[go: up one dir, main page]

Next Issue
Volume 4, December
Previous Issue
Volume 4, June
 
 

Quantum Rep., Volume 4, Issue 3 (September 2022) – 11 articles

  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Reader to open them.
Order results
Result details
Select all
Export citation of selected articles as:
11 pages, 942 KiB  
Article
Cyclic Six-Atomic Boron-Nitrides: Quantum-Chemical Consideration by Ab Initio CCSD(T) Method
by Denis V. Chachkov and Oleg V. Mikhailov
Quantum Rep. 2022, 4(3), 351-361; https://doi.org/10.3390/quantum4030025 - 16 Sep 2022
Cited by 1 | Viewed by 1999
Abstract
By means of the CCSD(T)/6-311++G(df,p) and G4 quantum-chemical calculation methods, the calculation of the molecular and electronic structures of boron–nitrogen compounds having the B3N3 composition was carried out and its results were discussed. It was noted that seven isomeric forms [...] Read more.
By means of the CCSD(T)/6-311++G(df,p) and G4 quantum-chemical calculation methods, the calculation of the molecular and electronic structures of boron–nitrogen compounds having the B3N3 composition was carried out and its results were discussed. It was noted that seven isomeric forms with different space structures can exist; wherein, the most stable form is a distorted flat hexagon with alternating B and N atoms, with both B and N atoms forming regular triangles, but with different side lengths. The values of geometric parameters of molecular structures in each of these compounds are presented. Also, the key thermodynamic parameters of formation (enthalpy ΔfH0, entropy S0, Gibbs’ energy ΔfG0) and relative total energies of these compounds are calculated. Full article
(This article belongs to the Special Issue Fundamentals and Applications in Quantum Chemistry)
Show Figures

Figure 1

Figure 1
<p>Structural formula of borazine.</p>
Full article ">Figure 2
<p>The possible structures of cyclic B<sub>3</sub>N<sub>3</sub> molecules.</p>
Full article ">Figure 3
<p>The images of seven theoretically possible modifications of boron–nitrogen compound having B<sub>3</sub>N<sub>3</sub> composition according to data of quantum-chemical calculation with using CCSD(T)/6-311++G(df,p) method: (<b>I</b>)—B<sub>3</sub>N<sub>3</sub> (I), (<b>II</b>)—B<sub>3</sub>N<sub>3</sub> (II), (<b>III</b>)—B<sub>3</sub>N<sub>3</sub> (III), (<b>IV</b>)—B<sub>3</sub>N<sub>3</sub> (IV), (<b>V</b>)—B<sub>3</sub>N<sub>3</sub> (V), (<b>VI</b>)—B<sub>3</sub>N<sub>3</sub> (VI), (<b>VII</b>)—B<sub>3</sub>N<sub>3</sub> (VII).</p>
Full article ">
13 pages, 1610 KiB  
Article
An Overview of Basis Set Effects for Diatomic Boron Nitride Compounds (B2N(,0)): A Quantum Symmetry Breaking
by Majid Monajjemi, Fatemeh Mollaamin and Neda Samiei Soofi
Quantum Rep. 2022, 4(3), 338-350; https://doi.org/10.3390/quantum4030024 - 8 Sep 2022
Cited by 1 | Viewed by 1882
Abstract
The symmetry breaking (SB) of B2 not only exhibits an energy barrier for ionic or neutral forms dependent on various basis sets but it also exhibits a few SBs due to the asymmetry stretching and bending mode interactions. SB obeys the mechanical [...] Read more.
The symmetry breaking (SB) of B2 not only exhibits an energy barrier for ionic or neutral forms dependent on various basis sets but it also exhibits a few SBs due to the asymmetry stretching and bending mode interactions. SB obeys the mechanical quantum theorem among discrete symmetries and their connection to the spin statistics in physical sciences. In this investigation, the unusual amount of energy barrier of SBs appeared upon the orbit–orbit coupling of BNB (both radical and ions) between transition states and the ground state. Our goal in this study is to understand the difference among the electromagnetic structures of the (B2N(,0)) variants due to effects of various basis sets and methods and also the quantum symmetry breaking phenomenon. In the Dh point group of (B2N(,0)) variants, the unpaired electron is delocalized, while in the asymmetric Cv point group, it is localized on either one of the B atoms. Structures with broken symmetry, Cv, can be stable by interacting with the Dh point group. In viewpoints of quantum chemistry, the second-order Jahn–Teller effect permits the unpaired electron to localize on boron atom, rather than being delocalized. In this study, we observed that the energy barrier of SB for BNB increases by post HF methods. Full article
(This article belongs to the Special Issue Fundamentals and Applications in Quantum Chemistry)
Show Figures

Figure 1

Figure 1
<p>The <math display="inline"><semantics> <mrow> <msub> <mi>B</mi> <mn>2</mn> </msub> <msup> <mi>N</mi> <mrow> <mrow> <mo>(</mo> <mrow> <mo>−</mo> <mo>,</mo> <mn>0</mn> <mo>,</mo> <mo>+</mo> </mrow> <mo>)</mo> </mrow> </mrow> </msup> </mrow> </semantics></math> relative energies versus B-N-B bond distances at various levels of the theory: (<b>a</b>,<b>a′</b>) for cation, (<b>b</b>,<b>b′</b>) for radical and (<b>c</b>,<b>c′</b>) for anion.</p>
Full article ">Figure 2
<p>Relative energies of <math display="inline"><semantics> <mrow> <msub> <mi>B</mi> <mn>2</mn> </msub> <msup> <mi>N</mi> <mrow> <mrow> <mo>(</mo> <mrow> <mo>−</mo> <mo>,</mo> <mn>0</mn> <mo>,</mo> <mo>+</mo> </mrow> <mo>)</mo> </mrow> </mrow> </msup> </mrow> </semantics></math> versus B-N-B bond angle at various levels of the theory.</p>
Full article ">Figure 3
<p>Isotropic Fermi contact coupling (IFCC) of <span class="html-italic">B</span><sub>2</sub><span class="html-italic">N</span><sup>(0)</sup>.</p>
Full article ">
14 pages, 326 KiB  
Article
Simultaneity and Time Reversal in Quantum Mechanics in Relation to Proper Time
by Salim Yasmineh
Quantum Rep. 2022, 4(3), 324-337; https://doi.org/10.3390/quantum4030023 - 8 Sep 2022
Viewed by 2331
Abstract
In Newtonian physics, the equation of motion is invariant when the direction of time (tt) is flipped. However, in quantum physics, flipping the direction of time changes the sign of the Schrödinger equation. An anti-unitary operator is needed [...] Read more.
In Newtonian physics, the equation of motion is invariant when the direction of time (tt) is flipped. However, in quantum physics, flipping the direction of time changes the sign of the Schrödinger equation. An anti-unitary operator is needed to restore time reversal in quantum physics, but this is at the cost of not having a consistent definition of time reversal applicable to all fundamental theories. On the other hand, a quantum system composed of a pair of entangled particles behaves in such a manner that when the state of one particle is measured, the second particle ‘simultaneously’ acquires a determinate state. A notion of absolute simultaneity seems to be inferred by quantum mechanics, even though it is forbidden by the postulates of relativity. We aim to point out that the above two problems can be overcome if the wavefunction is defined with respect to proper time, which in fact is the real physical time instead of ordinary time. Full article
15 pages, 376 KiB  
Article
Displaced Harmonic Oscillator V ∼ min [(x + d)2, (xd)2] as a Benchmark Double-Well Quantum Model
by Miloslav Znojil
Quantum Rep. 2022, 4(3), 309-323; https://doi.org/10.3390/quantum4030022 - 24 Aug 2022
Cited by 3 | Viewed by 2199
Abstract
For the displaced harmonic double-well oscillator, the existence of exact polynomial bound states at certain displacements d is revealed. The N-plets of these quasi-exactly solvable (QES) states are constructed in closed form. For non-QES states, the Schrödinger equation can still be considered [...] Read more.
For the displaced harmonic double-well oscillator, the existence of exact polynomial bound states at certain displacements d is revealed. The N-plets of these quasi-exactly solvable (QES) states are constructed in closed form. For non-QES states, the Schrödinger equation can still be considered “non-polynomially exactly solvable” (NES) because the exact left and right parts of the wave function (proportional to confluent hypergeometric function) just have to be matched in the origin. Full article
Show Figures

Figure 1

Figure 1
<p>Double-well shape of potential (<xref ref-type="disp-formula" rid="FD2-quantumrep-04-00022">2</xref>) at positive <inline-formula><mml:math id="mm237"><mml:semantics><mml:mrow><mml:mi>d</mml:mi><mml:mo>=</mml:mo><mml:mn>2</mml:mn></mml:mrow></mml:semantics></mml:math></inline-formula>.</p>
Full article ">Figure 2
<p>Ground-state energy and wave function in the single-well QES version of potential (<xref ref-type="disp-formula" rid="FD2-quantumrep-04-00022">2</xref>) at <inline-formula><mml:math id="mm238"><mml:semantics><mml:mrow><mml:mi>d</mml:mi><mml:mo>=</mml:mo><mml:mo>−</mml:mo><mml:mi>μ</mml:mi><mml:mo>=</mml:mo><mml:mo>−</mml:mo><mml:mn>1</mml:mn></mml:mrow></mml:semantics></mml:math></inline-formula>.</p>
Full article ">Figure 3
<p>The first three double-well wave functions at <inline-formula><mml:math id="mm239"><mml:semantics><mml:mrow><mml:mi>d</mml:mi><mml:mo>=</mml:mo><mml:mn>3</mml:mn><mml:mo>/</mml:mo><mml:mn>2</mml:mn></mml:mrow></mml:semantics></mml:math></inline-formula>.</p>
Full article ">
13 pages, 6030 KiB  
Article
Schrödinger Equation with Geometric Constraints and Position-Dependent Mass: Linked Fractional Calculus Models
by Ervin K. Lenzi, Luiz R. Evangelista, Haroldo V. Ribeiro and Richard L. Magin
Quantum Rep. 2022, 4(3), 296-308; https://doi.org/10.3390/quantum4030021 - 14 Aug 2022
Cited by 3 | Viewed by 1778
Abstract
We investigate the solutions of a two-dimensional Schrödinger equation in the presence of geometric constraints, represented by a backbone structure with branches, by taking a position-dependent effective mass for each direction into account. We use Green’s function approach to obtain the solutions, which [...] Read more.
We investigate the solutions of a two-dimensional Schrödinger equation in the presence of geometric constraints, represented by a backbone structure with branches, by taking a position-dependent effective mass for each direction into account. We use Green’s function approach to obtain the solutions, which are given in terms of stretched exponential functions. The results can be linked to the properties of the system and show anomalous spreading for the wave packet. We also analyze the interplay between the backbone structure with branches constraining the different directions and the effective mass. In particular, we show how a fractional Schrödinger equation emerges from this scenario. Full article
Show Figures

Figure 1

Figure 1
<p>This figure illustrates the backbone structure connected with Equation (<xref ref-type="disp-formula" rid="FD1-quantumrep-04-00021">1</xref>).</p>
Full article ">Figure 2
<p>Profile of <inline-formula><mml:math id="mm152"><mml:semantics><mml:mrow><mml:mo>|</mml:mo><mml:mi mathvariant="sans-serif">Ψ</mml:mi><mml:mo>(</mml:mo><mml:mi>x</mml:mi><mml:mo>,</mml:mo><mml:mi>y</mml:mi><mml:mo>,</mml:mo><mml:mi>t</mml:mi><mml:mo>)</mml:mo><mml:mo>|</mml:mo></mml:mrow></mml:semantics></mml:math></inline-formula> for <inline-formula><mml:math id="mm153"><mml:semantics><mml:mrow><mml:msub><mml:mi>η</mml:mi><mml:mi>x</mml:mi></mml:msub><mml:mo>=</mml:mo><mml:mn>1</mml:mn><mml:mo>/</mml:mo><mml:mn>2</mml:mn></mml:mrow></mml:semantics></mml:math></inline-formula>. For illustrative purposes, we consider <inline-formula><mml:math id="mm154"><mml:semantics><mml:mrow><mml:mo>ℏ</mml:mo><mml:mi>t</mml:mi><mml:mo>/</mml:mo><mml:mo>(</mml:mo><mml:mn>2</mml:mn><mml:mi>m</mml:mi><mml:mo>)</mml:mo><mml:mo>=</mml:mo><mml:mn>1</mml:mn></mml:mrow></mml:semantics></mml:math></inline-formula>, <inline-formula><mml:math id="mm155"><mml:semantics><mml:mrow><mml:mi>l</mml:mi><mml:mo>=</mml:mo><mml:mn>1</mml:mn></mml:mrow></mml:semantics></mml:math></inline-formula> and the initial condition <inline-formula><mml:math id="mm156"><mml:semantics><mml:mrow><mml:mi>φ</mml:mi><mml:mo>(</mml:mo><mml:mi>x</mml:mi><mml:mo>)</mml:mo><mml:mo>=</mml:mo><mml:mi>δ</mml:mi><mml:mo>(</mml:mo><mml:mi>x</mml:mi><mml:mo>)</mml:mo><mml:mi>δ</mml:mi><mml:mo>(</mml:mo><mml:mi>y</mml:mi><mml:mo>)</mml:mo></mml:mrow></mml:semantics></mml:math></inline-formula>.</p>
Full article ">Figure 3
<p>Profile of <inline-formula><mml:math id="mm157"><mml:semantics><mml:mrow><mml:mo>|</mml:mo><mml:mi mathvariant="sans-serif">Ψ</mml:mi><mml:mo>(</mml:mo><mml:mi>x</mml:mi><mml:mo>,</mml:mo><mml:mi>y</mml:mi><mml:mo>,</mml:mo><mml:mi>t</mml:mi><mml:mo>)</mml:mo><mml:mo>|</mml:mo></mml:mrow></mml:semantics></mml:math></inline-formula> for <inline-formula><mml:math id="mm158"><mml:semantics><mml:mrow><mml:msub><mml:mi>η</mml:mi><mml:mi>x</mml:mi></mml:msub><mml:mo>=</mml:mo><mml:mo>−</mml:mo><mml:mn>1</mml:mn><mml:mo>/</mml:mo><mml:mn>2</mml:mn></mml:mrow></mml:semantics></mml:math></inline-formula>. The other parameters are the same as in <xref ref-type="fig" rid="quantumrep-04-00021-f002">Figure 2</xref>.</p>
Full article ">Figure 4
<p>(<bold>a</bold>) Imaginary and (<bold>b</bold>) Real parts of <inline-formula><mml:math id="mm159"><mml:semantics><mml:mrow><mml:mi mathvariant="sans-serif">Ψ</mml:mi><mml:mo>(</mml:mo><mml:mi>x</mml:mi><mml:mo>,</mml:mo><mml:mn>0</mml:mn><mml:mo>,</mml:mo><mml:mi>t</mml:mi><mml:mo>)</mml:mo></mml:mrow></mml:semantics></mml:math></inline-formula> vs. <italic>x</italic> for <inline-formula><mml:math id="mm160"><mml:semantics><mml:mrow><mml:msubsup><mml:mi>η</mml:mi><mml:mi>y</mml:mi><mml:mo>′</mml:mo></mml:msubsup><mml:mo>=</mml:mo><mml:mo>−</mml:mo><mml:mn>1</mml:mn><mml:mo>/</mml:mo><mml:mn>2</mml:mn></mml:mrow></mml:semantics></mml:math></inline-formula>, 0 and <inline-formula><mml:math id="mm161"><mml:semantics><mml:mrow><mml:mn>1</mml:mn><mml:mo>/</mml:mo><mml:mn>2</mml:mn></mml:mrow></mml:semantics></mml:math></inline-formula>. (<bold>c</bold>) Imaginary and (<bold>d</bold>) Real parts of <inline-formula><mml:math id="mm162"><mml:semantics><mml:mrow><mml:mi mathvariant="sans-serif">Ψ</mml:mi><mml:mo>(</mml:mo><mml:mn>0</mml:mn><mml:mo>,</mml:mo><mml:mi>y</mml:mi><mml:mo>,</mml:mo><mml:mi>t</mml:mi><mml:mo>)</mml:mo></mml:mrow></mml:semantics></mml:math></inline-formula> vs. <italic>y</italic> for the same values of the parameters. The curves are depicted for <inline-formula><mml:math id="mm163"><mml:semantics><mml:mrow><mml:mo>ℏ</mml:mo><mml:mi>t</mml:mi><mml:mo>/</mml:mo><mml:mi>m</mml:mi><mml:mo>=</mml:mo><mml:mn>1</mml:mn></mml:mrow></mml:semantics></mml:math></inline-formula>, <inline-formula><mml:math id="mm164"><mml:semantics><mml:mrow><mml:mi>l</mml:mi><mml:mo>/</mml:mo><mml:msup><mml:mi>t</mml:mi><mml:msubsup><mml:mi>η</mml:mi><mml:mi>y</mml:mi><mml:mo>′</mml:mo></mml:msubsup></mml:msup><mml:mo>=</mml:mo><mml:mn>1</mml:mn></mml:mrow></mml:semantics></mml:math></inline-formula>, and the initial condition <inline-formula><mml:math id="mm165"><mml:semantics><mml:mrow><mml:mi>φ</mml:mi><mml:mrow><mml:mo>(</mml:mo><mml:mi>x</mml:mi><mml:mo>,</mml:mo><mml:mi>y</mml:mi><mml:mo>)</mml:mo></mml:mrow><mml:mo>=</mml:mo><mml:mi>δ</mml:mi><mml:mrow><mml:mo>(</mml:mo><mml:mi>y</mml:mi><mml:mo>)</mml:mo></mml:mrow><mml:msup><mml:mi>e</mml:mi><mml:mrow><mml:mo>−</mml:mo><mml:msup><mml:mi>x</mml:mi><mml:mn>2</mml:mn></mml:msup><mml:mo>/</mml:mo><mml:mrow><mml:mo>(</mml:mo><mml:mn>2</mml:mn><mml:msup><mml:mi>σ</mml:mi><mml:mn>2</mml:mn></mml:msup><mml:mo>)</mml:mo></mml:mrow></mml:mrow></mml:msup><mml:mo>/</mml:mo><mml:mrow><mml:mo>(</mml:mo><mml:msqrt><mml:mrow><mml:mi>π</mml:mi><mml:msup><mml:mi>σ</mml:mi><mml:mn>2</mml:mn></mml:msup></mml:mrow></mml:msqrt><mml:mo>)</mml:mo></mml:mrow></mml:mrow></mml:semantics></mml:math></inline-formula>, with <inline-formula><mml:math id="mm166"><mml:semantics><mml:mrow><mml:msup><mml:mi>σ</mml:mi><mml:mn>2</mml:mn></mml:msup><mml:mo>=</mml:mo><mml:mn>1</mml:mn></mml:mrow></mml:semantics></mml:math></inline-formula>.</p>
Full article ">Figure 5
<p><inline-formula><mml:math id="mm167"><mml:semantics><mml:mrow><mml:mrow><mml:mo>|</mml:mo></mml:mrow><mml:msub><mml:mi mathvariant="sans-serif">Ψ</mml:mi><mml:mi>x</mml:mi></mml:msub><mml:mrow><mml:mrow><mml:mo>(</mml:mo><mml:mi>x</mml:mi><mml:mo>,</mml:mo><mml:mi>t</mml:mi><mml:mo>)</mml:mo></mml:mrow><mml:mo>|</mml:mo></mml:mrow></mml:mrow></mml:semantics></mml:math></inline-formula> vs. <italic>x</italic>, for different values of <inline-formula><mml:math id="mm168"><mml:semantics><mml:msubsup><mml:mi>η</mml:mi><mml:mi>y</mml:mi><mml:mo>′</mml:mo></mml:msubsup></mml:semantics></mml:math></inline-formula>. The dashed-dotted line corresponds to the wave function <inline-formula><mml:math id="mm169"><mml:semantics><mml:mrow><mml:msub><mml:mi mathvariant="sans-serif">Ψ</mml:mi><mml:mi>x</mml:mi></mml:msub><mml:mrow><mml:mo>(</mml:mo><mml:mi>x</mml:mi><mml:mo>)</mml:mo></mml:mrow><mml:mo>=</mml:mo><mml:msup><mml:mi>e</mml:mi><mml:mrow><mml:msup><mml:mi>x</mml:mi><mml:mn>2</mml:mn></mml:msup><mml:mo>/</mml:mo><mml:mn>2</mml:mn></mml:mrow></mml:msup><mml:mo>/</mml:mo><mml:msqrt><mml:mi>π</mml:mi></mml:msqrt></mml:mrow></mml:semantics></mml:math></inline-formula>, which was incorporated for comparative purposes to evidence the effect of <inline-formula><mml:math id="mm170"><mml:semantics><mml:mrow><mml:msubsup><mml:mi>η</mml:mi><mml:mrow><mml:mi>y</mml:mi></mml:mrow><mml:mo>′</mml:mo></mml:msubsup><mml:mo>≠</mml:mo><mml:mn>1</mml:mn></mml:mrow></mml:semantics></mml:math></inline-formula> on the solutions of the Schrödinger equation. The curves are drawn for <inline-formula><mml:math id="mm171"><mml:semantics><mml:mrow><mml:mo>ℏ</mml:mo><mml:mi>l</mml:mi><mml:msup><mml:mi>t</mml:mi><mml:msubsup><mml:mi>η</mml:mi><mml:mi>y</mml:mi><mml:mo>′</mml:mo></mml:msubsup></mml:msup><mml:mo>/</mml:mo><mml:mrow><mml:mo>(</mml:mo><mml:mn>2</mml:mn><mml:mi>m</mml:mi><mml:mo>)</mml:mo></mml:mrow><mml:mo>=</mml:mo><mml:mn>1</mml:mn></mml:mrow></mml:semantics></mml:math></inline-formula>, <inline-formula><mml:math id="mm172"><mml:semantics><mml:mrow><mml:mi>l</mml:mi><mml:mo>=</mml:mo><mml:mn>1</mml:mn></mml:mrow></mml:semantics></mml:math></inline-formula> and the initial condition <inline-formula><mml:math id="mm173"><mml:semantics><mml:mrow><mml:msub><mml:mi>φ</mml:mi><mml:mi>x</mml:mi></mml:msub><mml:mrow><mml:mo>(</mml:mo><mml:mi>x</mml:mi><mml:mo>)</mml:mo></mml:mrow><mml:mo>=</mml:mo><mml:msup><mml:mi>e</mml:mi><mml:mrow><mml:mo>−</mml:mo><mml:msup><mml:mi>x</mml:mi><mml:mn>2</mml:mn></mml:msup><mml:mo>/</mml:mo><mml:mrow><mml:mo>(</mml:mo><mml:mn>2</mml:mn><mml:msup><mml:mi>σ</mml:mi><mml:mn>2</mml:mn></mml:msup><mml:mo>)</mml:mo></mml:mrow></mml:mrow></mml:msup><mml:mo>/</mml:mo><mml:mrow><mml:mo>(</mml:mo><mml:msqrt><mml:mrow><mml:mi>π</mml:mi><mml:msup><mml:mi>σ</mml:mi><mml:mn>2</mml:mn></mml:msup></mml:mrow></mml:msqrt><mml:mo>)</mml:mo></mml:mrow></mml:mrow></mml:semantics></mml:math></inline-formula>, with <inline-formula><mml:math id="mm174"><mml:semantics><mml:mrow><mml:msup><mml:mi>σ</mml:mi><mml:mn>2</mml:mn></mml:msup><mml:mo>=</mml:mo><mml:mn>0.01</mml:mn></mml:mrow></mml:semantics></mml:math></inline-formula>.</p>
Full article ">Figure 6
<p>This figure illustrates the behavior of <inline-formula><mml:math id="mm175"><mml:semantics><mml:mrow><mml:mrow><mml:mn>1</mml:mn><mml:mo>/</mml:mo><mml:mo>|</mml:mo></mml:mrow><mml:msub><mml:mi mathvariant="sans-serif">Ψ</mml:mi><mml:mi>x</mml:mi></mml:msub><mml:msup><mml:mrow><mml:mrow><mml:mo>(</mml:mo><mml:mn>0</mml:mn><mml:mo>,</mml:mo><mml:mi>t</mml:mi><mml:mo>)</mml:mo></mml:mrow><mml:mo>|</mml:mo></mml:mrow><mml:mn>2</mml:mn></mml:msup></mml:mrow></mml:semantics></mml:math></inline-formula> for different values of <inline-formula><mml:math id="mm176"><mml:semantics><mml:msub><mml:mi>η</mml:mi><mml:mi>y</mml:mi></mml:msub></mml:semantics></mml:math></inline-formula>. We consider, for simplicity, <inline-formula><mml:math id="mm177"><mml:semantics><mml:mrow><mml:mo>ℏ</mml:mo><mml:mi>l</mml:mi><mml:mo>/</mml:mo><mml:mo>(</mml:mo><mml:mn>2</mml:mn><mml:mi>m</mml:mi><mml:mo>)</mml:mo><mml:mo>=</mml:mo><mml:mn>1</mml:mn></mml:mrow></mml:semantics></mml:math></inline-formula>, <inline-formula><mml:math id="mm178"><mml:semantics><mml:mrow><mml:mi>l</mml:mi><mml:mo>=</mml:mo><mml:mn>1</mml:mn></mml:mrow></mml:semantics></mml:math></inline-formula> and the initial condition <inline-formula><mml:math id="mm179"><mml:semantics><mml:mrow><mml:msub><mml:mi>φ</mml:mi><mml:mi>x</mml:mi></mml:msub><mml:mrow><mml:mo>(</mml:mo><mml:mi>x</mml:mi><mml:mo>)</mml:mo></mml:mrow><mml:mo>=</mml:mo><mml:msup><mml:mi>e</mml:mi><mml:mrow><mml:mo>−</mml:mo><mml:msup><mml:mi>x</mml:mi><mml:mn>2</mml:mn></mml:msup><mml:mo>/</mml:mo><mml:mrow><mml:mo>(</mml:mo><mml:mn>2</mml:mn><mml:msup><mml:mi>σ</mml:mi><mml:mn>2</mml:mn></mml:msup><mml:mo>)</mml:mo></mml:mrow></mml:mrow></mml:msup><mml:mo>/</mml:mo><mml:mrow><mml:mo>(</mml:mo><mml:msqrt><mml:mrow><mml:mi>π</mml:mi><mml:msup><mml:mi>σ</mml:mi><mml:mn>2</mml:mn></mml:msup></mml:mrow></mml:msqrt><mml:mo>)</mml:mo></mml:mrow></mml:mrow></mml:semantics></mml:math></inline-formula>, with <inline-formula><mml:math id="mm180"><mml:semantics><mml:mrow><mml:msup><mml:mi>σ</mml:mi><mml:mn>2</mml:mn></mml:msup><mml:mo>=</mml:mo><mml:mn>0.01</mml:mn></mml:mrow></mml:semantics></mml:math></inline-formula>.</p>
Full article ">
19 pages, 479 KiB  
Article
Electromagnetic Signatures of Possible Charge Anomalies in Tunneling
by Fernando Minotti and Giovanni Modanese
Quantum Rep. 2022, 4(3), 277-295; https://doi.org/10.3390/quantum4030020 - 11 Aug 2022
Cited by 3 | Viewed by 1673
Abstract
We reconsider some well-known tunneling processes from the point of view of Aharonov-Bohm electrodynamics, a unique extension of Maxwell’s theory which admits charge-current sources that are not locally conserved. In particular we are interested into tunneling phenomena having relatively long range (otherwise the [...] Read more.
We reconsider some well-known tunneling processes from the point of view of Aharonov-Bohm electrodynamics, a unique extension of Maxwell’s theory which admits charge-current sources that are not locally conserved. In particular we are interested into tunneling phenomena having relatively long range (otherwise the non-Maxwellian effects become irrelevant, especially at high frequency) and involving macroscopic wavefunctions and coherent matter, for which it makes sense to evaluate the classical e.m. field generated by the tunneling particles. For some condensed-matter systems, admitting discontinuities in the probability current is a possible way of formulating phenomenological models. In such cases, the Aharonov-Bohm theory offers a logically consistent approach and allows to derive observable consequences. Typical e.m. signatures of the failure of local conservation are at high frequency the generation of a longitudinal electric radiation field, and at low frequency a small effect of “missing” magnetic field. Possible causes of this failure are instant tunneling and phase slips in superconductors. For macroscopic quantum systems in which the phase-number uncertainty relation ΔNΔφ1 applies, the expectation value of the anomalous source I=tρ+·j has quantum fluctuations, thus becoming a random source of weak non-Maxwellian fields. Full article
Show Figures

Figure 1

Figure 1
<p>Basic structure of the 1-D potential.</p>
Full article ">Figure 2
<p>Schematic representation of a solution with five barriers. The allowed bands determined by Bloch theorem are marked in gray, inside which are indicated the discrete energy levels with perfect transmission <inline-formula><mml:math id="mm338"><mml:semantics><mml:mrow><mml:mi>R</mml:mi><mml:mo>=</mml:mo><mml:mn>0</mml:mn></mml:mrow></mml:semantics></mml:math></inline-formula>.</p>
Full article ">Figure 3
<p>Tunneling Josephson junction of the SNS or SIS type, with an insulating layer of thickness <italic>d</italic> between two superconducting electrodes S1 and S2. <inline-formula><mml:math id="mm339"><mml:semantics><mml:msub><mml:mi>ρ</mml:mi><mml:mn>1</mml:mn></mml:msub></mml:semantics></mml:math></inline-formula> and <inline-formula><mml:math id="mm340"><mml:semantics><mml:msub><mml:mi>j</mml:mi><mml:mn>1</mml:mn></mml:msub></mml:semantics></mml:math></inline-formula> denote respectively the charge and current density on Electrode 1, and similarly for <inline-formula><mml:math id="mm341"><mml:semantics><mml:msub><mml:mi>ρ</mml:mi><mml:mn>2</mml:mn></mml:msub></mml:semantics></mml:math></inline-formula> and <inline-formula><mml:math id="mm342"><mml:semantics><mml:msub><mml:mi>j</mml:mi><mml:mn>2</mml:mn></mml:msub></mml:semantics></mml:math></inline-formula>. Due to the phase-number uncertainty principle, the classical local conservation relation <inline-formula><mml:math id="mm343"><mml:semantics><mml:mrow><mml:mi>I</mml:mi><mml:mo>=</mml:mo><mml:msub><mml:mo>∂</mml:mo><mml:mi>t</mml:mi></mml:msub><mml:mi>ρ</mml:mi><mml:mo>+</mml:mo><mml:msub><mml:mo>∂</mml:mo><mml:mi>x</mml:mi></mml:msub><mml:msub><mml:mi>j</mml:mi><mml:mi>x</mml:mi></mml:msub><mml:mo>=</mml:mo><mml:mn>0</mml:mn></mml:mrow></mml:semantics></mml:math></inline-formula> cannot be exactly satisfied and there will be fluctuations <inline-formula><mml:math id="mm344"><mml:semantics><mml:mrow><mml:mi mathvariant="sans-serif">Δ</mml:mi><mml:msub><mml:mi>I</mml:mi><mml:mn>1</mml:mn></mml:msub></mml:mrow></mml:semantics></mml:math></inline-formula> and <inline-formula><mml:math id="mm345"><mml:semantics><mml:mrow><mml:mi mathvariant="sans-serif">Δ</mml:mi><mml:msub><mml:mi>I</mml:mi><mml:mn>2</mml:mn></mml:msub></mml:mrow></mml:semantics></mml:math></inline-formula> on the two electrodes, especially when the current in the junction is oscillating at high frequency. We suppose that the fluctuations are opposite in sign, so that the total charge is not fluctuating.</p>
Full article ">Figure A1
<p>Plot of <inline-formula><mml:math id="mm285"><mml:semantics><mml:mrow><mml:mo form="prefix">ln</mml:mo><mml:mo>|</mml:mo><mml:mi>ψ</mml:mi><mml:mo>|</mml:mo></mml:mrow></mml:semantics></mml:math></inline-formula> in a symmetric solution with <inline-formula><mml:math id="mm286"><mml:semantics><mml:mrow><mml:mi mathvariant="sans-serif">Δ</mml:mi><mml:mi>φ</mml:mi><mml:mo>≃</mml:mo><mml:mn>2.9</mml:mn></mml:mrow></mml:semantics></mml:math></inline-formula>, <inline-formula><mml:math id="mm287"><mml:semantics><mml:mrow><mml:mi>L</mml:mi><mml:mo>=</mml:mo><mml:mn>3</mml:mn></mml:mrow></mml:semantics></mml:math></inline-formula>.</p>
Full article ">Figure A2
<p>Plot of <inline-formula><mml:math id="mm288"><mml:semantics><mml:mi>φ</mml:mi></mml:semantics></mml:math></inline-formula> in a symmetric solution with <inline-formula><mml:math id="mm289"><mml:semantics><mml:mrow><mml:mi mathvariant="sans-serif">Δ</mml:mi><mml:mi>φ</mml:mi><mml:mo>≃</mml:mo><mml:mn>2.9</mml:mn></mml:mrow></mml:semantics></mml:math></inline-formula>, <inline-formula><mml:math id="mm290"><mml:semantics><mml:mrow><mml:mi>L</mml:mi><mml:mo>=</mml:mo><mml:mn>3</mml:mn></mml:mrow></mml:semantics></mml:math></inline-formula>.</p>
Full article ">Figure A3
<p>Plot of <inline-formula><mml:math id="mm291"><mml:semantics><mml:mrow><mml:mo form="prefix">ln</mml:mo><mml:mo>|</mml:mo><mml:mi>ψ</mml:mi><mml:mo>|</mml:mo></mml:mrow></mml:semantics></mml:math></inline-formula> in a symmetric solution with <inline-formula><mml:math id="mm292"><mml:semantics><mml:mrow><mml:mi mathvariant="sans-serif">Δ</mml:mi><mml:mi>φ</mml:mi><mml:mo>≃</mml:mo><mml:mn>3.1</mml:mn></mml:mrow></mml:semantics></mml:math></inline-formula>, <inline-formula><mml:math id="mm293"><mml:semantics><mml:mrow><mml:mi>L</mml:mi><mml:mo>=</mml:mo><mml:mn>3</mml:mn></mml:mrow></mml:semantics></mml:math></inline-formula>.</p>
Full article ">Figure A4
<p>Plot of <inline-formula><mml:math id="mm294"><mml:semantics><mml:mi>φ</mml:mi></mml:semantics></mml:math></inline-formula> in a symmetric solution with <inline-formula><mml:math id="mm295"><mml:semantics><mml:mrow><mml:mi mathvariant="sans-serif">Δ</mml:mi><mml:mi>φ</mml:mi><mml:mo>≃</mml:mo><mml:mn>3.1</mml:mn></mml:mrow></mml:semantics></mml:math></inline-formula>, <inline-formula><mml:math id="mm296"><mml:semantics><mml:mrow><mml:mi>L</mml:mi><mml:mo>=</mml:mo><mml:mn>3</mml:mn></mml:mrow></mml:semantics></mml:math></inline-formula>.</p>
Full article ">Figure A5
<p>Plot of <inline-formula><mml:math id="mm297"><mml:semantics><mml:mrow><mml:mo form="prefix">ln</mml:mo><mml:mo>|</mml:mo><mml:mi>ψ</mml:mi><mml:mo>|</mml:mo></mml:mrow></mml:semantics></mml:math></inline-formula> in a symmetric solution with <inline-formula><mml:math id="mm298"><mml:semantics><mml:mrow><mml:mi mathvariant="sans-serif">Δ</mml:mi><mml:mi>φ</mml:mi><mml:mo>≃</mml:mo><mml:mn>3.14</mml:mn></mml:mrow></mml:semantics></mml:math></inline-formula>, <inline-formula><mml:math id="mm299"><mml:semantics><mml:mrow><mml:mi>L</mml:mi><mml:mo>=</mml:mo><mml:mn>3</mml:mn></mml:mrow></mml:semantics></mml:math></inline-formula>.</p>
Full article ">Figure A6
<p>Plot of <inline-formula><mml:math id="mm300"><mml:semantics><mml:mi>φ</mml:mi></mml:semantics></mml:math></inline-formula> in a symmetric solution with <inline-formula><mml:math id="mm301"><mml:semantics><mml:mrow><mml:mi mathvariant="sans-serif">Δ</mml:mi><mml:mi>φ</mml:mi><mml:mo>≃</mml:mo><mml:mn>3.14</mml:mn></mml:mrow></mml:semantics></mml:math></inline-formula>, <inline-formula><mml:math id="mm302"><mml:semantics><mml:mrow><mml:mi>L</mml:mi><mml:mo>=</mml:mo><mml:mn>3</mml:mn></mml:mrow></mml:semantics></mml:math></inline-formula>.</p>
Full article ">Figure A7
<p>Typical result of a numerical solution with boundary conditions chosen on the left of the bridge (<inline-formula><mml:math id="mm333"><mml:semantics><mml:mrow><mml:mi>u</mml:mi><mml:mo>(</mml:mo><mml:mn>0</mml:mn><mml:mo>)</mml:mo><mml:mo>=</mml:mo><mml:mo>−</mml:mo><mml:mn>0.05</mml:mn></mml:mrow></mml:semantics></mml:math></inline-formula>, <inline-formula><mml:math id="mm334"><mml:semantics><mml:mrow><mml:mi>v</mml:mi><mml:mo>(</mml:mo><mml:mn>0</mml:mn><mml:mo>)</mml:mo><mml:mo>=</mml:mo><mml:mn>0.5</mml:mn></mml:mrow></mml:semantics></mml:math></inline-formula>). Range <inline-formula><mml:math id="mm335"><mml:semantics><mml:mrow><mml:mi>L</mml:mi><mml:mo>=</mml:mo><mml:mn>1</mml:mn></mml:mrow></mml:semantics></mml:math></inline-formula>. The real and imaginary parts <italic>a</italic> and <italic>b</italic> of the wavefunction do not vanish at the same point, and therefore the absolute value <inline-formula><mml:math id="mm336"><mml:semantics><mml:mrow><mml:mi>ρ</mml:mi><mml:mo>=</mml:mo><mml:msup><mml:mrow><mml:mo>|</mml:mo><mml:mi>ψ</mml:mi><mml:mo>|</mml:mo></mml:mrow><mml:mn>2</mml:mn></mml:msup><mml:mo>=</mml:mo><mml:msup><mml:mi>a</mml:mi><mml:mn>2</mml:mn></mml:msup><mml:mo>+</mml:mo><mml:msup><mml:mi>b</mml:mi><mml:mn>2</mml:mn></mml:msup></mml:mrow></mml:semantics></mml:math></inline-formula> is never exactly zero and the phase <inline-formula><mml:math id="mm337"><mml:semantics><mml:mi>φ</mml:mi></mml:semantics></mml:math></inline-formula> is always well-defined. This is a consequence of current conservation and implies that the GL equation does not predict any phase slips.</p>
Full article ">
5 pages, 674 KiB  
Brief Report
Equal Radiation Frequencies from Different Transitions in the Non-Relativistic Quantum Mechanical Hydrogen Atom
by Tuan K. Do and Trung V. Phan
Quantum Rep. 2022, 4(3), 272-276; https://doi.org/10.3390/quantum4030019 - 5 Aug 2022
Viewed by 1897
Abstract
Is it possible that two different transitions in the non-relativistic quantum mechanical model of the hydrogen atom give the same frequency of radiation? That is, can different energy level transitions in a hydrogen atom have the same photon radiation frequency? This question, which [...] Read more.
Is it possible that two different transitions in the non-relativistic quantum mechanical model of the hydrogen atom give the same frequency of radiation? That is, can different energy level transitions in a hydrogen atom have the same photon radiation frequency? This question, which was asked during a Ph.D. oral exam in 1997 at the University of Colorado Boulder, is well-known among physics graduate students. We show a general solution to this question, in which all equifrequency transition pairs can be obtained from the set of solutions of a Diophantine equation. This fun puzzle is a simple yet concrete example of how number theory can be relevant to quantum systems, a curious theme that emerges in theoretical physics but is usually inaccessible to a general audience. Full article
Show Figures

Figure 1

Figure 1
<p>Energy-level transitions in the non-relativisitic quantum mechanical model of the hydrogen atom. An electron jumps from an outer ring <inline-formula><mml:math id="mm104"><mml:semantics><mml:msub><mml:mi>n</mml:mi><mml:mn>1</mml:mn></mml:msub></mml:semantics></mml:math></inline-formula>-th to an inner ring <inline-formula><mml:math id="mm105"><mml:semantics><mml:msub><mml:mi>n</mml:mi><mml:mn>2</mml:mn></mml:msub></mml:semantics></mml:math></inline-formula>-th, emits a photon with radiation energy <inline-formula><mml:math id="mm106"><mml:semantics><mml:mrow><mml:mi mathvariant="sans-serif">Δ</mml:mi><mml:mi>E</mml:mi><mml:mo>∝</mml:mo><mml:msubsup><mml:mi>n</mml:mi><mml:mn>2</mml:mn><mml:mrow><mml:mo>−</mml:mo><mml:mn>2</mml:mn></mml:mrow></mml:msubsup><mml:mo>−</mml:mo><mml:msubsup><mml:mi>n</mml:mi><mml:mn>1</mml:mn><mml:mrow><mml:mo>−</mml:mo><mml:mn>2</mml:mn></mml:mrow></mml:msubsup></mml:mrow></mml:semantics></mml:math></inline-formula>.</p>
Full article ">Figure 2
<p>The geometric representation of curve Equation (<xref ref-type="disp-formula" rid="FD10-quantumrep-04-00019">10</xref>) and line equation <inline-formula><mml:math id="mm107"><mml:semantics><mml:mrow><mml:mi>b</mml:mi><mml:mo>=</mml:mo><mml:mi>q</mml:mi><mml:mo>(</mml:mo><mml:mi>a</mml:mi><mml:mo>−</mml:mo><mml:mn>1</mml:mn><mml:mo>)</mml:mo></mml:mrow></mml:semantics></mml:math></inline-formula> in the <italic>a</italic>-<italic>b</italic> plane. The intersection in the first quadrant provides a solution to Equation (<xref ref-type="disp-formula" rid="FD10-quantumrep-04-00019">10</xref>).</p>
Full article ">Figure 3
<p>A demonstration for the procedure to obtain an equifrequency transition pair. Here we start by selecting <inline-formula><mml:math id="mm108"><mml:semantics><mml:mrow><mml:mi>s</mml:mi><mml:mo>=</mml:mo><mml:mn>6</mml:mn></mml:mrow></mml:semantics></mml:math></inline-formula>, then from <inline-formula><mml:math id="mm109"><mml:semantics><mml:mrow><mml:mrow><mml:mo>(</mml:mo><mml:msub><mml:mi>q</mml:mi><mml:mn>1</mml:mn></mml:msub><mml:mo>,</mml:mo><mml:msub><mml:mi>q</mml:mi><mml:mn>2</mml:mn></mml:msub><mml:mo>)</mml:mo></mml:mrow><mml:mo>=</mml:mo><mml:mrow><mml:mo>(</mml:mo><mml:mn>5</mml:mn><mml:mo>,</mml:mo><mml:mn>7</mml:mn><mml:mo>)</mml:mo></mml:mrow></mml:mrow></mml:semantics></mml:math></inline-formula> and <inline-formula><mml:math id="mm110"><mml:semantics><mml:mrow><mml:mi>l</mml:mi><mml:mo>=</mml:mo><mml:mn>5</mml:mn></mml:mrow></mml:semantics></mml:math></inline-formula> we get <inline-formula><mml:math id="mm111"><mml:semantics><mml:mrow><mml:mrow><mml:mo>(</mml:mo><mml:msub><mml:mi>x</mml:mi><mml:mn>1</mml:mn></mml:msub><mml:mo>,</mml:mo><mml:msub><mml:mi>y</mml:mi><mml:mn>1</mml:mn></mml:msub><mml:mo>,</mml:mo><mml:msub><mml:mi>z</mml:mi><mml:mn>1</mml:mn></mml:msub><mml:mo>)</mml:mo></mml:mrow><mml:mo>=</mml:mo><mml:mrow><mml:mo>(</mml:mo><mml:mn>995</mml:mn><mml:mo>,</mml:mo><mml:mn>505</mml:mn><mml:mo>,</mml:mo><mml:mn>350</mml:mn><mml:mo>)</mml:mo></mml:mrow></mml:mrow></mml:semantics></mml:math></inline-formula>, from <inline-formula><mml:math id="mm112"><mml:semantics><mml:mrow><mml:mrow><mml:mo>(</mml:mo><mml:msub><mml:mi>q</mml:mi><mml:mn>1</mml:mn></mml:msub><mml:mo>,</mml:mo><mml:msub><mml:mi>q</mml:mi><mml:mn>2</mml:mn></mml:msub><mml:mo>)</mml:mo></mml:mrow><mml:mo>=</mml:mo><mml:mrow><mml:mo>(</mml:mo><mml:mn>1</mml:mn><mml:mo>,</mml:mo><mml:mn>1</mml:mn><mml:mo>)</mml:mo></mml:mrow></mml:mrow></mml:semantics></mml:math></inline-formula> and <inline-formula><mml:math id="mm113"><mml:semantics><mml:mrow><mml:mi>l</mml:mi><mml:mo>=</mml:mo><mml:mn>7</mml:mn></mml:mrow></mml:semantics></mml:math></inline-formula> we get <inline-formula><mml:math id="mm114"><mml:semantics><mml:mrow><mml:mrow><mml:mo>(</mml:mo><mml:msub><mml:mi>x</mml:mi><mml:mn>2</mml:mn></mml:msub><mml:mo>,</mml:mo><mml:msub><mml:mi>y</mml:mi><mml:mn>2</mml:mn></mml:msub><mml:mo>,</mml:mo><mml:msub><mml:mi>z</mml:mi><mml:mn>2</mml:mn></mml:msub><mml:mo>)</mml:mo></mml:mrow><mml:mo>=</mml:mo><mml:mrow><mml:mo>(</mml:mo><mml:mn>49</mml:mn><mml:mo>,</mml:mo><mml:mn>35</mml:mn><mml:mo>,</mml:mo><mml:mn>14</mml:mn><mml:mo>)</mml:mo></mml:mrow></mml:mrow></mml:semantics></mml:math></inline-formula>. Then, with <inline-formula><mml:math id="mm115"><mml:semantics><mml:mrow><mml:mi>k</mml:mi><mml:mo>=</mml:mo><mml:mn>4</mml:mn></mml:mrow></mml:semantics></mml:math></inline-formula>, we arrive at <inline-formula><mml:math id="mm116"><mml:semantics><mml:mrow><mml:mrow><mml:mo>(</mml:mo><mml:msub><mml:mi>n</mml:mi><mml:mn>1</mml:mn></mml:msub><mml:mo>→</mml:mo><mml:msub><mml:mi>n</mml:mi><mml:mn>2</mml:mn></mml:msub><mml:mo>,</mml:mo><mml:msub><mml:mi>n</mml:mi><mml:mn>3</mml:mn></mml:msub><mml:mo>→</mml:mo><mml:msub><mml:mi>n</mml:mi><mml:mn>4</mml:mn></mml:msub><mml:mo>)</mml:mo></mml:mrow><mml:mrow><mml:mo>=</mml:mo><mml:mo>(</mml:mo><mml:mn>6825700</mml:mn><mml:mo>→</mml:mo><mml:mn>3464300</mml:mn><mml:mo>,</mml:mo></mml:mrow></mml:mrow></mml:semantics></mml:math></inline-formula><inline-formula><mml:math id="mm117"><mml:semantics><mml:mrow><mml:mn>3939404</mml:mn><mml:mo>→</mml:mo><mml:mn>2813860</mml:mn><mml:mo>)</mml:mo></mml:mrow></mml:semantics></mml:math></inline-formula>, which can be checked as satisfying Equation (<xref ref-type="disp-formula" rid="FD1-quantumrep-04-00019">1</xref>).</p>
Full article ">
8 pages, 663 KiB  
Article
Why the Many-Worlds Interpretation?
by Lev Vaidman
Quantum Rep. 2022, 4(3), 264-271; https://doi.org/10.3390/quantum4030018 - 4 Aug 2022
Cited by 8 | Viewed by 5193
Abstract
A brief (subjective) description of the state of the art of the many-worlds interpretation of quantum mechanics (MWI) is presented. It is argued that the MWI is the only interpretation which removes action at a distance and randomness from quantum theory. Limitations of [...] Read more.
A brief (subjective) description of the state of the art of the many-worlds interpretation of quantum mechanics (MWI) is presented. It is argued that the MWI is the only interpretation which removes action at a distance and randomness from quantum theory. Limitations of the MWI regarding questions of probability which can be legitimately asked are specified. The ontological picture of the MWI as a theory of the universal wave function decomposed into a superposition of world wave functions, the important parts of which are defined in three-dimensional space, is presented from the point of view of our particular branch. Some speculations about misconceptions, which apparently prevent the MWI from being in the consensus, are mentioned. Full article
(This article belongs to the Special Issue The Many-Worlds Interpretation of Quantum Mechanics)
Show Figures

Figure 1

Figure 1
<p><bold>Measurement problem.</bold> (<bold>a</bold>) The detection of a single photon is fully understood by the creation of a particular quantum wave of parts of the single-photon detector. (<bold>b</bold>) In the experiment with a single-photon source, beamsplitter, and two detectors, the quantum mechanical equations show a similar (although reduced) change in two detectors. Nevertheless, we never observe simultaneous clicks of the two detectors.</p>
Full article ">Figure 2
<p><bold>Action at a distance in a single-world universe.</bold> If we do nothing at <italic>A</italic>, then at a particular moment, there will be probability <inline-formula><mml:math id="mm2"><mml:semantics><mml:mrow><mml:mi>p</mml:mi><mml:mo>=</mml:mo><mml:mn>0.5</mml:mn></mml:mrow></mml:semantics></mml:math></inline-formula> of finding a photon at a spacelike separated region <italic>B</italic>. Introducing a detector just before <italic>A</italic> will lead to a superluminal change in <italic>B</italic> to <inline-formula><mml:math id="mm3"><mml:semantics><mml:mrow><mml:mi>p</mml:mi><mml:mo>=</mml:mo><mml:mn>0</mml:mn></mml:mrow></mml:semantics></mml:math></inline-formula> or <inline-formula><mml:math id="mm4"><mml:semantics><mml:mrow><mml:mi>p</mml:mi><mml:mo>=</mml:mo><mml:mn>1</mml:mn></mml:mrow></mml:semantics></mml:math></inline-formula>. The change will not be known immediately at <italic>B</italic>, but it does not change the fact that something in <italic>B</italic> changed, e.g., the readiness of an agent in <italic>A</italic> to bet about the result of an experiment in <italic>B</italic>.</p>
Full article ">Figure 3
<p><bold>The world structure in the MWI and a single-world universe.</bold> (<bold>a</bold>) The whole tree of many worlds in the MWI. (<bold>b</bold>) One world of the MWI until present together with the tree of future worlds splitting out of it in the future. (<bold>c</bold>) One of the corresponding worlds of the theory with collapse.</p>
Full article ">
13 pages, 703 KiB  
Article
End-to-End Entanglement Generation Strategies: Capacity Bounds and Impact on Quantum Key Distribution
by Antonio Manzalini and Michele Amoretti
Quantum Rep. 2022, 4(3), 251-263; https://doi.org/10.3390/quantum4030017 - 29 Jul 2022
Cited by 8 | Viewed by 2618
Abstract
A first quantum revolution has already brought quantum technologies into our everyday life for decades: in fact, electronics and optics are based on the quantum mechanical principles. Today, a second quantum revolution is underway, leveraging the quantum principles of superposition, entanglement and measurement, [...] Read more.
A first quantum revolution has already brought quantum technologies into our everyday life for decades: in fact, electronics and optics are based on the quantum mechanical principles. Today, a second quantum revolution is underway, leveraging the quantum principles of superposition, entanglement and measurement, which were not fully exploited yet. International innovation activities and standardization bodies have identified four main application areas for quantum technologies and services: quantum secure communications, quantum computing, quantum simulation, and quantum sensing and metrology. This paper focuses on quantum secure communications by addressing the evolution of Quantum Key Distribution (QKD) networks (under early exploitation today) towards the Quantum-ready networks and the Quantum Internet based also on entanglement distribution. Assuming that management and control of quantum nodes is a key challenge under definition, today, a main obstacle in exploiting long-range QKD and Quantum-ready networks concerns the inherent losses due to the optical transmission channels. Currently, it is assumed that a most promising way for overcoming this limitation, while avoiding the presence of costly trusted nodes, it is to distribute entangled states by means of Quantum Repeaters. In this respect, the paper provides an overview of current methods and systems for end-to-end entanglement generation, with some simulations and a discussion of capacity upper bounds and their impact of secret key rate in QKD systems. Full article
Show Figures

Figure 1

Figure 1
<p>Operations of a QR network with hierarchical BSMs: in the initial entanglement distribution, multiple Bell states are established across each pair of adjacent repeater nodes; then, purification and swapping iterations are executed, until the end-to-end entangled state has been generated.</p>
Full article ">Figure 2
<p>Capacity upper bounds for QR chains with entanglement swapping and <span class="html-italic">k</span> rounds of purification, using Deutsch’s protocol.</p>
Full article ">Figure 3
<p>Capacity of a QR chain with simultaneous BSMs, using <span class="html-italic">M</span> parallel channels, and a time-multiplexing block length <span class="html-italic">m</span>. Here, we assume <math display="inline"><semantics> <mrow> <mi>α</mi> <mo>=</mo> <mn>0.15</mn> </mrow> </semantics></math> dB/km, <math display="inline"><semantics> <mrow> <mi>τ</mi> <mo>=</mo> <mn>50</mn> </mrow> </semantics></math> ns, <math display="inline"><semantics> <mrow> <mi>μ</mi> <mo>=</mo> <mn>0.405</mn> </mrow> </semantics></math>, and <math display="inline"><semantics> <mrow> <mi>q</mi> <mo>=</mo> <mn>0.255</mn> </mrow> </semantics></math>.</p>
Full article ">Figure 4
<p>Capacity of a QR chain with simultaneous BSMs, using <span class="html-italic">M</span> parallel channels, and a time-multiplexing block length <span class="html-italic">m</span>. We assume a 3-link QR chain with <math display="inline"><semantics> <mrow> <msub> <mi>α</mi> <mn>1</mn> </msub> <mo>=</mo> <mn>0.25</mn> </mrow> </semantics></math> dB/km, <math display="inline"><semantics> <mrow> <msub> <mi>α</mi> <mn>2</mn> </msub> <mo>=</mo> <mn>0.15</mn> </mrow> </semantics></math> dB/km, <math display="inline"><semantics> <mrow> <msub> <mi>α</mi> <mn>3</mn> </msub> <mo>=</mo> <mn>0.25</mn> </mrow> </semantics></math> dB/km, <math display="inline"><semantics> <mrow> <mi>τ</mi> <mo>=</mo> <mn>50</mn> </mrow> </semantics></math> ns, <math display="inline"><semantics> <mrow> <mi>μ</mi> <mo>=</mo> <mn>0.405</mn> </mrow> </semantics></math>, and <math display="inline"><semantics> <mrow> <mi>q</mi> <mo>=</mo> <mn>0.255</mn> </mrow> </semantics></math>. In (<b>a</b>), the three links have lengths <math display="inline"><semantics> <mrow> <msub> <mi>L</mi> <mn>1</mn> </msub> <mo>=</mo> <mn>25</mn> </mrow> </semantics></math> km, <math display="inline"><semantics> <mrow> <msub> <mi>L</mi> <mn>2</mn> </msub> <mo>=</mo> <mn>40</mn> </mrow> </semantics></math> km, and <math display="inline"><semantics> <mrow> <msub> <mi>L</mi> <mn>3</mn> </msub> <mo>=</mo> <mn>30</mn> </mrow> </semantics></math> km, respectively. In (<b>b</b>), the lengths of all the three links are doubled.</p>
Full article ">Figure 5
<p>Fidelity vs. number of nodes, for different total lengths; (<b>left</b>) <math display="inline"><semantics> <mrow> <msub> <mi>p</mi> <mrow> <mi>d</mi> <mi>i</mi> </mrow> </msub> <mo>=</mo> <mn>0.006</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <msub> <mi>p</mi> <mrow> <mi>d</mi> <mi>l</mi> </mrow> </msub> <mo>=</mo> <mn>0.015</mn> </mrow> </semantics></math>; (<b>right</b>) <math display="inline"><semantics> <mrow> <msub> <mi>p</mi> <mrow> <mi>d</mi> <mi>i</mi> </mrow> </msub> <mo>=</mo> <mn>0.012</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <msub> <mi>p</mi> <mrow> <mi>d</mi> <mi>l</mi> </mrow> </msub> <mo>=</mo> <mn>0.025</mn> </mrow> </semantics></math>. In both cases, <math display="inline"><semantics> <mrow> <msub> <mi>T</mi> <mn>1</mn> </msub> <mo>=</mo> <mo>∞</mo> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <msub> <mi>T</mi> <mn>2</mn> </msub> <mo>=</mo> <mn>1.46</mn> </mrow> </semantics></math> s. No purification is applied.</p>
Full article ">Figure 6
<p>Fidelity vs. number of nodes, for different total lengths; (<b>left</b>) <math display="inline"><semantics> <mrow> <msub> <mi>p</mi> <mrow> <mi>d</mi> <mi>i</mi> </mrow> </msub> <mo>=</mo> <mn>0.006</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <msub> <mi>p</mi> <mrow> <mi>d</mi> <mi>l</mi> </mrow> </msub> <mo>=</mo> <mn>0.015</mn> </mrow> </semantics></math>; (<b>right</b>) <math display="inline"><semantics> <mrow> <msub> <mi>p</mi> <mrow> <mi>d</mi> <mi>i</mi> </mrow> </msub> <mo>=</mo> <mn>0.012</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <msub> <mi>p</mi> <mrow> <mi>d</mi> <mi>l</mi> </mrow> </msub> <mo>=</mo> <mn>0.025</mn> </mrow> </semantics></math>. In both cases, <math display="inline"><semantics> <mrow> <msub> <mi>T</mi> <mn>1</mn> </msub> <mo>=</mo> <mn>2.68</mn> </mrow> </semantics></math> ms and <math display="inline"><semantics> <mrow> <msub> <mi>T</mi> <mn>2</mn> </msub> <mo>=</mo> <mn>1</mn> </mrow> </semantics></math> ms. No purification is applied.</p>
Full article ">
13 pages, 5073 KiB  
Article
Non-Relativistic Energy Spectra of the Modified Hylleraas Potential and Its Thermodynamic Properties in Arbitrary Dimensions
by Collins Okon Edet, Jonathan E. Osang, Norshamsuri Ali, Emmanuel Paul Agbo, Syed Alwee Aljunid, Rosdisham Endut, Emmanuel B. Ettah, Reza Khordad, Akpan Ndem Ikot and Muhammad Asjad
Quantum Rep. 2022, 4(3), 238-250; https://doi.org/10.3390/quantum4030016 - 29 Jul 2022
Cited by 3 | Viewed by 1940
Abstract
In this study, the solutions of the Schrodinger equation (SE) with modified Hylleraas potential in arbitrary dimensions was obtained using the asymptotic iteration method (AIM) to obtain the energy and wave functions, respectively. The energy equation was used to obtain the thermal properties [...] Read more.
In this study, the solutions of the Schrodinger equation (SE) with modified Hylleraas potential in arbitrary dimensions was obtained using the asymptotic iteration method (AIM) to obtain the energy and wave functions, respectively. The energy equation was used to obtain the thermal properties of this system. The effect of the potential parameters and dimensions on the energy spectra and thermal properties was scrutinized thoroughly. It was found that the aforementioned affects the thermal properties and energy spectra, respectively. In addition, we also computed the numerical energy spectra of the MHP for the first time and discussed it in detail. The results of our study can be applied to molecular physics, chemical physics, etc. Full article
Show Figures

Figure 1

Figure 1
<p>Variation of <math display="inline"><semantics> <msub> <mi>E</mi> <mrow> <mi>n</mi> <mi>l</mi> </mrow> </msub> </semantics></math> energy values of the MHP versus (<b>a</b>) ratio <math display="inline"><semantics> <mrow> <msub> <mi>V</mi> <mn>0</mn> </msub> <mo>/</mo> <mi>b</mi> </mrow> </semantics></math> (<b>b</b>) parameter <span class="html-italic">a</span> (<b>c</b>) screening parameter <math display="inline"><semantics> <mi>α</mi> </semantics></math> for different values of <span class="html-italic">D</span>, <math display="inline"><semantics> <mrow> <mi>D</mi> <mo>=</mo> <mn>1</mn> </mrow> </semantics></math> (red curve), 2 (green curve), 3 (black curve), 4 (blue curve) and 5 (purple curve).</p>
Full article ">Figure 2
<p>Partition function <math display="inline"><semantics> <mrow> <mi>Z</mi> <mo>(</mo> <mi>β</mi> <mo>)</mo> </mrow> </semantics></math> as a function of; (<b>a</b>) <math display="inline"><semantics> <mrow> <msub> <mi>V</mi> <mn>0</mn> </msub> <mo>/</mo> <mi>b</mi> </mrow> </semantics></math>, (<b>b</b>) parameter <span class="html-italic">a</span>, (<b>c</b>) <span class="html-italic">D</span> and (<b>d</b>) screening parameter <math display="inline"><semantics> <mi>α</mi> </semantics></math> for different values of <math display="inline"><semantics> <mrow> <mi>β</mi> <mo>=</mo> <mn>0.01</mn> <mspace width="0.166667em"/> <msup> <mrow> <mi mathvariant="normal">K</mi> </mrow> <mrow> <mo>−</mo> <mn>1</mn> </mrow> </msup> </mrow> </semantics></math> (red curve), <math display="inline"><semantics> <mrow> <mn>0.02</mn> <mspace width="0.166667em"/> <msup> <mrow> <mi mathvariant="normal">K</mi> </mrow> <mrow> <mo>−</mo> <mn>1</mn> </mrow> </msup> </mrow> </semantics></math> (green curve), <math display="inline"><semantics> <mrow> <mi>β</mi> <mo>=</mo> <mn>0.05</mn> <mspace width="0.166667em"/> <msup> <mrow> <mi mathvariant="normal">K</mi> </mrow> <mrow> <mo>−</mo> <mn>1</mn> </mrow> </msup> </mrow> </semantics></math> (black curve).</p>
Full article ">Figure 3
<p>(<b>a</b>) Plots of free energy <math display="inline"><semantics> <mrow> <mi>F</mi> <mo>(</mo> <mi>β</mi> <mo>,</mo> <mi>D</mi> <mo>,</mo> <mi>a</mi> <mo>,</mo> <mi>b</mi> <mo>,</mo> <msub> <mi>V</mi> <mn>0</mn> </msub> <mo>)</mo> </mrow> </semantics></math> versus <math display="inline"><semantics> <mrow> <msub> <mi>V</mi> <mn>0</mn> </msub> <mo>/</mo> <mi>b</mi> </mrow> </semantics></math>, (<b>b</b>) parameter <span class="html-italic">a</span>, (<b>c</b>) <span class="html-italic">D</span> and (<b>d</b>) screening parameter <math display="inline"><semantics> <mi>α</mi> </semantics></math> for different values of <math display="inline"><semantics> <mrow> <mi>β</mi> <mo>=</mo> <mn>2.0</mn> <mspace width="0.166667em"/> <msup> <mrow> <mi mathvariant="normal">K</mi> </mrow> <mrow> <mo>−</mo> <mn>1</mn> </mrow> </msup> </mrow> </semantics></math> (red curve), <math display="inline"><semantics> <mrow> <mn>4.0</mn> <mspace width="0.166667em"/> <msup> <mrow> <mi mathvariant="normal">K</mi> </mrow> <mrow> <mo>−</mo> <mn>1</mn> </mrow> </msup> </mrow> </semantics></math> (green curve), <math display="inline"><semantics> <mrow> <mn>6.0</mn> <mspace width="0.166667em"/> <msup> <mrow> <mi mathvariant="normal">K</mi> </mrow> <mrow> <mo>−</mo> <mn>1</mn> </mrow> </msup> </mrow> </semantics></math> (black curve).</p>
Full article ">Figure 4
<p>(<b>a</b>) Mean energy <math display="inline"><semantics> <mrow> <mi>U</mi> <mo>(</mo> <mi>β</mi> <mo>,</mo> <mi>D</mi> <mo>,</mo> <mi>a</mi> <mo>,</mo> <mi>b</mi> <mo>,</mo> <msub> <mi>V</mi> <mn>0</mn> </msub> <mo>)</mo> </mrow> </semantics></math> as a function of <math display="inline"><semantics> <mrow> <msub> <mi>V</mi> <mn>0</mn> </msub> <mo>/</mo> <mi>b</mi> </mrow> </semantics></math>, (<b>b</b>) parameter <span class="html-italic">a</span>, (<b>c</b>) <span class="html-italic">D</span> and (<b>d</b>) screening parameter <math display="inline"><semantics> <mi>α</mi> </semantics></math> for <math display="inline"><semantics> <mrow> <mi>β</mi> <mo>=</mo> <mn>1.0</mn> <mspace width="0.166667em"/> <msup> <mrow> <mi mathvariant="normal">K</mi> </mrow> <mrow> <mo>−</mo> <mn>1</mn> </mrow> </msup> </mrow> </semantics></math> (red curve), <math display="inline"><semantics> <mrow> <mn>2.0</mn> <mspace width="0.166667em"/> <msup> <mrow> <mi mathvariant="normal">K</mi> </mrow> <mrow> <mo>−</mo> <mn>1</mn> </mrow> </msup> </mrow> </semantics></math> (green curve), and <math display="inline"><semantics> <mrow> <mn>3.0</mn> <mspace width="0.166667em"/> <msup> <mrow> <mi mathvariant="normal">K</mi> </mrow> <mrow> <mo>−</mo> <mn>1</mn> </mrow> </msup> </mrow> </semantics></math> (black curve).</p>
Full article ">Figure 5
<p>(<b>a</b>) Plots of specific heat capacity <math display="inline"><semantics> <mrow> <mi>C</mi> <mo>(</mo> <mi>β</mi> <mo>,</mo> <mi>D</mi> <mo>,</mo> <mi>a</mi> <mo>,</mo> <mi>b</mi> <mo>,</mo> <msub> <mi>V</mi> <mn>0</mn> </msub> <mo>)</mo> </mrow> </semantics></math> as a function of <math display="inline"><semantics> <mrow> <msub> <mi>V</mi> <mn>0</mn> </msub> <mo>/</mo> <mi>b</mi> </mrow> </semantics></math>, (<b>b</b>) parameter <span class="html-italic">a</span>, (<b>c</b>) dimension <span class="html-italic">D</span>, and (<b>d</b>) screening parameter <math display="inline"><semantics> <mi>α</mi> </semantics></math> for <math display="inline"><semantics> <mrow> <mi>β</mi> <mo>=</mo> <mn>0.01</mn> <mspace width="0.166667em"/> <msup> <mrow> <mi mathvariant="normal">K</mi> </mrow> <mrow> <mo>−</mo> <mn>1</mn> </mrow> </msup> </mrow> </semantics></math> (red curve), <math display="inline"><semantics> <mrow> <mn>0.02</mn> <mspace width="0.166667em"/> <msup> <mrow> <mi mathvariant="normal">K</mi> </mrow> <mrow> <mo>−</mo> <mn>1</mn> </mrow> </msup> </mrow> </semantics></math> (green curve), and <math display="inline"><semantics> <mrow> <mn>0.05</mn> <mspace width="0.166667em"/> <msup> <mrow> <mi mathvariant="normal">K</mi> </mrow> <mrow> <mo>−</mo> <mn>1</mn> </mrow> </msup> </mrow> </semantics></math> (black curve).</p>
Full article ">Figure 6
<p>(<b>a</b>) Entropy <math display="inline"><semantics> <mrow> <mi>S</mi> <mo>(</mo> <mi>β</mi> <mo>,</mo> <mi>D</mi> <mo>,</mo> <mi>a</mi> <mo>,</mo> <mi>b</mi> <mo>,</mo> <msub> <mi>V</mi> <mn>0</mn> </msub> <mo>)</mo> </mrow> </semantics></math> versus <math display="inline"><semantics> <mrow> <msub> <mi>V</mi> <mn>0</mn> </msub> <mo>/</mo> <mi>b</mi> </mrow> </semantics></math>, (<b>b</b>) parameter <span class="html-italic">a</span>, (<b>c</b>) <span class="html-italic">D</span> and (<b>d</b>) screening parameter <math display="inline"><semantics> <mi>α</mi> </semantics></math> for <math display="inline"><semantics> <mrow> <mi>β</mi> <mo>=</mo> <mn>0.01</mn> <mspace width="0.166667em"/> <msup> <mrow> <mi mathvariant="normal">K</mi> </mrow> <mrow> <mo>−</mo> <mn>1</mn> </mrow> </msup> </mrow> </semantics></math> (red curve), <math display="inline"><semantics> <mrow> <mn>0.02</mn> <mspace width="0.166667em"/> <msup> <mrow> <mi mathvariant="normal">K</mi> </mrow> <mrow> <mo>−</mo> <mn>1</mn> </mrow> </msup> </mrow> </semantics></math> (green curve), <math display="inline"><semantics> <mrow> <mn>0.05</mn> <mspace width="0.166667em"/> <msup> <mrow> <mi mathvariant="normal">K</mi> </mrow> <mrow> <mo>−</mo> <mn>1</mn> </mrow> </msup> </mrow> </semantics></math> (black curve).</p>
Full article ">
17 pages, 1128 KiB  
Article
Entanglement in Quantum Search Database: Periodicity Variations and Counting
by Demosthenes Ellinas and Christos Konstandakis
Quantum Rep. 2022, 4(3), 221-237; https://doi.org/10.3390/quantum4030015 - 22 Jul 2022
Viewed by 1550
Abstract
Employing the single item search algorithm of N dimensional database it is shown that: First, the entanglement developed between two any-size parts of database space varies periodically during the course of searching. The periodic entanglement of the associated reduced density matrix quantified by [...] Read more.
Employing the single item search algorithm of N dimensional database it is shown that: First, the entanglement developed between two any-size parts of database space varies periodically during the course of searching. The periodic entanglement of the associated reduced density matrix quantified by several entanglement measures (linear entropy, von Neumann, Renyi), is found to vanish with period O(sqrt(N)). Second, functions of equal entanglement are shown to vary also with equal period. Both those phenomena, based on size-independent database bi-partition, manifest a general scale invariant property of entanglement in quantum search. Third, measuring the entanglement periodicity via the number of searching steps between successive canceling out, determines N, the database set cardinality, quadratically faster than ordinary counting. An operational setting that includes an Entropy observable and its quantum circuits realization is also provided for implementing fast counting. Rigging the marked item initial probability, either by initial advice or by guessing, improves hyper-quadratically the performance of those phenomena. Full article
Show Figures

Figure 1

Figure 1
<p>Parameters <math display="inline"><semantics> <mrow> <mi>N</mi> <mo>=</mo> <msup> <mn>2</mn> <mn>12</mn> </msup> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>p</mi> <mo>=</mo> <mn>1</mn> <mo>/</mo> <mi>N</mi> </mrow> </semantics></math>, Success probability: Blue dashed line, Entropies: von Neumann: Red line <math display="inline"><semantics> <mrow> <mi>r</mi> <mo>=</mo> <mn>2</mn> </mrow> </semantics></math>; Orange line <math display="inline"><semantics> <mrow> <mi>r</mi> <mo>=</mo> <mn>3</mn> </mrow> </semantics></math>, Renyi: Blue line <math display="inline"><semantics> <mrow> <mi>r</mi> <mo>=</mo> <mn>2</mn> <mo>,</mo> <mi>a</mi> <mo>=</mo> <mn>0.7</mn> </mrow> </semantics></math>; Purple line <math display="inline"><semantics> <mrow> <mi>r</mi> <mo>=</mo> <mn>3</mn> <mo>,</mo> <mi>a</mi> <mo>=</mo> <mn>0.7</mn> </mrow> </semantics></math>, Concurrency <math display="inline"><semantics> <msub> <mi>C</mi> <mrow> <mn>1</mn> <mo>,</mo> <mn>1</mn> </mrow> </msub> </semantics></math>: Green line.</p>
Full article ">Figure 2
<p>Success prob.: Red line for <math display="inline"><semantics> <mrow> <mi>p</mi> <mo>=</mo> <mn>1</mn> <mo>/</mo> <mi>N</mi> </mrow> </semantics></math>; Blue line for <math display="inline"><semantics> <mrow> <mi>p</mi> <mo>=</mo> <mn>1</mn> <mo>/</mo> <msqrt> <mi>N</mi> </msqrt> </mrow> </semantics></math>, Renyi entropy: Red dashed line for <math display="inline"><semantics> <mrow> <mi>p</mi> <mo>=</mo> <mn>1</mn> <mo>/</mo> <mi>N</mi> <mo>,</mo> <mi>r</mi> <mo>=</mo> <mn>2</mn> <mo>,</mo> <mi>a</mi> <mo>=</mo> <mn>0.7</mn> </mrow> </semantics></math>, Renyi entropy: Blue dashed line for <math display="inline"><semantics> <mrow> <mi>p</mi> <mo>=</mo> <mn>1</mn> <mo>/</mo> <msqrt> <mi>N</mi> </msqrt> <mo>,</mo> <mi>r</mi> <mo>=</mo> <mn>2</mn> <mo>,</mo> <mi>a</mi> <mo>=</mo> <mn>0.7</mn> </mrow> </semantics></math>.</p>
Full article ">Figure 3
<p>For <math display="inline"><semantics> <mrow> <mi>N</mi> <mo>=</mo> <msup> <mn>2</mn> <mn>12</mn> </msup> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>a</mi> <mo>=</mo> <mn>0.7</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mn>2</mn> <mo>≤</mo> <mi>r</mi> <mo>≤</mo> <mn>11</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mn>0</mn> <mo>≤</mo> <mi>m</mi> <mo>≤</mo> <mn>200</mn> </mrow> </semantics></math>, Renyi entropy (Contour Plot).</p>
Full article ">Figure 4
<p>Plots of <math display="inline"><semantics> <mrow> <msub> <mi>E</mi> <mi>Ren</mi> </msub> <mrow> <mo>(</mo> <mi>m</mi> <mo>)</mo> </mrow> </mrow> </semantics></math> and tent map <math display="inline"><semantics> <mrow> <mi>f</mi> <mo>(</mo> <mi>m</mi> <mo>)</mo> </mrow> </semantics></math> for <math display="inline"><semantics> <mrow> <mi>a</mi> <mo>=</mo> <mn>0.7</mn> <mo>,</mo> <mi>n</mi> <mo>=</mo> <mn>12</mn> <mo>,</mo> <mi>r</mi> <mo>=</mo> <mn>3</mn> <mo>,</mo> <mi>p</mi> <mo>=</mo> <mn>1</mn> <mo>/</mo> <mi>N</mi> <mo>.</mo> </mrow> </semantics></math> Red dots stand for the approximate points of equal entanglement.</p>
Full article ">
Previous Issue
Next Issue
Back to TopTop