Laplace Transform Method for Economic Models with Constant Proportional Caputo Derivative
Abstract
:1. Introduction
2. Preliminaries
3. Applications of the Economic Model
4. Comparison
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Ghanbari, B.; Atangana, A. A new application of fractional Atangana–Baleanu derivatives: Designing ABC-fractional masks in image processing. Phys. Stat. Mech. Its Appl. 2020, 542, 123516. [Google Scholar] [CrossRef]
- Ghanbari, B.; Akgül, A. Abundant new analytical and approximate solutions to the generalized Schamel equation. Phys. Scr. 2020, 95, 075201. [Google Scholar] [CrossRef]
- Allahviranloo, T.; Ghanbari, B. On the fuzzy fractional differential equation with interval Atangana-Baleanu fractional derivative approach. Chaos Solitons Fractals 2020, 128, 109397. [Google Scholar] [CrossRef]
- Salari, A.; Ghanbari, B. Existence and multiplicity for some boundary value problems involving Caputo and Atangana–Baleanu fractional derivatives: A variational approach. Chaos Solitons Fractals 2019, 127, 312–317. [Google Scholar] [CrossRef]
- Akgül, A.; Akgül, E.K. On solutions of new type fractional differential equations occurring in the electrohydrodynamic flow. Electron. Res. Arch. 2020, 28, 537. [Google Scholar]
- Farman, M.; Akgül, A.; Ahmad, A.; Imtiaz, S. Analysis and dynamical behavior of fractional-order cancer model with vaccine strategy. Math. Methods Appl. Sci. 2020, 43, 4871–4882. [Google Scholar] [CrossRef]
- Modanli, M.; Akgül, A. On Solutions of Fractional order Telegraph partial differential equation by Crank-Nicholson finite difference method. Appl. Math. Nonlinear Sci. 2020, 5, 163–170. [Google Scholar] [CrossRef] [Green Version]
- Nagle, R.K.; Staff, E.B.; Snider, A.D. Fundamentals Dfferential Equations; Pearson: Upper Saddle River, NJ, USA, 2008. [Google Scholar]
- Baleanu, D.; Fernandez, A.; Akgül, A. On a fractional operator combining proportional and classical differintegrals. Mathematics 2020, 8, 360. [Google Scholar] [CrossRef] [Green Version]
- Gupta, S.; Kumar, D.; Singh, J. Analytical solutions of convection–diffusion problems by combining Laplace transform method and homotopy perturbation method. Alexasandria Eng. J. 2015, 54, 645–651. [Google Scholar] [CrossRef] [Green Version]
- Anjum, N.; He, J.H. Laplace transform, making the variational iteration method easier. Appl. Math. Lett. 2019, 92, 134–138. [Google Scholar] [CrossRef]
- Zhou, Z.; Ma, J.; Gao, X. Convergence of iterative Laplace transform methods for a system of fractional PDEs and PIDEs arising in option pricing. East Asian J. Appl. Math. 2018, 8, 782–808. [Google Scholar] [CrossRef] [Green Version]
- Bashir, T.; Kalim, M. Solution of non-homogeneous differential equations using faddeev-leverrier method together with Laplace transform. Adv. Differ. Equations Control. Process. 2018, 19, 343–357. [Google Scholar] [CrossRef]
- Jingtang, M.; Zhiqiang, Z. Convergence analysis of iterative Laplace transform methods for the coupled PDEs from regime-switching option pricing. J. Sci. Comput. 2018, 75, 1656–1674. [Google Scholar]
- Eljaoui, E.; Melliani, S.; Chadli, L.S. Aumann fuzzy improper integral and its application to solve fuzzy integro-differential equations by Laplace transform method. Adv. Fuzzy Syst. 2018, 2018, 9730502. [Google Scholar] [CrossRef] [Green Version]
- Zhou, Z.; Ma, J.; Sun, H.W. Fast Laplace transform methods for free-boundary problems of fractional diffusion equations. J. Sci. Comput. 2018, 74, 49–69. [Google Scholar] [CrossRef]
- Yonghong, S.; Wei, C. Laplace Transform method for the ulam stability of linear fractional differential equations with constant coefficient. Mediterr. J. Math. 2017, 14, UNSP 25. [Google Scholar]
- Fatoorehchi, H.; Abolghasemi, H. Series solution of nonlinear differential equations by a novel extension of the Laplace transform method. Int. J. Comput. Math. 2016, 93, 1299–1319. [Google Scholar] [CrossRef]
- Jacobs, A.B. High-order compact finite difference and Laplace transform method for the solution of time-fractional heat equations with Dirichlet and Neumann boundary conditions. Numer. Methods Partial. Differ. Equ. 2016, 32, 1184–1199. [Google Scholar] [CrossRef]
- Gao, W.; Veeresha, P.; Prakasha, D.G.; Baskonus, H.M. Novel dynamical structures of 2019-nCoV with nonlocal operator via powerful computational technique. Biology 2020, 9, 107. [Google Scholar] [CrossRef]
- Sulaiman, T.A.; Bulut, H.; Atas, S.S. Optical solitons to the fractional Schrödinger-Hirota equation. Appl. Math. Nonlinear Sci. 2019, 4, 535–542. [Google Scholar] [CrossRef] [Green Version]
- Özarslan, M.A. On a singular integral equation including a set of multivariate polynomials suggested by Laguerre polynomials. Appl. Math. Comput. 2014, 229, 350–358. [Google Scholar] [CrossRef]
- Kürt, C.; Özarslan, M.A.; Fernandez, A. On a certain bivariate Mittag-Leffler function analysed from a fractional-calculus point of view. Math. Meth. Appl. Sci. 2020. [Google Scholar] [CrossRef]
- Logeswari, K.; Ravichandran, C. A new exploration on existence of fractional neutral integro- differential equations in the concept of Atangana–Baleanu derivative. Phys. A Stat. Mech. Its Appl. 2020, 544, 123454. [Google Scholar] [CrossRef]
- Ravichandran, C.; Logeswaria, K.; Jarad, F. New results on existence in the framework of Atangana–Baleanu derivative for fractional integro-differential equations. Chaos Solitons Fractals 2019, 125, 194–200. [Google Scholar] [CrossRef]
- Kumar, S.; Nisar, K.S.; Kumar, R.; Cattani, C.; Samet, B. A new Rabotnov fractional-exponential function-based fractional derivative for diffusion equation under external force. Math. Methods Appl. Sci. 2020, 43, 4460–4471. [Google Scholar] [CrossRef]
- Kumar, S.; Kumar, A.; Odibat, Z.; Aldhaifallah, M. Kottakkaran Sooppy Nisar, A comparison study of two modified analytical approach for the solution of nonlinear fractional shallow water equations in fluid flow. AIMS Math. 2020, 5, 3035–3055. [Google Scholar] [CrossRef]
- Manafianheris, J. Solving the integro-differential equations using the modified Laplace Adomian decomposition method. J. Math. Ext. 2012, 6, 1–15. [Google Scholar]
- Manafianheris, J.; Lakestani, M. New Improvement of the Expansion Methods for Solving the Generalized Fitzhugh-Nagumo Equation with Time-Dependent Coefficients. Int. J. Eng. Math. 2015, 2015, 107978. [Google Scholar]
- Acay, B.; Baş, E.; Abdeljawad, T. Fractional economic models based on market equilibrium in the frame of different type kernels. Chaos Solitons Fractals 2020, 130, 109438. [Google Scholar] [CrossRef]
- Gao, W.; Veeresha, P.; Baskonus, H.M.; Prakasha, D.G.; Kumar, P. A New Study of Unreported Cases of 2019-nCOV Epidemic Outbreaks. Chaos Solitons Fractals 2020, 138, 1–6. [Google Scholar] [CrossRef]
- Cattani, C. A review on Harmonic Wavelets and their fractional extension. J. Adv. Eng. Comput. 2018, 2, 224–238. [Google Scholar] [CrossRef] [Green Version]
- Cattani, C.; Rushchitskii, Y.Y. Cubically nonlinear elastic waves: Wave equations and methods of analysis. Int. Appl. Mech. 2003, 39, 1115–1145. [Google Scholar] [CrossRef]
- Podlubny, I. Fractional Differential Equations; Academic Press: San Diego, CA, USA, 1999. [Google Scholar]
- Fernandez, A.; Kürt, C.; Özarslan, M.A. A naturally emerging bivariate Mittag-Leffler function and associated fractional-calculus operators. arXiv 2020, arXiv:2002.12171. [Google Scholar] [CrossRef]
C, CPC and RL | Convolution | Laplace Transform |
---|---|---|
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Karatas Akgül, E.; Akgül, A.; Baleanu, D. Laplace Transform Method for Economic Models with Constant Proportional Caputo Derivative. Fractal Fract. 2020, 4, 30. https://doi.org/10.3390/fractalfract4030030
Karatas Akgül E, Akgül A, Baleanu D. Laplace Transform Method for Economic Models with Constant Proportional Caputo Derivative. Fractal and Fractional. 2020; 4(3):30. https://doi.org/10.3390/fractalfract4030030
Chicago/Turabian StyleKaratas Akgül, Esra, Ali Akgül, and Dumitru Baleanu. 2020. "Laplace Transform Method for Economic Models with Constant Proportional Caputo Derivative" Fractal and Fractional 4, no. 3: 30. https://doi.org/10.3390/fractalfract4030030
APA StyleKaratas Akgül, E., Akgül, A., & Baleanu, D. (2020). Laplace Transform Method for Economic Models with Constant Proportional Caputo Derivative. Fractal and Fractional, 4(3), 30. https://doi.org/10.3390/fractalfract4030030