Effect of (Ba1/3Nb2/3)4+ Substitution on Microstructure, Bonding Properties and Microwave Dielectric Properties of Ce2Zr3(MoO4)9 Ceramics
<p>XRD patterns of CZ<sub>1−<span class="html-italic">x</span></sub>N<span class="html-italic"><sub>x</sub></span> ceramics sintered at the optimal temperature with different <span class="html-italic">x</span> values.</p> "> Figure 2
<p>Rietveld refinement of CZ<sub>1−<span class="html-italic">x</span></sub>N<span class="html-italic"><sub>x</sub></span> ceramics at the optimal sintering temperature with different <span class="html-italic">x</span> values.</p> "> Figure 3
<p>Lattice parameter changes (<b>a</b>) <span class="html-italic">a</span> and <span class="html-italic">b</span>, (<b>b</b>) <span class="html-italic">c</span>, and (<b>c</b>) <span class="html-italic">V<sub>m</sub></span> of CZ<sub>1−<span class="html-italic">x</span></sub>N<span class="html-italic"><sub>x</sub></span> ceramics as a function of <span class="html-italic">x</span> values.</p> "> Figure 4
<p>Crystal structure diagram of CZ<sub>1−<span class="html-italic">x</span></sub>N<span class="html-italic"><sub>x</sub></span> ceramics.</p> "> Figure 5
<p>(<b>a</b>) Diameter shrinkage, (<b>b</b>) apparent density (the relative density at the optimal sintering temperature as a function of <span class="html-italic">x</span> values are shown in the inset) of CZ<sub>1−<span class="html-italic">x</span></sub>N<span class="html-italic"><sub>x</sub></span> ceramics at 600 to 700 °C.</p> "> Figure 6
<p>Microstructure of CZ<sub>1−<span class="html-italic">x</span></sub>N<span class="html-italic"><sub>x</sub></span> ceramics at optimal sintering temperature with different <span class="html-italic">x</span> values.</p> "> Figure 7
<p>CZ<sub>1−<span class="html-italic">x</span></sub>N<span class="html-italic"><sub>x</sub></span> ceramics (<b>a</b>) <span class="html-italic">ε<sub>r</sub></span> at a sintering temperature of 600 ℃ to 700 ℃, (<b>b</b>) <span class="html-italic">ε<sub>r</sub></span>, (<b>c</b>) <span class="html-italic">ε<sub>corr.</sub></span>, (<b>d</b>) <span class="html-italic">α<sub>theo.</sub></span>, and (<b>e</b>) <span class="html-italic">f<sub>iave.</sub></span><sub>(Ce-O)</sub> at the optimal sintering temperature as a function of <span class="html-italic">x</span> values.</p> "> Figure 8
<p>CZ<sub>1−<span class="html-italic">x</span></sub>N<span class="html-italic"><sub>x</sub></span> ceramics (<b>a</b>) <span class="html-italic">Q</span>×<span class="html-italic">f</span> at a sintering temperature of 600 ℃ to 700 ℃, (<b>b</b>) <span class="html-italic">Q</span>×<span class="html-italic">f</span>, and (<b>c</b>) <span class="html-italic">U<sub>ave.</sub></span><sub>(Mo-O)</sub> at the optimal sintering temperature as a function of <span class="html-italic">x</span> values.</p> "> Figure 9
<p>CZ<sub>1−<span class="html-italic">x</span></sub>N<span class="html-italic"><sub>x</sub></span> ceramics (<b>a</b>) <span class="html-italic">τ<sub>f</sub></span>, (<b>b</b>) <span class="html-italic">α<sub>ave.</sub></span><sub>(Ce-O)</sub>, and (<b>c</b>) <span class="html-italic">E<sub>ave.</sub></span><sub>(Mo-O)</sub> at the optimal sintering temperature as a function of <span class="html-italic">x</span> values.</p> "> Figure 10
<p>(<b>a</b>) The design model and dimensions, (<b>b</b>) simulated S11 parameters, (<b>c</b>) 3D radiation pattern, (<b>d</b>) E-plane, and (<b>e</b>) H-plane of the antenna.</p> ">
Abstract
:1. Introduction
2. Experimental Section
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Shafi, M.; Molisch, A.F.; Smith, P.J.; Haustein, T.; Zhu, P.; Silva, P.D.; Tufvesson, F.; Benjebbour, A.; Wunder, G. 5G: A tutorial overview of standards, trials, challenges, deployment, and practice. IEEE J. Sel. Areas Commun. 2017, 35, 1201–1221. [Google Scholar] [CrossRef]
- Li, S.; Xu, L.D.; Zhao, S. 5G Internet of Things: A survey. J. Ind. Inf. Integr. 2018, 10, 1–9. [Google Scholar] [CrossRef]
- Yao, G.; Yan, J.; Tan, J.; Pei, C.; Liu, P.; Zhang, H.; Wang, D. Structure, chemical bond and microwave dielectric characteristics of novel Li3Mg4NbO8 ceramics. J. Eur. Ceram. Soc. 2021, 41, 6490–6494. [Google Scholar] [CrossRef]
- Luo, W.; Yan, S.; Zhou, J. Ceramic-based dielectric metamaterials. Interdiscip. Mater. 2022, 1, 11–27. [Google Scholar] [CrossRef]
- Tan, K.; Song, T.; Shen, T.; Yu, H.; Zhang, Y.; Cui, K.; Xu, X.; Li, W.; Wang, H. Research progress of low permittivity microwave dielectric ceramics. Adv. Ceram. 2022, 43, 11–29. [Google Scholar] [CrossRef]
- Dai, Y.; Chen, J.; Tang, Y.; Xiang, H.; Li, J.; Fang, L. Relationship between bond characteristics and microwave dielectric properties of REVO4 (RE = Yb, Ho) ceramics. Ceram. Int. 2023, 49, 875–881. [Google Scholar] [CrossRef]
- Pei, C.; Hou, C.; Li, Y.; Yao, G.; Ren, Z.; Liu, P.; Zhang, H. A low εr and temperature-stable Li3Mg2SbO6 microwave dielectric ceramics. J. Alloys Compd. 2019, 792, 46–49. [Google Scholar] [CrossRef]
- Pei, C.; Tan, J.; Li, Y.; Yao, G.; Jia, Y.; Ren, Z.; Liu, P.; Zhang, H. Effect of Sb-site nonstoichiometry on the structure and microwave dielectric properties of Li3Mg2Sb1−xO6 ceramics. J. Adv. Ceram. 2020, 9, 588–594. [Google Scholar] [CrossRef]
- Huang, X.; Guo, H.; Zhu, P.; Liu, L.; Xiao, J.; Tang, D.; Lin, C.; Wu, X.; Zheng, X. Microwave dielectric properties of CaCu3Ti4O12 ceramics: A clue to its intrinsic dielectric response. J. Adv. Dielectr. 2023, 13, 2344001–2344006. [Google Scholar] [CrossRef]
- An, Z.; Lv, J.; Wang, X.; Xu, Y.; Zhang, L.; Shi, F.; Guo, H.; Zhou, D.; Liu, B.; Song, K. Effects of LiF additive on crystal structures, lattice vibrational characteristics and dielectric properties of CaWO4 microwave dielectric ceramics for LTCC applications. Ceram. Int. 2022, 48, 29929–29937. [Google Scholar] [CrossRef]
- Zhou, D.; Pang, L.; Wang, D.; Guo, H.; Yang, F.; Qi, Z.; Li, C.; Jin, B.; Reaney, I.M. Crystal structure, impedance and broadband dielectric spectra of ordered scheelite-structured Bi(Sc1/3Mo2/3)O4 ceramic. J. Eur. Ceram. Soc. 2018, 38, 1556–1561. [Google Scholar] [CrossRef]
- Tao, B.J.; Xing, C.F.; Wang, W.F.; Wu, H.T.; Zhou, Y.Y. A novel Ce2Zr3(MoO4)9 microwave dielectric ceramic with ultra-low firing temperature. Ceram. Int. 2019, 45, 24675–24683. [Google Scholar] [CrossRef]
- Liu, W.; Zuo, R. Low temperature fired Ln2Zr3(MoO4)9 (Ln = Sm, Nd) microwave dielectric ceramics. Ceram. Int. 2017, 43, 17229–17232. [Google Scholar] [CrossRef]
- Liu, W.; Zuo, R. A novel low-temperature firable La2Zr3(MoO4)9 microwave dielectric ceramic. J. Eur. Ceram. Soc. 2018, 38, 339–342. [Google Scholar] [CrossRef]
- Zhang, Y.H.; Sun, J.J.; Dai, N.; Wu, Z.C.; Wu, H.T.; Yang, C.H. Crystal structure, infrared spectra and microwave dielectric properties of novel extra low-temperature fired Eu2Zr3(MoO4)9 ceramics. J. Eur. Ceram. Soc. 2019, 39, 1127–1131. [Google Scholar] [CrossRef]
- Shi, L.; Liu, C.; Zhang, H.; Peng, R.; Wang, G.; Shi, X.; Wang, X.; Wang, W. Crystal structure, Raman spectroscopy, metal compatibility and microwave dielectric properties of Ce2Zr3(MoO4)9 ceramics. Mater. Chem. Phys. 2020, 250, 122954. [Google Scholar] [CrossRef]
- Zheng, J.; Liu, Y.; Tao, B.; Zhang, Q.; Wu, H.; Zhang, X. Crystal structure and optimised microwave dielectric properties of Ce2(Zr1−xTix)3(MoO4)9 solid solutions. Ceram. Int. 2021, 47, 5624–5630. [Google Scholar] [CrossRef]
- Xu, X.; Xi, Z.; Feng, Z.; Zhang, X.; Du, W.; Shan, L.; Du, J.; Wu, H.; Wangsuo, X. Microstructure, bonding characteristics, far-infrared spectra and microwave dielectric properties of co-substituted Ce2[(Zr1−x(Zn1/3Sb2/3)x]3(MoO4)9 ceramics. Ceram. Int. 2024, 50, 24769–24780. [Google Scholar] [CrossRef]
- Pan, H.; Yan, S.; Zhang, Y.; Du, J.; Zhang, X.; Gong, P.; Wu, H.; Tian, H.; Wübbenhorst, M. Crystal structure, bond characteristics and microwave dielectric properties of Ce2[Zr1−x(Sr1/3B2/3)x]3(MoO4)9 (B = Ta, Sb) solid solutions. Ceram. Int. 2023, 49, 24038–24046. [Google Scholar] [CrossRef]
- Du, K.; Zhou, M.; Li, C.; Yin, C.; Cai, Y.; Cheng, M.; Zhu, W.; Wei, G.; Wang, S.; Lei, W. Ultralow-permittivity and temperature-stable Ba1−xCaxMg2Al6Si9O30 dielectric ceramics for C-Band patch antenna applications. ACS Appl. Mater. Interfaces 2024, 16, 23505–23516. [Google Scholar] [CrossRef]
- Siragam, S. Synthesis and fabrication of proto-type microstrip patch antenna by using microwave dielectric ceramic nanocomposite material for C-band application. Optik 2024, 306, 171787. [Google Scholar] [CrossRef]
- Shannon, R.D. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Found. Crystallogr. 1976, 32, 751–767. [Google Scholar] [CrossRef]
- McCusker, L.; Von Dreele, R.; Cox, D.; Louër, D.; Scardi, P. Rietveld refinement guidelines. J. Appl. Crystallogr. 1999, 32, 36–50. [Google Scholar] [CrossRef]
- Yang, H.; Chai, L.; Liang, G.; Xing, M.; Fang, Z.; Zhang, X.; Qin, T.; Li, E. Structure, far-infrared spectroscopy, microwave dielectric properties, and improved low-temperature sintering characteristics of tri-rutile Mg0.5Ti0.5TaO4 ceramics. J. Adv. Ceram. 2023, 12, 296–308. [Google Scholar] [CrossRef]
- Bao, J.; Zhang, Y.; Kimura, H.; Wu, H.; Yue, Z. Crystal structure, chemical bond characteristics, infrared reflection spectrum, and microwave dielectric properties of Nd2(Zr1−xTix)3(MoO4)9 ceramics. J. Adv. Ceram. 2023, 12, 82–92. [Google Scholar] [CrossRef]
- Wang, X.; Liu, T.; Cao, Z.; Li, Z.; Xu, Y.; Shi, F.; Zhang, L.; Qi, Z.-m. Lattice vibrational characteristics and structure-property relationships of Ca(Mg1/2W1/2)O3 microwave dielectric ceramics with different sintering temperatures. Ceram. Int. 2022, 48, 1415–1422. [Google Scholar] [CrossRef]
- Li, J.; Wang, Z.; Guo, Y.; Ran, S. Influences of substituting of (Ni1/3Nb2/3)4+ for Ti4+ on the phase compositions, microstructures, and dielectric properties of Li2Zn[Ti1−x(Ni1/3Nb2/3)x]3O8 (0 ≤ x ≤ 0.3) microwave ceramics. J. Adv. Ceram. 2023, 12, 760–777. [Google Scholar] [CrossRef]
- Shannon, R.D. Dielectric polarizabilities of ions in oxides and fluorides. J. Appl. Phys. 1993, 73, 348–366. [Google Scholar] [CrossRef]
- Phillips, J.C.; Van Vechten, J.A. Charge redistribution and piezoelectric constants. Phys. Rev. Lett. 1969, 23, 1115–1117. [Google Scholar] [CrossRef]
- Levine, B.F. Bond susceptibilities and ionicities in complex crystal structures. J. Chem. Phys. 1973, 59, 1463–1486. [Google Scholar] [CrossRef]
- Wu, Z.J.; Meng, Q.B.; Zhang, S.Y. Semiempirical study on the valences of Cu and bond covalency in Y1−xCaxBa2Cu3O6+y. Phys. Rev. B 1998, 58, 958–962. [Google Scholar] [CrossRef]
- Stepan, S.B. Dielectric methods of studying the chemical bond and the concept of electronegativity. Russ. Chem. Rev. 1982, 51, 684. [Google Scholar] [CrossRef]
- Berkov, D.V. Evaluation of the energy barrier distribution in many-particle systems using the path integral approach. J. Phys. Condens. Matter 1998, 10, L89. [Google Scholar] [CrossRef]
- Fang, W.; Chen, J.; Yang, Y.; Ao, L.; Tang, Y.; Li, J.; Fang, L. Anomalous microwave dielectric behaviour induced by the orthorhombic-tetragonal phase transition in CaLaGaO4 ceramics. J. Eur. Ceram. Soc. 2022, 42, 1474–1479. [Google Scholar] [CrossRef]
- Sun, Y.; Xiang, H.; Tang, Y.; Li, J.; Fang, L. Constructing the cationic rattling effect to realize the adjustability of the temperature coefficient in Nd2-xSmxO3 microwave dielectric ceramics. J. Eur. Ceram. Soc. 2024, 44, 2859–2865. [Google Scholar] [CrossRef]
- Wang, G.; Zhang, D.; Li, J.; Gan, G.; Rao, Y.; Huang, X.; Yang, Y.; Shi, L.; Liao, Y.; Liu, C.; et al. Crystal structure, bond energy, Raman spectra, and microwave dielectric properties of Ti-doped Li3Mg2NbO6 ceramics. J. Am. Ceram. Soc. 2020, 103, 4321–4332. [Google Scholar] [CrossRef]
- Li, F.; Li, Y.; Li, S.; Luo, Y.; Lu, Y.; Tang, T.; Liao, Y.; Zhang, J.; Wen, Q. All-ceramic array patch for 5G signal enhancement based on B-site substituted zinc-cobalt molybdate low temperature co-fired ceramics. Chem. Eng. J. 2023, 466, 143325. [Google Scholar] [CrossRef]
- Wu, F.F.; Zhou, D.; Du, C.; Xu, D.M.; Li, R.T.; Shi, Z.Q.; Darwish, M.; Zhou, T.; Jantunen, H. Design and fabrication of a satellite communication dielectric resonator antenna with novel low loss and temperature stabilized (Sm1−xCax)(Nb1−xMox)O4 (x = 0.15–0.7) microwave ceramics. Chem. Mater. 2023, 35, 104–115. [Google Scholar] [CrossRef]
- Tian, H.; Zhang, X.; Zhang, Z.; Liu, Y.; Wu, H. Low-permittivity LiLn(PO3)4 (Ln = La, Sm, Eu) dielectric ceramics for microwave/millimeter-wave communication. J. Adv. Ceram. 2024, 13, 602–620. [Google Scholar] [CrossRef]
x | Lattice Parameter | Reliability Factors | ||||||
---|---|---|---|---|---|---|---|---|
a = b (Å) | c (Å) | α = β (°) | γ (°) | Vm (Å3) | Rp (%) | Rwp (%) | χ2 | |
0.02 | 9.8405 | 58.9013 | 90 | 120 | 4939.56 | 6.17 | 8.07 | 2.52 |
0.04 | 9.8356 | 58.8950 | 90 | 120 | 4934.08 | 5.25 | 6.65 | 1.70 |
0.06 | 9.8337 | 58.8883 | 90 | 120 | 4931.71 | 5.60 | 7.06 | 1.85 |
0.08 | 9.8404 | 58.9261 | 90 | 120 | 4941.58 | 4.96 | 6.31 | 1.49 |
0.10 | 9.8445 | 58.9552 | 90 | 120 | 4948.08 | 4.76 | 6.08 | 1.49 |
Bond Type | x = 0.02 | x = 0.04 | x = 0.06 | x = 0.08 | x = 0.10 |
---|---|---|---|---|---|
Ce-O(1) a | 0.8393 | 0.8490 | 0.8476 | 0.8506 | 0.8517 |
Ce-O(1) b | 0.8393 | 0.8490 | 0.8476 | 0.8506 | 0.8518 |
Ce-O(1) c | 0.8393 | 0.8490 | 0.8476 | 0.8507 | 0.8518 |
Ce-O(2) a | 0.8382 | 0.8509 | 0.8485 | 0.8493 | 0.8533 |
Ce-O(2) b | 0.8382 | 0.8509 | 0.8485 | 0.8493 | 0.8533 |
Ce-O(2) c | 0.8382 | 0.8510 | 0.8485 | 0.8494 | 0.8533 |
Ce-O(6) a | 0.8638 | 0.8561 | 0.8511 | 0.8534 | 0.8538 |
Ce-O(6) b | 0.8638 | 0.8561 | 0.8511 | 0.8534 | 0.8538 |
Ce-O(6) c | 0.8639 | 0.8561 | 0.8511 | 0.8534 | 0.8539 |
Zr(BaNb)1-O(4) × 6 | 0.7865 | 0.7913 | 0.7952 | 0.7923 | 0.7913 |
Zr(BaNb)2-O(3) a | 0.7666 | 0.7817 | 0.7781 | 0.7821 | 0.7835 |
Zr(BaNb)2-O(3) b | 0.7666 | 0.7817 | 0.7781 | 0.7821 | 0.7836 |
Zr(BaNb)2-O(3) c | 0.7666 | 0.7817 | 0.7782 | 0.7820 | 0.7836 |
Zr(BaNb)2-O(5) a | 0.7643 | 0.7876 | 0.7762 | 0.7803 | 0.7836 |
Zr(BaNb)2-O(5) b | 0.7644 | 0.7877 | 0.7762 | 0.7803 | 0.7836 |
Zr(BaNb)2-O(5) c | 0.7644 | 0.7877 | 0.7763 | 0.7803 | 0.7837 |
Mo1-O(1) | 0.7021 | 0.7170 | 0.7046 | 0.7103 | 0.7117 |
Mo1-O(2) | 0.7095 | 0.7191 | 0.7062 | 0.7179 | 0.7198 |
Mo1-O(3) | 0.7161 | 0.7370 | 0.7289 | 0.7312 | 0.7390 |
Mo1-O(4) | 0.7048 | 0.7315 | 0.7222 | 0.7267 | 0.7280 |
Mo2-O(5) × 2 | 0.7104 | 0.7251 | 0.7268 | 0.7307 | 0.7317 |
Mo2-O(6) × 2 | 0.6281 | 0.7037 | 0.7006 | 0.7030 | 0.7104 |
Bond Type | x = 0.02 | x = 0.04 | x = 0.06 | x = 0.08 | x = 0.10 |
---|---|---|---|---|---|
Ce-O(1) a | 1095 | 1100 | 1080 | 1076 | 1085 |
Ce-O(1) b | 1095 | 1100 | 1080 | 1075 | 1085 |
Ce-O(1) c | 1095 | 1100 | 1080 | 1075 | 1085 |
Ce-O(2) a | 1103 | 1086 | 1074 | 1084 | 1074 |
Ce-O(2) b | 1102 | 1085 | 1074 | 1084 | 1074 |
Ce-O(2) c | 1102 | 1085 | 1074 | 1084 | 1074 |
Ce-O(6) a | 906 | 1048 | 1055 | 1056 | 1070 |
Ce-O(6) b | 906 | 1048 | 1055 | 1056 | 1070 |
Ce-O(6) c | 906 | 1048 | 1055 | 1056 | 1070 |
Zr(BaNb)1-O(4) × 6 | 10,161 | 10,653 | 10,145 | 10,476 | 10,702 |
Zr(BaNb)2-O(3) a | 3726 | 3711 | 3676 | 3665 | 3696 |
Zr(BaNb)2-O(3) b | 3726 | 3709 | 3676 | 3665 | 3696 |
Zr(BaNb)2-O(3) c | 3726 | 3709 | 3675 | 3666 | 3695 |
Zr(BaNb)2-O(5) a | 3761 | 3613 | 3707 | 3694 | 3695 |
Zr(BaNb)2-O(5) b | 3761 | 3612 | 3707 | 3694 | 3695 |
Zr(BaNb)2-O(5) c | 3760 | 3611 | 3706 | 3694 | 3694 |
Mo1-O(1) | 43,587 | 44,245 | 45,021 | 44,810 | 45,295 |
Mo1-O(2) | 42,314 | 43,919 | 44,773 | 43,585 | 44,009 |
Mo1-O(3) | 41,121 | 40,777 | 40,864 | 41,257 | 40,646 |
Mo1-O(4) | 43,133 | 41,786 | 42,088 | 42,075 | 42,641 |
Mo2-O(5) × 2 | 42,157 | 42,900 | 41,254 | 41,343 | 41,993 |
Mo2-O(6) × 2 | 53,631 | 46,310 | 45,640 | 45,941 | 45,491 |
Bond Type | x = 0.02 | x = 0.04 | x = 0.06 | x = 0.08 | x = 0.10 |
---|---|---|---|---|---|
Ce-O(1) a | 10.2227 | 10.1619 | 10.4087 | 10.4592 | 10.3461 |
Ce-O(1) b | 10.2227 | 10.1619 | 10.4087 | 10.4719 | 10.3461 |
Ce-O(1) c | 10.2227 | 10.1619 | 10.4087 | 10.4719 | 10.3461 |
Ce-O(2) a | 10.1256 | 10.3337 | 10.4846 | 10.3586 | 10.4846 |
Ce-O(2) b | 10.1377 | 10.3461 | 10.4846 | 10.3586 | 10.4846 |
Ce-O(2) c | 10.1377 | 10.3461 | 10.4846 | 10.3586 | 10.4846 |
Ce-O(6) a | 13.0163 | 10.8233 | 10.7304 | 10.7173 | 10.5356 |
Ce-O(6) b | 13.0163 | 10.8233 | 10.7304 | 10.7173 | 10.5356 |
Ce-O(6) c | 13.0163 | 10.8233 | 10.7304 | 10.7173 | 10.5356 |
Zr(BaNb)1-O(4) × 6 | 3.8445 | 3.5103 | 3.8340 | 3.6024 | 3.4493 |
Zr(BaNb)2-O(3) a | 3.2064 | 3.2224 | 3.2734 | 3.2828 | 3.2189 |
Zr(BaNb)2-O(3) b | 3.2064 | 3.2258 | 3.2734 | 3.2828 | 3.2189 |
Zr(BaNb)2-O(3) c | 3.2064 | 3.2258 | 3.2751 | 3.2811 | 3.2207 |
Zr(BaNb)2-O(5) a | 3.1471 | 3.3957 | 3.2195 | 3.2322 | 3.2207 |
Zr(BaNb)2-O(5) b | 3.1471 | 3.3976 | 3.2195 | 3.2322 | 3.2207 |
Zr(BaNb)2-O(5) c | 3.1488 | 3.3994 | 3.2212 | 3.2322 | 3.2224 |
Mo1-O(1) | −0.4054 | −0.4465 | −0.4934 | −0.4808 | −0.5096 |
Mo1-O(2) | −0.3223 | −0.4263 | −0.4786 | −0.4053 | −0.4319 |
Mo1-O(3) | −0.2397 | −0.2150 | −0.2213 | −0.2494 | −0.2055 |
Mo1-O(4) | −0.3763 | −0.2863 | −0.3070 | −0.3061 | −0.3441 |
Mo2-O(5) × 2 | −0.3117 | −0.3612 | −0.2492 | −0.2554 | −0.3005 |
Mo2-O(6) × 2 | −0.9229 | −0.5679 | −0.5297 | −0.5470 | −0.5211 |
Bond Type | x = 0.02 | x = 0.04 | x = 0.06 | x = 0.08 | x = 0.10 |
---|---|---|---|---|---|
Ce-O(1) a | 406.8505 | 410.6544 | 401.4945 | 399.9166 | 404.4490 |
Ce-O(1) b | 406.7539 | 410.5723 | 401.4004 | 399.8233 | 404.3694 |
Ce-O(1) c | 406.6895 | 410.5067 | 401.3377 | 399.7611 | 404.3058 |
Ce-O(2) a | 410.0645 | 404.6082 | 398.7994 | 403.8610 | 399.6523 |
Ce-O(2) b | 410.0155 | 404.5445 | 398.7530 | 403.8133 | 399.6057 |
Ce-O(2) c | 409.9500 | 404.4967 | 398.6911 | 403.7499 | 399.5435 |
Ce-O(6) a | 326.0845 | 388.2832 | 390.5555 | 391.2096 | 397.8577 |
Ce-O(6) b | 326.0742 | 388.2539 | 390.5109 | 391.1798 | 397.8269 |
Ce-O(6) c | 326.0224 | 388.1952 | 390.4516 | 391.1053 | 397.7653 |
Zr(BaNb)1-O(4) × 6 | 459.2762 | 489.8926 | 461.1076 | 481.5940 | 496.2735 |
Zr(BaNb)2-O(3) a | 518.9672 | 518.3938 | 512.9597 | 512.3371 | 519.4946 |
Zr(BaNb)2-O(3) b | 518.8108 | 518.2381 | 512.9597 | 512.3623 | 519.3393 |
Zr(BaNb)2-O(3) c | 518.7847 | 518.2122 | 512.7823 | 512.5390 | 519.3134 |
Zr(BaNb)2-O(5) a | 525.3543 | 500.8407 | 518.6251 | 517.7693 | 519.3134 |
Zr(BaNb)2-O(5) b | 525.2741 | 500.7680 | 518.5733 | 517.7177 | 519.2358 |
Zr(BaNb)2-O(5) c | 525.1139 | 500.6227 | 518.4178 | 517.5632 | 519.1066 |
Mo1-O(1) | 592.0846 | 602.8673 | 619.4640 | 614.6348 | 623.9548 |
Mo1-O(2) | 567.3968 | 596.3924 | 614.4154 | 590.1899 | 598.0154 |
Mo1-O(3) | 544.9440 | 536.5641 | 538.9721 | 545.7791 | 534.0395 |
Mo1-O(4) | 583.1916 | 555.2862 | 561.8104 | 561.0780 | 571.3516 |
Mo2-O(5) × 2 | 564.4201 | 576.4860 | 546.1831 | 547.3699 | 559.0432 |
Mo2-O(6) × 2 | 820.3593 | 645.2379 | 632.2044 | 637.9052 | 627.9761 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gao, H.; Xu, X.; Liu, X.; Zhang, X.; Li, M.; Du, J.; Wu, H. Effect of (Ba1/3Nb2/3)4+ Substitution on Microstructure, Bonding Properties and Microwave Dielectric Properties of Ce2Zr3(MoO4)9 Ceramics. Ceramics 2024, 7, 1172-1186. https://doi.org/10.3390/ceramics7030077
Gao H, Xu X, Liu X, Zhang X, Li M, Du J, Wu H. Effect of (Ba1/3Nb2/3)4+ Substitution on Microstructure, Bonding Properties and Microwave Dielectric Properties of Ce2Zr3(MoO4)9 Ceramics. Ceramics. 2024; 7(3):1172-1186. https://doi.org/10.3390/ceramics7030077
Chicago/Turabian StyleGao, Huamin, Xiangyu Xu, Xinwei Liu, Xiaoyu Zhang, Mingling Li, Jialun Du, and Haitao Wu. 2024. "Effect of (Ba1/3Nb2/3)4+ Substitution on Microstructure, Bonding Properties and Microwave Dielectric Properties of Ce2Zr3(MoO4)9 Ceramics" Ceramics 7, no. 3: 1172-1186. https://doi.org/10.3390/ceramics7030077