On the Enlargement of the Emission Spectra from the 4I13/2 Level of Er3+ in Silica-Based Optical Fibers through Lanthanum or Magnesium Co-Doping
"> Figure 1
<p>Pictures of the La-doped (<b>top</b>) and Mg-doped (<b>bottom</b>) optical preforms. For both preforms, the core whitens with the increase in La or Mg content along the length of the preform. Estimated positions in the preform of the extrema fiber samples are indicated by vertical lines.</p> "> Figure 2
<p>Magnesium and lanthanum contents for analyzed gradual-doping fiber samples.</p> "> Figure 3
<p>Secondary electron microscopy (SEM) images of the core of two optical fiber samples. The core sections correspond to the longitudinal view (along the drawing axis). The image on the left shows the core of the La-doped sample containing 1 atom % of La. The image on the right shows the highly doped part of the core of the Mg-doped sample containing 2.1 atom % of Mg.</p> "> Figure 4
<p>Optical losses of lanthanum- and magnesium-doped fiber samples measured at 900 and 1100 nm.</p> "> Figure 5
<p>Maximum-normalized (<b>on the left</b>) and area-normalized <b>(on the right</b>) Er<math display="inline"> <semantics> <msup> <mrow/> <mrow> <mn>3</mn> <mo>+</mo> </mrow> </msup> </semantics> </math> emission spectra of magnesium-doped samples. Samples are labeled according to their content in magnesium.</p> "> Figure 6
<p>Maximum-normalized (<b>on the left</b>) and area-normalized (<b>on the right</b>) Er<math display="inline"> <semantics> <msup> <mrow/> <mrow> <mn>3</mn> <mo>+</mo> </mrow> </msup> </semantics> </math> emission spectra of lanthanum-doped samples. Samples are labeled according to their content in lanthanum; <math display="inline"> <semantics> <mi>ϵ</mi> </semantics> </math> is used for the sample where lanthanum content was too low to be measurable.</p> "> Figure 7
<p>Comparison of the maximum normalization of Er<math display="inline"> <semantics> <msup> <mrow/> <mrow> <mn>3</mn> <mo>+</mo> </mrow> </msup> </semantics> </math> emission spectra of the <math display="inline"> <semantics> <msup> <mrow/> <mn>4</mn> </msup> </semantics> </math>I<math display="inline"> <semantics> <msub> <mrow/> <mrow> <mn>13</mn> <mo>/</mo> <mn>2</mn> </mrow> </msub> </semantics> </math> level in fiber samples. Emission spectra of highly doped Mg and La fiber samples are displayed with Ref-silica and low La content samples.</p> "> Figure 8
<p>Emission peak wavelengths for fiber samples (FS) as a function of magnesium or lanthanum content.</p> "> Figure 9
<p>Evolution of Er<math display="inline"> <semantics> <msup> <mrow/> <mrow> <mn>3</mn> <mo>+</mo> </mrow> </msup> </semantics> </math> emission bandwidth with lanthanum (black) and magnesium (red) content. Ref-silica values are shown in blue. Circle symbols are used for the effective linewidth (on the right scale) and crosses are used for FWHM (on the left scale).</p> "> Figure 10
<p>Evolution of Er<math display="inline"> <semantics> <msup> <mrow/> <mrow> <mn>3</mn> <mo>+</mo> </mrow> </msup> </semantics> </math> emission width with optical losses measured at 900 nm for lanthanum and magnesium co-doping.</p> ">
Abstract
:1. Introduction
2. Experimental
3. Results and Discussions
3.1. Optical Losses
3.2. Spontaneous Emission Spectra
3.3. Width of Emission Band
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Richardson, D.; Nilsson, J.; Clarkson, W. High power fiber lasers: current status and future perspectives. JOSA B 2010, 27, B63–B92. [Google Scholar] [CrossRef]
- Ballato, J.; Ebendorff-Heidepriem, H.; Zhao, J.; Petit, L.; Troles, J. Glass and process development for the next generation of optical fibers: A review. Fibers 2017, 5, 11. [Google Scholar] [CrossRef]
- Digonnet, M.J. (Ed.) Rare-Earth-Doped Fiber Lasers and Amplifiers; CRC Press: Boca Raton, FL, USA, 2001. [Google Scholar]
- Sudarsan, V.; Van Veggel, F.C.; Herring, R.A.; Raudsepp, M. Surface Eu3+ ions are different than “bulk” Eu3+ ions in crystalline doped LaF3 nanoparticles. J. Mater. Chemi. 2005, 15, 1332–1342. [Google Scholar] [CrossRef]
- Gonçalves, M.C.; Santos, L.F.; Almeida, R.M. Rare-earth-doped transparent glass ceramics. C. R. Chim. 2002, 5, 845–854. [Google Scholar]
- Faure, B.; Blanc, W.; Dussardier, B.; Monnom, G. Improvement of the Tm3+: 3H4 level lifetime in silica optical fibers by lowering the local phonon energy. J. Non-Cryst. Solids 2007, 353, 2767–2773. [Google Scholar] [CrossRef]
- Lupi, J.F.; Vermillac, M.; Blanc, W.; Mady, F.; Benabdesselam, M.; Dussardier, B.; Neuville, D.R. Impact of cerium and lanthanum on the photo-darkening and photo-bleaching mechanisms in thulium-doped fibre. Opt. Mater. 2017, 72, 106–114. [Google Scholar] [CrossRef] [Green Version]
- Lupi, J.F.; Vermillac, M.; Blanc, W.; Mady, F.; Benabdesselam, M.; Dussardier, B.; Neuville, D.R. Steady photodarkening of thulium alumino-silicate fibers pumped at 1.07 μm: Quantitative effect of lanthanum, cerium, and thulium. Opt. Lett. 2016, 41, 2771–2774. [Google Scholar] [CrossRef]
- Mebrouk, Y.; Mady, F.; Benabdesselam, M.; Duchez, J.B.; Blanc, W. Experimental evidence of Er3+ ion reduction in the radiation-induced degradation of erbium-doped silica fibers. Opt. Lett. 2014, 39, 6154–6157. [Google Scholar] [CrossRef]
- Vermillac, M.; Fneich, H.; Lupi, J.F.; Tissot, J.B.; Kucera, C.; Vennéguès, P.; Mehdi, A.; Neuville, D.R.; Ballato, J.; Blanc, W. Use of thulium-doped LaF3 nanoparticles to lower the phonon energy of the thulium’s environment in silica-based optical fibres. Opt. Mater. 2017, 68, 24–28. [Google Scholar] [CrossRef]
- Kucera, C.; Kokuoz, B.; Edmondson, D.; Griese, D.; Miller, M.; James, A.; Baker, W.; Ballato, J. Designer emission spectra through tailored energy transfer in nanoparticle-doped silica preforms. Opt. Lett. 2009, 34, 2339–2341. [Google Scholar] [CrossRef]
- Kasik, I.; Peterka, P.; Mrazek, J.; Honzatko, P. Silica optical fibers doped with nanoparticles for fiber lasers and broadband sources. Curr. Nanosci. 2016, 12, 277–290. [Google Scholar] [CrossRef]
- Blanc, W.; Guillermier, C.; Dussardier, B. Composition of nanoparticles in optical fibers by Secondary Ion Mass Spectrometry. Opt. Mater. Express 2012, 2, 1504–1510. [Google Scholar] [CrossRef]
- D’Acapito, F.; Blanc, W.; Dussardier, B. Different Er3+ environments in Mg-based nanoparticle-doped optical fibre preforms. J. Non-Cryst. Solids 2014, 401, 50–53. [Google Scholar] [CrossRef]
- Lupi, J.F.; Vermillac, M.; Trzesien, S.; Ude, M.; Blanc, W.; Dussardier, B. Gradual-time solution doping for the fabrication of longitudinally varying optical fibres. J. Lightw. Technol. 2018, 36, 1786–1791. [Google Scholar] [CrossRef]
- Vermillac, M.; Fneich, H.; Turlier, J.; Cabié, M.; Kucera, C.; Borschneck, D.; Peters, F.; Vennéguès, P.; Neisius, T.; Chaussedent, S.; et al. On the morphologies of oxides particles in optical fibers: Effect of the drawing tension and composition. Opt. Mater. 2018, in press. [Google Scholar] [CrossRef]
- Vermillac, M.; Lupi, J.F.; Peters, F.; Cabie, M.; Vennegues, P.; Kucera, C.; Neisius, T.; Ballato, J.; Blanc, W. Fiber-draw-induced elongation and break-up of particles inside the core of a silica-based optical fiber. J. Am. Ceram. Soc. 2017, 100, 1814–1819. [Google Scholar] [CrossRef] [Green Version]
- Schultz, P. Ultraviolet absorption of titanium and germanium in fused silica. In Proceedings of the Eleventh International Congress on Glass, Prague, Czech Republic, 4–8 July 1977. [Google Scholar]
- Schultz, P.C. Fused P2O5 Type Glasses. U.S. Patent 4,042,404, 16 August 1977. [Google Scholar]
- Ghatak, A.; Thyagarajan, K. An Introduction to Fiber Optics; Cambridge University Press: Cambridge, UK, 1998. [Google Scholar]
- D’Acapito, F.; Maurizio, C.; Paul, M.C.; Lee, T.S.; Blanc, W.; Dussardier, B. Role of CaO addition in the local order around Erbium in SiO2–GeO2–P2O5 fiber preforms. Mater. Sci. Eng. B 2008, 146, 167–170. [Google Scholar] [CrossRef]
- Wade, S.A.; Collins, S.F.; Baxter, G.W. Fluorescence intensity ratio technique for optical fiber point temperature sensing. J. Appl. Phys. 2003, 94, 4743–4756. [Google Scholar] [CrossRef]
- Weber, M. Optical materials, Part 1-Nonlinear optical properties/radiation damage. In CRC Handbook of Laser Science and Technology; CRC Press: Boca Raton, FL, USA, 1986; Volume 3. [Google Scholar]
- Jiang, S.; Luo, T.; Hwang, B.C.; Smekatala, F.; Seneschal, K.; Lucas, J.; Peyghambarian, N. Er3+-doped phosphate glasses for fiber amplifiers with high gain per unit length. J. Non-Cryst. Solids 2000, 263, 364–368. [Google Scholar] [CrossRef]
Fiber Sample | Mg/La Content (atom %) | Ge (atom %) | Full-Width at Half-Maximum (FWHM) (nm) | |
---|---|---|---|---|
La-FS- | La—undetectable | 1.1 | 9.54 | 30.5 |
La-FS-0.17 | La—0.17 | 0.87 | 26.8 | 42 |
La-FS-0.23 | La—0.23 | 0.67 | 28.4 | 45.7 |
La-FS-0.31 | La—0.31 | 0.43 | 29.4 | 46.1 |
La-FS-0.35 | La—0.35 | 0.50 | 30.2 | 47 |
La-FS-0.46 | La—0.46 * | 0.5 * | 31 | 48.5 |
La-FS-0.51 | La—0.51 * | 0.5 * | 31.4 | 49.7 |
La-FS-0.58 | La—0.58 | 0.52 | 31.3 | 49.3 |
La-FS-0.67 | La—0.67 | 0.42 | 32.4 | 50.7 |
La-FS-1 | La—1 | 0.26 | 32.3 | 51.8 |
Mg-FS-0.22 | Mg—0.22 | 0.74 | 31.4 | 46.3 |
Mg-FS-0.23 | Mg—0.23 | 0.78 | 30.5 | 46.2 |
Mg-FS-0.89 | Mg—0.89 | 0.39 | 33.2 | 48.9 |
Mg-FS-1 | Mg—1 | 0.39 | 33.3 | 50 |
Mg-FS-1.1 | Mg—1.1 | 0.30 | 35.2 | 51.5 |
Mg-FS-1.3 | Mg—1.3 | 0.34 | 35 | 52.3 |
Mg-FS-2.1 | Mg—2.1 | 0.26 | 34.6 | 51.5 |
Mg-FS-2.3 | Mg—2.3 | 0.26 | 34.7 | 51.9 |
Mg-FS-2.4 | Mg—2.4 | 0.25 | 35.1 | 51.9 |
Mg-FS-2.7 | Mg—2.7 | 0.15 | 34.2 | 50.5 |
Ref-Silica | La/Mg—0; P—3.7 | 5.8 | 21.4 | 32.8 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vermillac, M.; Lupi, J.-F.; Trzesien, S.; Ude, M.; Blanc, W. On the Enlargement of the Emission Spectra from the 4I13/2 Level of Er3+ in Silica-Based Optical Fibers through Lanthanum or Magnesium Co-Doping. Ceramics 2018, 1, 364-374. https://doi.org/10.3390/ceramics1020029
Vermillac M, Lupi J-F, Trzesien S, Ude M, Blanc W. On the Enlargement of the Emission Spectra from the 4I13/2 Level of Er3+ in Silica-Based Optical Fibers through Lanthanum or Magnesium Co-Doping. Ceramics. 2018; 1(2):364-374. https://doi.org/10.3390/ceramics1020029
Chicago/Turabian StyleVermillac, Manuel, Jean-François Lupi, Stanislaw Trzesien, Michele Ude, and Wilfried Blanc. 2018. "On the Enlargement of the Emission Spectra from the 4I13/2 Level of Er3+ in Silica-Based Optical Fibers through Lanthanum or Magnesium Co-Doping" Ceramics 1, no. 2: 364-374. https://doi.org/10.3390/ceramics1020029
APA StyleVermillac, M., Lupi, J.-F., Trzesien, S., Ude, M., & Blanc, W. (2018). On the Enlargement of the Emission Spectra from the 4I13/2 Level of Er3+ in Silica-Based Optical Fibers through Lanthanum or Magnesium Co-Doping. Ceramics, 1(2), 364-374. https://doi.org/10.3390/ceramics1020029