Processing of Macroporous Alumina Ceramics Using Pre-Expanded Polymer Microspheres as Sacrificial Template
<p>Scanning electron microscopy (SEM) micrographs of the three types of wet expanded Expancel<sup>®</sup> microspheres used in this study: (<b>a</b>) WE 40 μm, (<b>b</b>) WE 20 μm, and (<b>c</b>) WE 12 μm.</p> "> Figure 2
<p>Flowchart of the gel-casting and sacrificial templating procedure followed in the present study to prepare the macroporous alumina specimens.</p> "> Figure 3
<p>Presintered alumina foams prepared using different dispersing agents: (<b>a</b>) sodium dodecyl sulfate (SDS), an anionic surfactant and (<b>b</b>) polyacrylic acid (PAA), a water-soluble anionic polyelectrolyte.</p> "> Figure 4
<p>Fracture surface of presintered alumina foams prepared using different gelation methods: (<b>a</b>) thermal gelation and (<b>b</b>) catalytic gelation.</p> "> Figure 5
<p>Effect of the drying conditions on (<b>a</b>) cumulative mass loss and (<b>b</b>) cumulative radial shrinkage. The composition and properties of batches 1 to 6 are summarized in <a href="#ceramics-01-00026-t002" class="html-table">Table 2</a>.</p> "> Figure 6
<p>Thermal analysis of a high porosity (66.7 vol. %) alumina foam produced with WE 40 μm microspheres: (<b>a</b>) differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA) curves as a function of time and (<b>b</b>) TGA curve as a function of temperature.</p> "> Figure 7
<p>Fracture surface of presintered alumina foams: low magnification SEM micrographs of (<b>a</b>) 75.1 vol. % porosity foam produced with WE 40 μm, (<b>b</b>) 76.0 vol. % porosity foam produced with WE 20 μm and (<b>c</b>) 80.2 vol. % porosity foam produced with WE 12 μm; (<b>d</b>) high magnification SEM micrograph of a 65.7 vol. % porosity foam produced with WE 12 μm.</p> "> Figure 8
<p>Particle size distribution by number of the three types of wet pre-expanded microspheres used in this study: (<b>a</b>) WE 40 μm, (<b>b</b>) WE 20 μm, and (<b>c</b>) WE 12 μm. Primary macropore size distribution by number of presintered porous alumina foams: (<b>d</b>) 75.1 vol. % porosity foam produced with WE 40 μm, (<b>e</b>) 76.0 vol. % porosity foam produced with WE 20 μm and (<b>f</b>) 80.2 vol. % porosity foam produced with WE 12 μm.</p> "> Figure 9
<p>Pore size distribution of presintered alumina foams prepared with WE 20 μm Expancel<sup>®</sup> microspheres, as determined by mercury intrusion porosimetry: (<b>a</b>) 76.0 vol. % porosity and (<b>b</b>) 61.6 vol. % porosity foams.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Specimen Preparation
2.3. Characterization
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Sobsey, M.D.; Stauber, C.E. Point of use household drinking water filtration: A practical, effective solution for providing sustained access to safe drinking water in the developing world. Environ. Sci. Technol. 2008, 42, 4261–4267. [Google Scholar] [CrossRef] [PubMed]
- Liang, B.; Zhang, N. Applications of porous SiC ceramics in automobile exhaust purification field. In Proceeding of the International Conference on Electric Information and Control Engineering (ICEICE), Wuhan, China, 15–17 April 2011. [Google Scholar] [CrossRef]
- Gómez-Martín, A.; Orihuela, M.P. Permeability and mechanical integrity of porous biomorphic SiC ceramics for application as hot-gas filters. Mater. Des. 2016, 107, 450–460. [Google Scholar] [CrossRef]
- Kennedy, M.W.; Zhang, K. Characterization of ceramic foam filters used for liquid metal filtration. Metall. Mater. Trans. B 2013, 44B, 671–690. [Google Scholar] [CrossRef]
- Wang, Z.; Feng, P. Porous mullite thermal insulators from coal gangue fabricated by a starch-based foam gel-casting method. J. Aust. Ceram. Soc. 2017, 53, 287–291. [Google Scholar] [CrossRef]
- O’Brien, F.J. Biomaterials & scaffolds for tissue engineering. Mater. Today 2011, 14, 88–95. [Google Scholar] [CrossRef]
- Hammel, E.; Ighodaro, O.R. Processing and properties of advanced porous ceramics: An application based review. Ceram. Int. 2014, 40, 15351–15370. [Google Scholar] [CrossRef]
- Mohanta, K.; Kumar, A. Low cost porous alumina with tailored microstructure and thermal conductivity prepared using rice husk and sucrose. J. Am. Ceram. Soc. 2014, 97, 1708–1719. [Google Scholar] [CrossRef]
- Despois, J.F.; Mortensen, A. Permeability of open-pore microcellular materials. Acta Mater. 2005, 53, 1381–1388. [Google Scholar] [CrossRef] [Green Version]
- Ashby, M.F.; Mehl Medalist, R.F. The mechanical properties of cellular solids. Metall. Trans. A 1983, 14, 1755–1769. [Google Scholar] [CrossRef]
- Studart, A.R.; Gonzenbach, U.T. Processing Routes to Macroporous Ceramics: A Review. J. Am. Ceram. Soc. 2006, 89, 1771–1789. [Google Scholar] [CrossRef] [Green Version]
- Ocampo, J.I.G.; Sierra, D.M.E. Porous bodies of hydroxyapatite produced by a combination of the gel-casting and polymer sponge methods. J. Adv. Res. 2016, 7, 297–304. [Google Scholar] [CrossRef] [PubMed]
- Bhaskar, S.; Park, J.G. Thermal and mechanical behavior of ZrTiO4-TiO2 porous ceramics by direct foaming. Ceram. Int. 2016, 42, 14395–14402. [Google Scholar] [CrossRef]
- Barg, S.; Guzi de Moraes, E. New cellular ceramics from high alkane phase emulsified suspensions (HAPES). J. Eur. Ceram. Soc. 2009, 29, 2439–2446. [Google Scholar] [CrossRef]
- Turnsek, M.; Krajnc, P. Macroporous alumina with cellular interconnected morphology from emulsion templated polymer composite precursors. J. Eur. Ceram. Soc. 2016, 36, 1045–1051. [Google Scholar] [CrossRef]
- García-Tuñón, E.; Machado, G.C. Complex ceramic architectures by directed assembly of ‘responsive’ particles. J. Eur. Ceram. Soc. 2017, 37, 199–211. [Google Scholar] [CrossRef] [Green Version]
- Gonzenbach, U.T.; Studart, A.R. Macroporous Ceramics from Particle-Stabilized Wet Foams. J. Am. Ceram. Soc. 2007, 90, 16–22. [Google Scholar] [CrossRef] [Green Version]
- Barg, S.; Soltmann, C. Cellular Ceramics by Direct Foaming of Emulsified Ceramic Powder Suspensions. J. Am. Ceram. Soc. 2008, 91, 2823–2829. [Google Scholar] [CrossRef]
- Liu, R.; Xu, T. A review of fabrication strategies and applications of porous ceramics prepared by freeze-casting method. Ceram. Int. 2016, 42, 2907–2925. [Google Scholar] [CrossRef]
- Huang, Y.; Yang, J. Novel Colloidal Forming of Ceramics; Springer: Berlin/Heidelberg, Germany, 2011; pp. 74–125. ISBN 978-3-642-12281-1. [Google Scholar]
- Gilissen, R.; Erauw, J.P. Gelcasting, a near net shape technique. Mater. Des. 2000, 21, 251–257. [Google Scholar] [CrossRef]
- Tabrizian, P.; Golestanifard, F. The influence of gelcasting parameters on the preparation of Si porous bodies. Mater. Lett. 2016, 183, 19–22. [Google Scholar] [CrossRef]
- Rao, R.R.; Mariappan, L. Fabrication of micro-featured shapes of alumina ceramics. Procedia Mater. Sci. 2014, 5, 2595–2604. [Google Scholar] [CrossRef]
- Qian, H.; Cheng, X. Preparation of porous mullite ceramics using fly ash cenosphere as a pore-forming agent by gelcasting process. Int. J. Appl. Ceram. Technol. 2014, 11, 858–863. [Google Scholar] [CrossRef]
- Dash, S.R.; Sarkar, R. Gel casting of hydroxyapatite with naphthalene as pore former. Ceram. Int. 2015, 41, 3775–3790. [Google Scholar] [CrossRef]
- Wan, W.; Feng, Y. Preparation of mesoporous silica ceramics with relatively high strength from industrial wastes by low-toxic aqueous gel-casting. J. Eur. Ceram. Soc. 2015, 35, 2163–2170. [Google Scholar] [CrossRef]
- Andersson, L.; Bergström, L. Gas-filled microspheres as an expandable sacrificial template for direct casting of complex-shaped macroporous ceramics. J. Eur. Ceram. Soc. 2008, 28, 2815–2821. [Google Scholar] [CrossRef]
- Shin, B.S.; Seul, S.D. Thermal decomposition of copolymers of methyl methacrylate and alkyl methacrylates obtained from a CSTR. Korean J. Chem. Eng. 1994, 11, 74–80. [Google Scholar] [CrossRef]
- Tong, L.F.; Ma, H.Y. Thermal decomposition and flammability of acrylonitrile-butadiene-styrene/multi-walled carbon nanotubes composites. Chin. J. Polym. Sci. 2008, 26, 331–339. [Google Scholar] [CrossRef]
- Wiecinska, P. Thermal degradation of organic additives used in colloidal shaping of ceramics investigated by the coupled DTA/TG/MS analysis. J. Therm. Anal. Calorim. 2016, 123, 1419–1430. [Google Scholar] [CrossRef]
- McNeill, I.C.; Sadeghi, S.M.T. Thermal stability and degradation mechanisms of poly(acrylic acid) and its salts: Part 1 poly(acrylic acid). Polym. Degrad. STable 1990, 29, 233–246. [Google Scholar] [CrossRef]
- Bednarek, P.; Szafran, M. Thermal decomposition of monosaccharides derivatives applied in ceramic gelcasting process investigated by the coupled DTA/TG/MS analysis. J. Therm. Anal. Calorim. 2012, 109, 773–782. [Google Scholar] [CrossRef] [Green Version]
- Naranda, J.; Sušec, M. Polyester type polyHIPE scaffolds with an interconnected porous structure for cartilage regeneration. Sci. Rep. 2016, 6. [Google Scholar] [CrossRef] [PubMed]
- Guan, B.; Zhan, R. Review of the state-of-the-art of exhaust particulate filter technology in internal combustion engines. J. Environ. Manag. 2015, 154, 225–258. [Google Scholar] [CrossRef] [PubMed]
- Pulko, I.; Krajnc, P. High Internal Phase Emulsion Templating—A Path to Hierarchically Porous Functional Polymers. Macromol. Rapid Commun. 2012, 33, 1731–1746. [Google Scholar] [CrossRef] [PubMed]
- Han, Y.S.; Li, J.B. The effect of sintering temperatures on alumina foam strength. Ceram. Int. 2002, 28, 755–759. [Google Scholar] [CrossRef]
- Dhara, S.; Bhargava, P. Influence of Slurry Characteristics on Porosity and Mechanical Properties of Alumina Foams. Int. J. Appl. Ceram. Technol. 2006, 3, 382–392. [Google Scholar] [CrossRef]
- Mao, X.; Shimai, S. Gelcasting of alumina foams consolidated by epoxy resin. J. Eur. Ceram. Soc. 2008, 28, 217–222. [Google Scholar] [CrossRef]
Expancel® Grade | Product Density (g/cm3) | Solid Content (wt. %) | v (cm3/g) | Mean Particle Size (μm) | Mean Aspect Ratio |
---|---|---|---|---|---|
WE 40 μm | 0.024 | 17.2 | 7.167 | 45.3 | 0.95 |
WE 20 μm | 0.030 | 24.4 | 8.133 | 38.5 | 0.94 |
WE 12 μm | 0.060 | 16.0 | 2.667 | 14.0 | 0.97 |
Batch No. | Alumina Type | Expancel® Grade | Total Solid Loading (wt. %) | Dried Microspheres (wt. %) | Targeted Porosity (vol. %) | Degassing Time (min) | Bulk Density (g/cm3) | Total Porosity (vol. %) |
---|---|---|---|---|---|---|---|---|
1 | AKP-15 | WE 40 μm | 60.5 | 0.89 | 70.0 | 15 | 0.94 | 75.1 |
2 | AKP-15 | WE 40 μm | 61.8 | 0.40 | 50.0 | 10 | 1.26 | 66.7 |
3 | A-16 SG | WE 20 μm | 54.8 | 1.08 | 70.0 | 15 | 0.91 | 76.0 |
4 | AKP-15 | WE 20 μm | 59.8 | 0.47 | 50.0 | 15 | 1.45 | 61.6 |
5 | A-16 SG | WE 12 μm | 53.2 | 1.91 | 70.0 | 10 | 0.75 | 80.2 |
6 | A-16 SG | WE 12 μm | 56.0 | 0.88 | 50.0 | 10 | 1.29 | 65.7 |
Batch No | Mean Primary Macropore (μm) | Mean Aspect Ratio | Mean Inter-Connecting Pore (μm) | Mean Inter-Particle Pore (μm) | Degree of Openness (%) | Compressive Strength (MPa) |
---|---|---|---|---|---|---|
1 | 42.6 | 0.95 | 4.07 | 0.24 | 9.6 | 10.2 ± 0.6 |
2 | 41.1 | 0.96 | 2.18 | 0.30 | 5.3 | 24.1 ± 1.0 |
3 | 38.3 | 0.95 | 6.63 | 0.13 | 17.3 | 3.4 ± 0.1 |
4 | 34.2 | 0.93 | 2.19 | 0.29 | 6.4 | 38.3 ± 1.6 |
5 | 15.4 | 0.96 | 1.43 | 0.15 | 9.3 | 7.7 ± 0.5 |
6 | 13.2 | 0.96 | - | 0.23 | - | 40.0 ± 3.6 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ciurans Oset, M.; Nordin, J.; Akhtar, F. Processing of Macroporous Alumina Ceramics Using Pre-Expanded Polymer Microspheres as Sacrificial Template. Ceramics 2018, 1, 329-342. https://doi.org/10.3390/ceramics1020026
Ciurans Oset M, Nordin J, Akhtar F. Processing of Macroporous Alumina Ceramics Using Pre-Expanded Polymer Microspheres as Sacrificial Template. Ceramics. 2018; 1(2):329-342. https://doi.org/10.3390/ceramics1020026
Chicago/Turabian StyleCiurans Oset, Marina, Jan Nordin, and Farid Akhtar. 2018. "Processing of Macroporous Alumina Ceramics Using Pre-Expanded Polymer Microspheres as Sacrificial Template" Ceramics 1, no. 2: 329-342. https://doi.org/10.3390/ceramics1020026
APA StyleCiurans Oset, M., Nordin, J., & Akhtar, F. (2018). Processing of Macroporous Alumina Ceramics Using Pre-Expanded Polymer Microspheres as Sacrificial Template. Ceramics, 1(2), 329-342. https://doi.org/10.3390/ceramics1020026