Remaining Useful Life Prediction for Power Storage Electronic Components Based on Fractional Weibull Process and Shock Poisson Model
<p>Simulations of different NHCP.</p> "> Figure 2
<p>Fractional Weibull distributions with different fractal parameters.</p> "> Figure 3
<p>Simulated path for the fWp.</p> "> Figure 4
<p>The fWp with an adaptive diffusion.</p> "> Figure 5
<p>Flowchart of the proposed RUL prediction model.</p> "> Figure 6
<p>LIBs and supercapacitors in the degradation experiment. (<b>a</b>) Tested LIBs; (<b>b</b>) tested supercapacitor.</p> "> Figure 7
<p>Test platform of the hybrid power storage system.</p> "> Figure 8
<p>LIB degradation data under DST protocol.</p> "> Figure 9
<p>Ultracapacitor degradation data under DST protocol.</p> "> Figure 10
<p>LIB degradation data under UDDS protocol.</p> "> Figure 11
<p>Supercapacitor degradation data under UDDS protocol.</p> "> Figure 12
<p>Voltage degradation and incipient failure identification for LIBs.</p> "> Figure 13
<p>Capacitance degradation for the supercapacitor under DTS protocol.</p> "> Figure 14
<p>Capacitance degradation for the supercapacitor under UDDS protocol.</p> "> Figure 15
<p>Incremental degradation data.</p> "> Figure 16
<p>RUL prediction results for supercapacitor under DST protocol.</p> "> Figure 17
<p>Point prediction results for supercapacitors under DST protocol.</p> "> Figure 18
<p>RUL prediction results for LIBs under UDDS protocol.</p> "> Figure 19
<p>Point prediction results for LIBs under UDDS protocol.</p> ">
Abstract
:1. Introduction
2. The Adaptive fWp and NHCP for Degradation Modeling with Shock Impacts
2.1. NHCP for Shock Simulation in the Degradation Model
2.2. The fWp with an Adaptive Diffusion for the Modeling of Degradation Stochasticity
3. RUL Prediction Model for the Power Storage Electric Components
3.1. DTS Model Based on the Adaptive fWp and NHCP
3.2. Monte Carlo Simulation for the RUL Prediction
3.3. Parameter Estimation
4. Case Study
4.1. Experimental Description
4.2. Degradation Data of the Energy Storage Components in Operational Conditions
4.3. Feature Selection for Degradation Data under DST and UDDS Protocols
4.4. Fractal Characteristics of the Raw Degradation Data
4.5. Separation of Shock Data and Steady Degradation Data
4.6. Performance Evaluation for the Proposed Model
4.6.1. Experiment for the DTS Protocol
4.6.2. Experiment for the UDDS Protocol
4.7. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
LIBs | lithium-ion batteries |
RUL | remaining useful life |
CNN | convolutional neural network |
empirical mode decomposition- gated recurrent unit | EMD-GRU |
DTS | degradation-threshold-shock |
NHCP | non-homogeneous compound Possion process |
BM | Brownian motion |
FBM | fractional Brownian motion |
fWp | fractional Weibull process |
probability density function | |
FT | failure threshold |
EoL | end of life |
GoF | goodness of fitting |
BMS | battery management system |
CAN | controller area network |
DST | dynamic stress test |
UDDS | urban dynamometer driving schedule |
SOH | state of health |
RMSE | root mean squared error |
std | standard deviation |
MAE | mean absolute error |
SOA | score of accuracy |
References
- Koohi-Kamali, S.; Tyagi, V.V.; Rahim, N.A.; Panwar, N.L.; Mokhlis, H. Emergence of energy storage technologies as the solution for reliable operation of smart power systems: A review. Renew. Sust. Energ. Rev. 2013, 25, 135–165. [Google Scholar] [CrossRef]
- Rezaei, H.; Abdollahi, S.E.; Abdollahi, S.; Filizadeh, S. Energy management strategies of battery-ultracapacitor hybrid storage systems for electric vehicles: Review, challenges, and future trends. J. Energy Storage 2022, 53, 105045. [Google Scholar] [CrossRef]
- Song, W.Q.; Deng, W.J.; Cattani, P.; Qi, D.Y.; Yang, X.H.; Yao, X.Y.; Chen, D.D.; Yan, W.D.; Zio, E. On the prediction of power outage length based on linear multifractional Lévy stable motion. Pattern Recogn. Lett. 2024, 181, 120–125. [Google Scholar] [CrossRef]
- Enrico, Z. Prognostics and Health Management (PHM): Where are we and where do we (need to) go in theory and practice. Reliab. Eng. Syst. Saf. 2021, 218, 108119. [Google Scholar] [CrossRef]
- Lei, Y.G.; Li, N.P.; Guo, L.; Li, N.B.; Yan, T.; Lin, J. Machinery health prognostics: A systematic review from data acquisition to RUL prediction. Mech. Syst. Signal Process. 2018, 104, 799–834. [Google Scholar] [CrossRef]
- Zhou, B.T.; Cheng, C.; Ma, G.J.; Zhang, Y. Remaining Useful Life Prediction of Lithium-ion Battery based on Attention Mechanism with Positional Encoding. IOP Conf. Ser Mater. Sci. Eng. 2020, 895, 012006. [Google Scholar] [CrossRef]
- Wang, C.X.; Xiong, R.; Tian, J.P.; Lu, J.H.; Zhang, C.M. Rapid ultracapacitor life prediction with a convolutional neural network. Appl. Energy 2022, 305, 117819. [Google Scholar] [CrossRef]
- Zhang, Y.; Xiong, R.; He, H.; Pecht, M.G. Long Short-Term Memory Recurrent Neural Network for Remaining Useful Life Prediction of Lithium-Ion Batteries. IEEE Trans. Veh. Technol. 2018, 67, 5695–5705. [Google Scholar] [CrossRef]
- Zhou, Y.T.; Huang, Y.N.; Pang, J.B.; Wang, K. Remaining useful life prediction for supercapacitor based on long short-term memory neural network. J. Energy Storage 2019, 440, 227149. [Google Scholar] [CrossRef]
- Guo, F.; Lv, H.T.; Wu, X.W.; Yuan, X.H.; Liu, L.L.; Ye, J.L.; Wang, T.; Fu, L.J.; Wu, Y.P. A machine learning method for prediction of remaining useful life of supercapacitors with multi-stage modification. J. Energy Storage 2023, 73, 109160. [Google Scholar] [CrossRef]
- Zhang, Z.X.; Si, X.S.; Hu, C.H.; Lei, Y.G. Degradation data analysis and remaining useful life estimation: A review on Wiener-process-based methods. Eur. J. Oper. Res. 2018, 271, 775–796. [Google Scholar] [CrossRef]
- Dong, G.; Chen, Z.; Wei, J.; Ling, Q. Battery Health Prognosis Using Brownian Motion Modeling and Particle Filtering. IEEE Trans. Ind. Electron. 2018, 65, 8646–8655. [Google Scholar] [CrossRef]
- Wang, P.; Gao, R.X.; Woyczynski, W.A. Lévy Process-Based Stochastic Modeling for Machine Performance Degradation Prognosis. IEEE Trans. Ind. Electron. 2021, 68, 12760–12770. [Google Scholar] [CrossRef]
- Huang, W.; Askin, R.G. Reliability analysis of electronic devices with multiple competing failure modes involving performance aging degradation. Qual. Reliab. Eng. Int. 2003, 19, 241–254. [Google Scholar] [CrossRef]
- Lemoine, A.J.; Wenour, M.L. On Failure Modeling. Nav. Res. Log. 2021, 32, 497–508. [Google Scholar] [CrossRef]
- Wang, Z.L.; Huang, H.Z.; Li, Y.F.; Xiao, N.C. An Approach to Reliability Assessment Under Degradation and Shock Process. IEEE Trans. Reliab. 2011, 60, 852–863. [Google Scholar] [CrossRef]
- Klutku, G.A.; Yang, Y.J. The availability of inspected systems subject to shocks and graceful degradation. IEEE Trans. Reliab. 2002, 51, 371–374. [Google Scholar] [CrossRef]
- Zhang, J.X.; Hu, C.H.; He, X.; Si, X.S.; Liu, Y.; Zhou, D.H. Lifetime prognostics for deteriorating systems with time-varying random jumps. Reliab. Eng. Syst. Saf. 2017, 167, 338–350. [Google Scholar] [CrossRef]
- Wang, Y.P.; Pham, H. Imperfect preventive maintenance policies for two-process cumulative damage model of degradation and random shocks. Int. J. Syst. Assur. Eng. Manag. 2011, 2, 66–77. [Google Scholar] [CrossRef]
- Pang, Z.N.; Pei, H.; Li, T.M.; Zhang, J.X.; Hu, C.H.; Si, X.S. An Adaptive Prognostic Approach for Partially Observable Degrading Products With Random Shocks. IEEE Sens. J. 2021, 21, 17926–17946. [Google Scholar] [CrossRef]
- Wang, H.; Ma, X.; Zhao, Y. An improved Wiener process model with adaptive drift and diffusion for online remaining useful life prediction. Mech. Syst. Signal Process. 2019, 127, 370–387. [Google Scholar] [CrossRef]
- Zhang, H.; Chen, M.; Shang, J.; Yang, C.; Sun, Y. Stochastic process-based degradation modeling and RUL prediction: From Brownian motion to fractional Brownian motion. Sci. China Inf. Sci. 2021, 64, 171201. [Google Scholar] [CrossRef]
- Li, X.; Ma, Y. Remaining useful life prediction for lithium-ion battery using dynamic fractional brownian motion degradation model with long-term dependence. J. Power Electron. 2022, 22, 2069–2080. [Google Scholar] [CrossRef]
- Deng, W.J.; Song, W.Q.; Cattani, C.; Chen, J.X.; Chen, X.L. On the fractional Weibull process. Front. Phys. 2022, 10, 790791. [Google Scholar] [CrossRef]
- Song, W.Q.; Chen, D.D.; Zio, E. Heavy Tail and Long-Range Dependence for Skewed Time Series Prediction Based on a Fractional Weibull Process. Fractal Fract. 2023, 8, 7. [Google Scholar] [CrossRef]
- Franciszek, G. Nonhomogeneous Poisson Process and Compound Poisson Process in the Modelling of Random Processes Related to Road Accidents. J. KONES 2019, 26, 39–46. [Google Scholar] [CrossRef]
- Yu, Z.W.; Tuzuner, A. Fractional Weibull wind speed modeling for wind power production estimation. In Proceedings of the International Conference on Sustainable Power Generation and Supply, Nanjing, China, 6–7 April 2009. [Google Scholar] [CrossRef]
- Deng, W.; Gao, Y.; Song, W.; Zio, E.; Li, G.; Liu, J.; Kudreyko, A. Adaptive Residual Useful Life Prediction for the Insulated-Gate Bipolar Transistors with Pulse-Width Modulation Based on Multiple Modes and Transfer Learning. Fractal Fract. 2023, 7, 614. [Google Scholar] [CrossRef]
- Wang, Y.J.; Liu, C.; Pan, R.; Chen, Z.H. Experimental data of lithium-ion battery and ultracapacitor under DST and UDDS profiles at room temperature. Data Brief. 2017, 12, 161–163. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.J.; Liu, C.; Pan, R.; Chen, Z.H. Modeling and state-of-charge prediction of lithium-ion battery and ultracapacitor hybrids with a co-estimator. Energy 2017, 121, 739–750. [Google Scholar] [CrossRef]
- Cai, M.; Chen, W.J.; Tan, X.J. Battery State-Of-Charge Estimation Based on a Dual Unscented Kalman Filter and Fractional Variable-Order Model. Energies 2017, 10, 1577. [Google Scholar] [CrossRef]
- Collins, K.E. Simulation of the Emission Impact of a Hybrid-Electric Vehicle. Int. J. Eng. Technol. Sci. 2013, 1, 251–259. [Google Scholar]
- Yang, S.J.; Zhang, C.P.; Jiang, J.C.; Zhang, W.G.; Zhang, L.J.; Wang, Y.B. Review on state-of-health of lithium-ion batteries: Characterizations, estimations and applications. J. Clean. Prod. 2021, 314, 128015. [Google Scholar] [CrossRef]
- Lou, G.M.; Lin, W.W.; Huang, G.X.; Xiang, W. A two-stage online remaining useful life prediction framework for supercapacitors based on the fusion of deep learning network and state estimation algorithm. Eng. Appl. Artif. Intel. 2023, 123, 106399. [Google Scholar] [CrossRef]
- Zheng, H.B.; Huang, W.F.; Zhao, J.H.; Liu, J.F.; Zhang, Y.Y.; Shi, Z.; Zhang, C.H. A novel falling model for wind speed probability distribution of wind farms. Renew. Energ. 2022, 184, 91–99. [Google Scholar] [CrossRef]
- Paparoditis, E.; Politis, D.N. The asymptotic size and power of the augmented Dickey-Fuller test for a unit root. Econom. Rev. 2018, 37, 955–973. [Google Scholar] [CrossRef]
- Laskin, N. Fractional Poisson process. Commun. Nonlinear Sci. 2003, 8, 201–213. [Google Scholar] [CrossRef]
Versatility | Interpretability | Feature Extraction | Degradation Modeling | |
---|---|---|---|---|
proposed | √ | √ | √ | √ |
CNN | ✕ | ✕ | √ | ✕ |
EMD-GRU | ✕ | ✕ | √ | √ |
DTS-BM | √ | √ | ✕ | √ |
adaptive FBM | √ | √ | ✕ | ✕ |
supercapacitor (DST) | 6.1426 | 5.9624 | 6.0842 | 6.2581 |
LIBs (UDDS) | 5.6311 | 5.4763 | 5.2540 | 5.6514 |
Hurst | Kurtosis | Scale | Shape | |
---|---|---|---|---|
supercapacitor (DST) | 0.9522 | 11.7911 | 2.0041 | 38.5888 |
LIBs (UDDS) | 0.7375 | 6.8088 | 0.9490 | 55.7275 |
supercapacitor (DST) | 297 | 8079 | 9.1006 × 10−6 |
LIBs (UDDS) | 912 | 4864 | 7.7097 × 10−5 |
MAE | RMSE | SOA | std | |
---|---|---|---|---|
proposed | 6.748 | 7.216 | 0.8132 | 0.0324 |
CNN | 13.123 | 14.852 | 0.5784 | 0.1254 |
EMD-GRU | 10.478 | 12.769 | 0.7231 | 0.0876 |
MAE | RMSE | SOA | std | |
---|---|---|---|---|
proposed | 7.053 | 8.421 | 0.7968 | 0.0423 |
DTS-BM | 12.949 | 13.847 | 0.6125 | 0.1143 |
adaptive FBM | 13.792 | 14.639 | 0.5263 | 0.1420 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Song, W.; Yang, X.; Deng, W.; Cattani, P.; Villecco, F. Remaining Useful Life Prediction for Power Storage Electronic Components Based on Fractional Weibull Process and Shock Poisson Model. Fractal Fract. 2024, 8, 485. https://doi.org/10.3390/fractalfract8080485
Song W, Yang X, Deng W, Cattani P, Villecco F. Remaining Useful Life Prediction for Power Storage Electronic Components Based on Fractional Weibull Process and Shock Poisson Model. Fractal and Fractional. 2024; 8(8):485. https://doi.org/10.3390/fractalfract8080485
Chicago/Turabian StyleSong, Wanqing, Xianhua Yang, Wujin Deng, Piercarlo Cattani, and Francesco Villecco. 2024. "Remaining Useful Life Prediction for Power Storage Electronic Components Based on Fractional Weibull Process and Shock Poisson Model" Fractal and Fractional 8, no. 8: 485. https://doi.org/10.3390/fractalfract8080485