys. Imaging Radiat. Oncol. 2020, 16, 113–129. [Google Scholar] [CrossRef] [PubMed]
- Persoon, L.C.; Podesta, M.; Nijsten, S.M.; Troost, E.G.; Verhaegen, F. Time-Resolved Versus Integrated Transit Planar Dosimetry for Volumetric Modulated Arc Therapy: Patient-Specific Dose Differences During Treatment, a Proof of Principle. Technol. Cancer Res. Treat. 2016, 15, NP79–NP87. [Google Scholar] [CrossRef]
- Abubakar, A.; Zamri, N.A.M.; Shaukat, S.I.; Mohd, Z.H. Automated algorithm for calculation of setup corrections and planning target volume margins for offline image-guided radiotherapy protocols. J. Appl. Clin. Med. Phys. 2021, 22, 137–146. [Google Scholar] [CrossRef]
- Low, D.A.; Harms, W.B.; Mutic, S.; Purdy, J.A. A technique for the quantitative evaluation of dose distributions. Med. Phys. 1998, 25, 656–661. [Google Scholar] [CrossRef]
- Stasi, M.; Bresciani, S.; Miranti, A.; Maggio, A.; Sapino, V.; Gabriele, P. Pretreatment patient-specific IMRT quality assurance: A correlation study between gamma index and patient clinical dose volume histogram. Med. Phys. 2012, 39, 7626–7634. [Google Scholar] [CrossRef]
- Hussein, M.; Clark, C.H.; Nisbet, A. Challenges in calculation of the gamma index in radiotherapy—Towards good practice. Phys. Med. 2017, 36, 1–11. [Google Scholar] [CrossRef]
- Van Dyk, J.; Barnett, R.B.; Cygler, J.E.; Shragge, P.C. Commissioning and quality assurance of treatment planning computers. Int. J. Radiat. Oncol. Biol. Phys. 1993, 26, 261–273. [Google Scholar] [CrossRef] [PubMed]
- Palta, J.R.; Liu, C.; Li, J.G. Quality assurance of intensity-modulated radiation therapy. Int. J. Radiat. Oncol. Biol. Phys. 2008, 71, 108–112. [Google Scholar] [CrossRef] [PubMed]
- Wendling, M.; Zijp, L.J.; McDermott, L.N.; Smit, E.J.; Sonke, J.-J.; Mijnheer, B.J.; van Herk, M. A fast algorithm for gamma evaluation in 3D. Med. Phys. 2007, 34, 1647–1654. [Google Scholar] [CrossRef]
- Song, J.H.; Kim, M.J.; Park, S.H.; Lee, S.R.; Lee, M.Y.; Lee, D.S.; Suh, T.S. Gamma analysis dependence on specified low-dose thresholds for VMAT QA. J. Appl. Clin. Med. Phys. 2015, 16, 263–272. [Google Scholar] [CrossRef]
- Stathakis, S.; Myers, P.; Esquivel, C.; Mavroidis, P.; Papanikolaou, N. Characterization of a novel 2D array dosimeter for patient-specific quality assurance with volumetric arc therapy. Med. Phys. 2013, 40, 071731. [Google Scholar] [CrossRef]
- Srivastava, R.P.; Basta, K.; Thevissen, K.; Junius, S.; Vandeputte, K.; De Wagter, C. Gamma evaluation with Octavius 4D phantom for pretreatment of modern radiotherapy treatment techniques. Int. J. Nucl. Med. Radioact. Subst. 2019, 2, 000117. [Google Scholar] [CrossRef]
- Gorobets, V.; Vries, W.; Brand, N.; Foppen, T.; Wopereis, A.J.M.; Woodings, S. MR-OCTAVIUS 4D with 1500 MR and 1600 MR arrays is suitable for plan QA in a 1.5 T MRI-linac. Phys. Med. Biol. 2024, 69, 17NT01. [Google Scholar] [CrossRef]
- Urso, P.; Lorusso, R.; Marzoli, L.; Corletto, D.; Imperiale, P.; Pepe, A.; Bianchi, L. Practical application of Octavius®-4D: Characteristics and criticalities for IMRT and VMAT verification. J. Appl. Clin. Med. Phys. 2018, 19, 517–524. [Google Scholar] [CrossRef]
- Esposito, M.; Bruschi, A.; Bastiani, P.; Ghirelli, A.; Pini, S.; Russo, S.; Zatelli, G. Characterization of EPID software for VMAT transit dosimetry. Australas. Phys. Eng. Sci. Med. 2018, 41, 1021–1027. [Google Scholar] [CrossRef]
- Stelljes, T.S.; Harmeyer, A.; Reuter, J.; Looe, H.K.; Chofor, N.; Harder, D.; Poppe, B. Dosimetric characteristics of the novel 2D ionization chamber array OCTAVIUS Detector 1500. Med. Phys. 2015, 42, 1528–1537. [Google Scholar] [CrossRef]
- Das, S.; Kharade, V.; Pandey, V.P.; Kv, A.; Pasricha, R.K.; Gupta, M. Gamma Index Analysis as a Patient-Specific Quality Assurance Tool for High-Precision Radiotherapy: A Clinical Perspective of Single Institute Experience. Cureus 2022, 14, e30885. [Google Scholar] [CrossRef] [PubMed]
- Bresciani, S.; Poli, M.; Miranti, A.; Maggio, A.; Di Dia, A.; Bracco, C.; Gabriele, P.; Stasi, M. Comparison of two different EPID-based solutions performing pretreatment quality assurance: 2D portal dosimetry versus 3D forward projection method. Phys. Med. 2018, 52, 65–71. [Google Scholar] [CrossRef] [PubMed]
- Bossuyt, E.; Nevens, D.; Weytjens, R.; Taieb Mokaddem, A.; Verellen, D. Assessing the impact of adaptations to the clinical workflow in radiotherapy using transit in vivo dosimetry. Phys. Imaging Radiat. Oncol. 2023, 25, 100420. [Google Scholar] [CrossRef] [PubMed]
- Fiagan, Y.A.C.; Bossuyt, E.; Nevens, D.; Machiels, M.; Chiairi, I.; Joye, I.; Meijnders, P.; Gevaert, T.; Verellen, D. The use of in-vivo dosimetry to identify head and neck cancer patients needing adaptive radiotherapy. Radiother. Oncol. 2023, 184, 109676. [Google Scholar] [CrossRef]
- Fiagan, Y.A.C.; Bossuyt, E.; Nevens, D.; Dirix, P.; Theys, F.; Gevaert, T.; Verellen, D. In vivo dosimetry for patients with prostate cancer to assess possible impact of bladder and rectum preparation. Tech. Innov. Patient Support. Radiat. Oncol. 2020, 16, 65–69. [Google Scholar] [CrossRef]
- Fiagan, Y.A.C.; Bossuyt, E.; Machiels, M.; Nevens, D.; Billiet, C.; Poortmans, P.; Gevaert, T.; Verellen, D. Comparing treatment uncertainty for ultra- vs. standard-hypofractionated breast radiation therapy based on in-vivo dosimetry. Phys. Imaging Radiat. Oncol. 2022, 22, 85–90. [Google Scholar] [CrossRef]
Pathology | Gamma Index | Direction | 2%/2 mm | 3%/3 mm |
---|---|---|---|---|
Mean ± SD | Mean ± SD | |||
Prostate cancer (PC) | 3D global | Transversal | 92.87 ± 4.65 | 96.43 ± 2.25 |
Sagittal | 91.79 ± 4.26 | 95.79 ± 2.34 | ||
Coronal | 91.33 ± 4.18 | 95.53 ± 2.23 | ||
3D local | Transversal | 80.94 ± 5.12 | 89.86 ± 4.89 | |
Sagittal | 79.22 ± 5.41 | 88.46 ± 4.67 | ||
Coronal | 79.13 ± 5.20 | 88.52 ± 4.31 | ||
Head and neck cancer (HNC) | 3D global | Transversal | 91.45 ± 4.79 | 94.85 ± 2.56 |
Sagittal | 90.23 ± 4.21 | 93.25 ± 2.47 | ||
Coronal | 90.02 ± 4.13 | 93.06 ± 2.43 | ||
3D local | Transversal | 78.26 ± 5.86 | 86.97 ± 4.95 | |
Sagittal | 77.48 ± 5.50 | 85.87 ± 4.81 | ||
Coronal | 77.03 ± 5.21 | 85.76 ± 4.79 | ||
Uterine and cervical cancer (UCC) | 3D global | Transversal | 90.93 ± 4.71 | 93.77 ± 3.75 |
Sagittal | 89.54 ± 4.25 | 93.39 ± 3.36 | ||
Coronal | 88.74 ± 4.17 | 93.23 ± 3.23 | ||
3D local | Transversal | 75.94 ± 5.12 | 84.86 ± 4.65 | |
Sagittal | 74.22 ± 4.84 | 83.76 ± 4.27 | ||
Coronal | 74.13 ± 4.20 | 83.54 ± 4.21 | ||
Breast cancer (BC) | 3D global | Transversal | 89.94 ± 4.32 | 93.65 ± 3.49 |
Sagittal | 88.76 ± 3.86 | 92.59 ± 3.25 | ||
Coronal | 88.23 ± 4.23 | 92.06 ± 3.22 | ||
3D local | Transversal | 74.64 ± 5.72 | 81.86 ± 4.76 | |
Sagittal | 73.22 ± 5.46 | 80.46 ± 4.37 | ||
Coronal | 73.13 ± 5.09 | 80.14 ± 4.21 |
Pathology | GA | Mean (%) | SD (%) | CL (%) | DT (%) |
---|---|---|---|---|---|
PC | 2%/2 mm | 92 | 4.36 | 16.56 | 83.44 |
HNC | 90.57 | 4.38 | 18.01 | 81.99 | |
UCC | 89.71 | 4.55 | 19.22 | 80.78 | |
BC | 88.98 | 4.14 | 19.13 | 80.87 | |
PC | 3%/3 mm | 95.92 | 2.27 | 8.53 | 91.47 |
HNC | 93.72 | 2.49 | 11.15 | 88.85 | |
UCC | 93.43 | 3.45 | 13.33 | 86.67 | |
BC | 92.43 | 3.32 | 14.07 | 85.93 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fiagan, Y.A.C.; N‘Guessan, K.J.F.; Diakité, A.; Adjenou, K.V.; Gevaert, T.; Verellen, D. Evaluation of Using an Octavius 4D Measuring System for Patient-Specific VMAT Quality Assurance. Radiation 2025, 5, 9. https://doi.org/10.3390/radiation5010009
Fiagan YAC, N‘Guessan KJF, Diakité A, Adjenou KV, Gevaert T, Verellen D. Evaluation of Using an Octavius 4D Measuring System for Patient-Specific VMAT Quality Assurance. Radiation. 2025; 5(1):9. https://doi.org/10.3390/radiation5010009
Chicago/Turabian StyleFiagan, Yawo Atsu Constantino, Kodjo Joël Fabrice N‘Guessan, Adama Diakité, Komlanvi Victor Adjenou, Thierry Gevaert, and Dirk Verellen. 2025. "Evaluation of Using an Octavius 4D Measuring System for Patient-Specific VMAT Quality Assurance" Radiation 5, no. 1: 9. https://doi.org/10.3390/radiation5010009
APA StyleFiagan, Y. A. C., N‘Guessan, K. J. F., Diakité, A., Adjenou, K. V., Gevaert, T., & Verellen, D. (2025). Evaluation of Using an Octavius 4D Measuring System for Patient-Specific VMAT Quality Assurance. Radiation, 5(1), 9. https://doi.org/10.3390/radiation5010009