A Sustainable Slit Jet FTIR Spectrometer for Hydrate Complexes and Beyond
"> Figure 1
<p>The <span class="html-italic">filet</span> jet spectroscopy setup. Taken from Ref. [<a href="#B84-instruments-05-00012" class="html-bibr">84</a>], licensed under CC BY-NC-ND 4.0.</p> "> Figure 2
<p>Overview of the <span class="html-italic">gratin</span> jet spectroscopy setup. Adapted from Ref. [<a href="#B85-instruments-05-00012" class="html-bibr">85</a>], licensed under CC BY 4.0.</p> "> Figure 3
<p>Vacuum scheme of the rotary lobe pump station. PRV: pressure relieve valve. Adapted from Ref. [<a href="#B86-instruments-05-00012" class="html-bibr">86</a>], licensed under CC BY-NC-ND 4.0.</p> "> Figure 4
<p>(<b>a</b>) Sideview of the slit nozzle. (<b>b</b>) Construction of nozzle and buffer volume, designed for optimized gas flow in the supersonic expansion.</p> "> Figure 5
<p>Sandwich detector performance with <span class="html-italic">gratin</span> optics, comparing the two channels for a tungsten source at 12 mm aperture and a SiC source at 8 mm aperture. Note that a higher value means lower noise and thus better performance.</p> "> Figure 6
<p>Rising intensity of rotationally cold water transitions (H) during gas-recycling operation. With increasing time difference to the start of the recycling operation (light blue, to dark blue), the intensity of the monomeric water lines at 3802, 3780, and 3732 cm<math display="inline"><semantics> <msup> <mrow/> <mrow> <mo>−</mo> <mn>1</mn> </mrow> </msup> </semantics></math> increases in the spectrum of 1.30 hPa (0.17%) ethanol (EtOH) in helium. The EtOH monomer (E) and dimer (EE) OH stretching bands are also marked in the spectrum. To illustrate the water increase, the baselines of the spectra were aligned near the water lines by displacing them along the ordinate, as indicated above the baselines.</p> "> Figure 7
<p>Ethanol <span class="html-italic">gratin</span> jet spectra with admixture of air (grey) or the rising water-containing impurity (blue). The spectra are displaced along the ordinate, as indicated above their respective baselines.</p> "> Figure 8
<p>Comparison of helium consumption for measurements of MeOH+2FAP in He (>99.9% of the gas mixture) at the <span class="html-italic">filet</span> (green) and <span class="html-italic">gratin</span> (red) jet setups. At the <span class="html-italic">filet</span> jet, 150 pulses were measured (solid green line), and the helium consumption is extrapolated (dashed green line) to the 1500 scans measured at the <span class="html-italic">gratin</span> jet. At the <span class="html-italic">gratin</span> jet, the reservoir was filled twice, with the refill ocurring after 700 pulses (solid red line). The black circles indicate the intersections of the <span class="html-italic">filet</span> jet consumption line with the amounts of substance needed for one and two reservoir fillings at the <span class="html-italic">gratin</span> jet. The spectra recorded with a He consumption of 12 mol (36 pulses at the <span class="html-italic">filet</span> jet and 1500 pulses at the <span class="html-italic">gratin</span> jet) are shown as green (<span class="html-italic">filet</span> jet), dark red (<span class="html-italic">gratin</span> jet, InSb detector) and red (<span class="html-italic">gratin</span> jet, HgCdTe detector) traces. The spectral regions (<math display="inline"><semantics> <msub> <mi>ν</mi> <mi>OH</mi> </msub> </semantics></math>: OH stretching range; <math display="inline"><semantics> <msub> <mi>ν</mi> <mi>CH</mi> </msub> </semantics></math>: CH stretching range) and most important absorption signals (H: water; M: methanol monomer; MA<math display="inline"><semantics> <msub> <mrow/> <mrow> <mi>Me</mi> <mo>/</mo> <mi>Ph</mi> </mrow> </msub> </semantics></math>: methanol-2-fluoroacetophenone dimer, bound on the methyl (Me) or phenyl (Ph) side; 2<math display="inline"><semantics> <msub> <mi>ν</mi> <mrow> <mi mathvariant="normal">C</mi> <mo>=</mo> <mi mathvariant="normal">O</mi> </mrow> </msub> </semantics></math>: C=O stretch overtone; <math display="inline"><semantics> <msub> <mi>ν</mi> <mrow> <mi mathvariant="normal">C</mi> <mo>=</mo> <mi mathvariant="normal">O</mi> </mrow> </msub> </semantics></math>: C=O stretch) are marked.</p> "> Figure 9
<p>Influence of the water impurity on spectra of a binary mixture of MeOH and 2FAP in He. (<b>a</b>) spectrum (1600 scans) of 2FAP in He, with water impurity (blue); spectrum (1500 scans) of MeOH+2FAP in He (red). (<b>b</b>) subsets (see number of scans above the baselines) of the spectra in (<b>a</b>), containing similar amounts of the water impurity, and their difference spectrum (purple=red−blue). The most important spectral features are marked (H: water monomer; M: MeOH monomer; HA<math display="inline"><semantics> <msub> <mrow/> <mrow> <mi>Me</mi> <mo>/</mo> <mi>Ph</mi> </mrow> </msub> </semantics></math>: H<math display="inline"><semantics> <msub> <mrow/> <mn>2</mn> </msub> </semantics></math>O+2FAP dimer, bound on methyl (Me) or phenyl (Ph) side; MA<math display="inline"><semantics> <msub> <mrow/> <mrow> <mi>Me</mi> <mo>/</mo> <mi>Ph</mi> </mrow> </msub> </semantics></math>: MeOH+2FAP dimer; 2<math display="inline"><semantics> <msub> <mi>ν</mi> <mrow> <mi mathvariant="normal">C</mi> <mo>=</mo> <mi mathvariant="normal">O</mi> </mrow> </msub> </semantics></math>: C=O stretch overtone; <math display="inline"><semantics> <msub> <mi>ν</mi> <mi>CH</mi> </msub> </semantics></math>(A): CH stretching bands of 2FAP (A)). The spectra are displaced along the ordinate as indicated above their respective baselines.</p> "> Figure 10
<p>Upper panel, (<b>a</b>): comparison of spectra of MeOH+2FAP in He with the same total scan time <math display="inline"><semantics> <mrow> <mi>Σ</mi> <msub> <mi>t</mi> <mi>scan</mi> </msub> </mrow> </semantics></math> (138 pulses at the <span class="html-italic">gratin</span> (gr, red, displaced by +0.24 along the ordinate), 150 pulses at the <span class="html-italic">filet</span> (fi, green) jet). Upper panel, (<b>b</b>): as (<b>a</b>), but for the same substance consumption <math display="inline"><semantics> <mrow> <mi>Σ</mi> <mi>n</mi> </mrow> </semantics></math> at <span class="html-italic">filet</span> and <span class="html-italic">gratin</span> jet. As a point of reference, the lowest possible consumption at the <span class="html-italic">gratin</span> jet (1 filling of the reservoir) was chosen. Lower panels: negative decadic logarithm of the root-mean-square error (−lg(<math display="inline"><semantics> <mrow> <mi>R</mi> <mi>M</mi> <mi>S</mi> <mi>E</mi> </mrow> </semantics></math>)) of the noise level in a 50 cm<math display="inline"><semantics> <msup> <mrow/> <mrow> <mo>−</mo> <mn>1</mn> </mrow> </msup> </semantics></math> moving window with respect to a quadratic fit of the baseline. The spectral regions occupied by absorption bands of the sample mixture, which cannot be used for the analysis of the noise level, are shaded in grey.</p> "> Figure 11
<p>Separation of spectral contributions from H<math display="inline"><semantics> <msub> <mrow/> <mn>2</mn> </msub> </semantics></math>O (left panel) and D<math display="inline"><semantics> <msub> <mrow/> <mn>2</mn> </msub> </semantics></math>O (right panel) dimers (2) and trimers (3) in linear absorption supersonic jet spectra recorded in 750 hPa neon expansions by comparing a high water partial pressure (h, top trace, 1.1 hPa) with a low partial pressure (l, bottom trace, 0.4 and 0.5 hPa) spectrum and taking their weighted differences such that the trimer (next-to-top) or dimer (next-to-bottom) contributions quantitatively vanish (circled areas). The spectra are intensity scaled to approximately match the dimer (upper part) or trimer (lower part) intensity of a medium partial pressure (m, central trace, 0.6 or 0.8 hPa) spectrum. They also contain monomer transitions (1) and tetramer/pentamer contributions (4/5), the latter known to narrow down upon deuteration [<a href="#B75-instruments-05-00012" class="html-bibr">75</a>,<a href="#B76-instruments-05-00012" class="html-bibr">76</a>,<a href="#B77-instruments-05-00012" class="html-bibr">77</a>,<a href="#B78-instruments-05-00012" class="html-bibr">78</a>]. The number of co-averaged gas-pulses is given below the left end of each spectrum. Such spectra would be prohibitively expensive without recycling the neon gas (total gas flow of about 40000 standard liters).</p> "> Figure 12
<p>Clusters of H<math display="inline"><semantics> <msub> <mrow/> <mn>2</mn> </msub> </semantics></math><math display="inline"><semantics> <msup> <mrow/> <mn>18</mn> </msup> </semantics></math>O (0.75 hPa) obtained in 750 hPa neon expansions before (second trace from top) or after (next three traces) subtracting appropriate amounts from H<math display="inline"><semantics> <msub> <mrow/> <mn>2</mn> </msub> </semantics></math><math display="inline"><semantics> <msup> <mrow/> <mn>16</mn> </msup> </semantics></math>O contributions (bottom trace, 0.6 hPa). The spectra from 2700 gas pulses are divided into three chronological blocks of 900 pulses <math display="inline"><semantics> <msub> <mrow> <mo>)</mo> </mrow> <mrow> <mn>1</mn> <mo>,</mo> <mn>2</mn> <mo>,</mo> <mn>3</mn> </mrow> </msub> </semantics></math> and co-averaged (top trace) after ordinary water subtraction. Cluster sizes 2,3,4,5 and band maxima in cm<math display="inline"><semantics> <msup> <mrow/> <mrow> <mo>−</mo> <mn>1</mn> </mrow> </msup> </semantics></math> are provided. Isotopic dilution during this 2-day single-filling experiment can be coped with by spectral subtraction.</p> "> Figure 13
<p>Confirmation of two hydrogen-bonded UV/IR fluorescence depletion OH stretching band centers [<a href="#B63-instruments-05-00012" class="html-bibr">63</a>] for the 1:1 hydrate PW of (enantiopure) 1-phenylethanol (P, 0.007% in 750 hPa helium), by increasing the water excess from twofold to eightfold (blue traces, 1000–2200 pulses each) with larger cluster signals showing up at higher concentration. Water dimers (WW) and trimers (WWW) as well as alcohol monomers and dimers (PP [<a href="#B56-instruments-05-00012" class="html-bibr">56</a>]) also contribute in this range, as shown by two qualitatively scaled spectral traces at the top and the bottom. PWW trimer labels are adopted from the fluorescence study [<a href="#B63-instruments-05-00012" class="html-bibr">63</a>] without further FTIR concentration scaling analysis.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. The Existing Jet FTIR Spectroscopy Setup
2.2. The New Gas-Recycling Jet FTIR Spectroscopy Setup
2.2.1. The Gas-Recycling Concept
- Ideally, no impurities such as purge gas, air, or lubricant aerosol should contaminate the gas mixture while being re-compressed by the pumps.
- Any trace impurities entrained in the gas mixture, e.g., via desorption, leakages, or at the pumps, accumulate during the gas-recycling operation. Requirements regarding leakage rate, evacuation procedure, but also stability of the chemicals are thus higher than in a conventional operation mode.
- The reservoir pressure directly corresponds to the pressure on the high-pressure side of the last pumping stage. To facilitate the use of different stagnation pressures—usually below atmospheric pressure—the pump in question needs to allow for an operation at such reduced pressures on the high-pressure side.
2.2.2. Vacuum Technology
2.2.3. Slit Nozzle and Gas Flow Design
2.2.4. IR Spectroscopy
3. Results
3.1. Optics
3.2. Gas-Recycling
- The water increase seems to be slower when the screw pump is bypassed. However, this is difficult to judge since only warm expansions with stagnation pressures of up to 30 hPa are possible without the screw pump (vide supra). The screw pump is suspected to be one of the main sources for desorption, since it can only be flushed with inert gases and not be baked out under high vacuum conditions.
- Since the initial start of the operation of the gratin jet in December 2018, the growth rate of the water trace impurity has dropped considerably. Based on comparisons to jet spectra with a known amount of water (or to isolated bands of other compounds of known concentration within a spectrum), we estimate the increase rate in recent spectra to typically be <0.5 mg/h. First quantifications in March 2019 showed increase rates of ∼2 mg/h (cf. Figure 6). This reduction in trace water buildup could be explained by a lower water desorption rate due to the increasing time since the last full purging of the vacuum system.
- The new measurements show an initial release of 1–5 mg of water, depending on whether the preceding experiment involved high water concentrations. This initial release could be caused by the new analyte molecules replacing adsorbed water molecules at the walls and seals. After this initial release, the aforementioned water increase rate of <0.5 mg/h sets in. Indeed, Figure 6 indicates a slight depletion of gaseous ethanol with water impurity buildup.
- After several hours, a saturation of the water concentration possibly sets in. However, this is difficult to judge due to the limited spectral resolution which does not allow for an exact quantification of two orders of magnitude more narrow rovibrational lines.
3.3. Fundamental Performance
3.4. Investigation of Hydrate Clusters
3.4.1. Water Dimers vs. Trimers
3.4.2. Ketone-Water Complexes
3.4.3. 1-Phenylethanol–Water
4. Outlook
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
Abbreviations
DLaTGS | Deuterated l-alanine doped triglycine sulfate |
2FAP | 2’-Fluoroacetophenone |
FTIR | Fourier-Transform Infrared |
IR | Infrared |
MCT | HgCdTe |
MIR | Mid IR |
NIR | Near IR |
NoTCh | Noise Test Challenge |
RMSE | Root-Mean-Square-Error |
RT | Room temperature |
S/N | Signal-to-Noise |
UV/IR | Ultraviolet-Infrared (action spectroscopy) |
References
- Nesbitt, D.J. High-Resolution, Direct Infrared Laser Absorption Spectroscopy in Slit Supersonic Jets: Intermolecular Forces and Unimolecular Vibrational Dynamics in Clusters. Annu. Rev. Phys. Chem. 1994, 45, 367–399. [Google Scholar] [CrossRef]
- Buck, U. Structure and Dynamics of Small Size Selected Molecular Clusters. J. Phys. Chem. 1994, 98, 5190–5200. [Google Scholar] [CrossRef]
- Castleman, A.W.; Bowen, K.H. Clusters: Structure, Energetics, and Dynamics of Intermediate States of Matter. J. Phys. Chem. 1996, 100, 12911–12944. [Google Scholar] [CrossRef]
- Bačić, Z.; Miller, R.E. Molecular Clusters: Structure and Dynamics of Weakly Bound Systems. J. Phys. Chem. 1996, 100, 12945–12959. [Google Scholar] [CrossRef]
- Zwier, T.S. The Spectroscopy of Solvation in Hydrogen-bonded Aromatic Clusters. Annu. Rev. Phys. Chem. 1996, 47, 205–241. [Google Scholar] [CrossRef]
- Ebata, T.; Fujii, A.; Mikami, N. Vibrational spectroscopy of small-sized hydrogen-bonded clusters and their ions. Int. Rev. Phys. Chem. 1998, 17, 331–361. [Google Scholar] [CrossRef]
- Buck, U.; Huisken, F. Infrared spectroscopy of size-selected water and methanol clusters. Chem. Rev. 2000, 100, 3863–3890. [Google Scholar] [CrossRef]
- Buck, U.; Huisken, F. Additions and Corrections: Infrared spectroscopy of size-selected water and methanol clusters. Chem. Rev. 2001, 101, 205–206. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Matsuda, Y.; Mikami, N.; Fujii, A. Vibrational spectroscopy of size-selected neutral and cationic clusters combined with vacuum-ultraviolet one-photon ionization detection. Phys. Chem. Chem. Phys. 2009, 11, 1279–1290. [Google Scholar] [CrossRef]
- Schwing, K.; Gerhards, M. Investigations on isolated peptides by combined IR/UV spectroscopy in a molecular beam – structure, aggregation, solvation and molecular recognition. Int. Rev. Phys. Chem. 2016, 35, 569–677. [Google Scholar] [CrossRef]
- Lee, Y.F.; Kelterer, A.M.; Matisz, G.; Kunsági-Máté, S.; Chung, C.Y.; Lee, Y.P. Infrared absorption of methanol-water clusters (CH3OH)n(H2O), n = 1–4. recorded with the VUV-ionization/IR-depletion technique. J. Chem. Phys. 2017, 146, 144308. [Google Scholar] [CrossRef]
- Huisken, F.; Kaloudis, M.; Kulcke, A.; Laush, C.; Lisy, J.M. Vibrational spectroscopy of small (HF)n clusters (n = 4–8) in size–selected molecular beams. J. Chem. Phys. 1995, 103, 5366–5377. [Google Scholar] [CrossRef]
- Lucas, B.; Lecomte, F.; Reimann, B.; Barth, H.D.; Grégoire, G.; Bouteiller, Y.; Schermann, J.P.; Desfrançois, C. A new infrared spectroscopy technique for structural studies of mass-selected neutral polar complexes without chromophore. Phys. Chem. Chem. Phys. 2004, 6, 2600–2604. [Google Scholar] [CrossRef] [Green Version]
- Hu, Y.J.; Fu, H.B.; Bernstein, E.R. Infrared plus vacuum ultraviolet spectroscopy of neutral and ionic methanol monomers and clusters: New experimental results. J. Chem. Phys. 2006, 125, 154306. [Google Scholar] [CrossRef]
- León, I.; Montero, R.; Longarte, A.; Fernández, J.A. IR mass-resolved spectroscopy of complexes without chromophore: Cyclohexanol·(H2O)n, n = 1–3 and cyclohexanol dimer. J. Chem. Phys. 2013, 139, 174312. [Google Scholar] [CrossRef]
- Yatsyna, V.; Bakker, D.J.; Salén, P.; Feifel, R.; Rijs, A.M.; Zhaunerchyk, V. Infrared Action Spectroscopy of Low-Temperature Neutral Gas-Phase Molecules of Arbitrary Structure. Phys. Rev. Lett. 2016, 117, 118101. [Google Scholar] [CrossRef] [Green Version]
- Zhang, B.; Yu, Y.; Zhang, Z.; Zhang, Y.Y.; Jiang, S.; Li, Q.; Yang, S.; Hu, H.S.; Zhang, W.; Dai, D.; et al. Infrared Spectroscopy of Neutral Water Dimer Based on a Tunable Vacuum Ultraviolet Free Electron Laser. J. Phys. Chem. Lett. 2020, 11, 851–855. [Google Scholar] [CrossRef]
- Lovejoy, C.M.; Nesbitt, D.J. Slit pulsed valve for generation of long–path–length supersonic expansions. Rev. Sci. Instrum. 1987, 58, 807–811. [Google Scholar] [CrossRef]
- Liu, K.; Fellers, R.S.; Viant, M.R.; McLaughlin, R.P.; Brown, M.G.; Saykally, R.J. A long path length pulsed slit valve appropriate for high temperature operation: Infrared spectroscopy of jet–cooled large water clusters and nucleotide bases. Rev. Sci. Instrum. 1996, 67, 410–416. [Google Scholar] [CrossRef] [Green Version]
- Amirav, A.; Even, U.; Jortner, J. Absorption spectroscopy of ultracold large molecules in planar supersonic expansions. Chem. Phys. Lett. 1981, 83, 1–4. [Google Scholar] [CrossRef]
- Wang, Z.; Eliades, M.; Carron, K.; Bevan, J.W. A cw planar jet computer–controlled tunable IR diode laser spectrometer for the investigation of hydrogen–bonded complexes. Rev. Sci. Instrum. 1991, 62, 21–26. [Google Scholar] [CrossRef]
- Asselin, P.; Dupuis, B.; Perchard, J.P.; Soulard, P. The gas phase infrared spectrum of HCl complexed with dimethyl ether revisited: Assignment of the fundamental transition from a jet-cooled experiment. Chem. Phys. Lett. 1997, 268, 265–272. [Google Scholar] [CrossRef]
- Amrein, A.; Quack, M.; Schmitt, U. High-resolution interferometric Fourier transform infrared absorption spectroscopy in supersonic free jet expansions: Carbon monoxide, nitric oxide, methane, ethyne, propyne, and trifluoromethane. J. Phys. Chem. 1988, 92, 5455–5466. [Google Scholar] [CrossRef]
- Suhm, M.A.; Kollipost, F. Femtisecond single-mole infrared spectroscopy of molecular clusters. Phys. Chem. Chem. Phys. 2013, 15, 10702–10721. [Google Scholar] [CrossRef] [PubMed]
- Lippe, M.; Szczepaniak, U.; Hou, G.L.; Chakrabarty, S.; Ferreiro, J.J.; Chasovskikh, E.; Signorell, R. Infrared Spectroscopy and Mass Spectrometry of CO2 Clusters during Nucleation and Growth. J. Phys. Chem. A 2019, 123, 2426–2437. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hartz, C.; Wofford, B.A.; Meads, R.F.; Lucchese, R.R.; Bevan, J.W. A near-infrared Fourier-transform planar supersonic jet spectrometer for rovibrational studies of weakly bound dimers and trimers. Rev. Sci. Instrum. 1995, 66, 4375–4384. [Google Scholar] [CrossRef]
- Herman, M.; Georges, R.; Hepp, M.; Hurtmans, D. High resolution Fourier transform spectroscopy of jet-cooled molecules. Int. Rev. Phys. Chem. 2000, 19, 277–325. [Google Scholar] [CrossRef]
- Heger, M.; Scharge, T.; Suhm, M.A. From hydrogen bond donor to acceptor: The effect of ethanol fluorination on the first solvating water molecule. Phys. Chem. Chem. Phys. 2013, 15, 16065–16073. [Google Scholar] [CrossRef]
- Kollipost, F.; Papendorf, K.; Lee, Y.F.; Lee, Y.P.; Suhm, M.A. Alcohol dimers—How much diagonal OH anharmonicity? Phys. Chem. Chem. Phys. 2014, 16, 15948–15956. [Google Scholar] [CrossRef] [Green Version]
- Kollipost, F.; Andersen, J.; Mahler, D.W.; Heimdal, J.; Heger, M.; Suhm, M.A.; Wugt Larsen, R. The effect of hydrogen bonding on torsional dynamics: A combined far-infrared jet and matrix isolation study of methanol dimer. J. Chem. Phys. 2014, 141, 174314. [Google Scholar] [CrossRef] [Green Version]
- Kollipost, F.; Domanskaya, A.V.; Suhm, M.A. Microscopic Roots of Alcohol–Ketone Demixing: Infrared Spectroscopy of Methanol–Acetone Clusters. J. Phys. Chem. A 2015, 119, 2225–2232. [Google Scholar] [CrossRef]
- Medel, R.; Heger, M.; Suhm, M.A. Molecular Docking via Olefinic OH⋯π Interactions: A Bulky Alkene Model System and Its Cooperativity. J. Phys. Chem. A 2015, 119, 1723–1730. [Google Scholar] [CrossRef] [PubMed]
- Heger, M.; Altnöder, J.; Poblotzki, A.; Suhm, M.A. To π or not to π—How does methanol dock onto anisole? Phys. Chem. Chem. Phys. 2015, 17, 13045–13052. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Heger, M.; Mata, R.A.; Suhm, M.A. Soft hydrogen bonds to alkenes: The methanol–ethene prototype under experimental and theoretical scrutiny. Chem. Sci. 2015, 6, 3738–3745. [Google Scholar] [CrossRef] [Green Version]
- Gottschalk, H.C.; Altnöder, J.; Heger, M.; Suhm, M.A. Control over the Hydrogen-Bond Docking Site in Anisole by Ring Methylation. Angew. Chem. Int. Ed. 2016, 55, 1921–1924. [Google Scholar] [CrossRef] [PubMed]
- Kollipost, F.; Otto, K.E.; Suhm, M.A. A Symmetric Recognition Motif between Vicinal Diols: The Fourfold Grip in Ethylene Glycol Dimer. Angew. Chem. Int. Ed. 2016, 55, 4591–4595. [Google Scholar] [CrossRef] [Green Version]
- Medcraft, C.; Zinn, S.; Schnell, M.; Poblotzki, A.; Altnöder, J.; Heger, M.; Suhm, M.A.; Bernhard, D.; Stamm, A.; Dietrich, F.; et al. Aromatic embedding wins over classical hydrogen bonding—A multi-spectroscopic approach for the diphenyl ether–methanol complex. Phys. Chem. Chem. Phys. 2016, 18, 25975–25983. [Google Scholar] [CrossRef] [Green Version]
- Poblotzki, A.; Altnöder, J.; Suhm, M.A. Subtle solvation behaviour of a biofuel additive: The methanol complex with 2,5-dimethylfuran. Phys. Chem. Chem. Phys. 2016, 18, 27265–27271. [Google Scholar] [CrossRef] [Green Version]
- Forsting, T.; Gottschalk, H.C.; Hartwig, B.; Mons, M.; Suhm, M.A. Correcting the record: The dimers and trimers of trans-N-methylacetamide. Phys. Chem. Chem. Phys. 2017, 19, 10727–10737. [Google Scholar] [CrossRef] [Green Version]
- Oswald, S.; Wallrabe, M.; Suhm, M.A. Cooperativity in Alcohol–Nitrogen Complexes: Understanding Cryomatrices through Slit Jet Expansions. J. Phys. Chem. A 2017, 121, 3411–3422. [Google Scholar] [CrossRef] [Green Version]
- Bernhard, D.; Dietrich, F.; Fatima, M.; Perez, C.; Poblotzki, A.; Jansen, G.; Suhm, M.A.; Schnell, M.; Gerhards, M. Multi-spectroscopic and theoretical analyses on the diphenyl ether–tert-butyl alcohol complex in the electronic ground and electronically excited state. Phys. Chem. Chem. Phys. 2017, 19, 18076–18088. [Google Scholar] [CrossRef] [Green Version]
- Oswald, S.; Suhm, M.A. Experimental Reference Data for Hexafluorinated Propanol by Exploring an Unusual Intermolecular Torsional Balance. Angew. Chem. Int. Ed. 2017, 56, 12672–12676. [Google Scholar] [CrossRef]
- Meyer, K.A.E.; Suhm, M.A. Formic acid aggregation in 2D supersonic expansions probed by FTIR imaging. J. Chem. Phys. 2017, 147, 144305. [Google Scholar] [CrossRef]
- Poblotzki, A.; Gottschalk, H.C.; Suhm, M.A. Tipping the Scales: Spectroscopic Tools for Intermolecular Energy Balances. J. Phys. Chem. Lett. 2017, 8, 5656–5665. [Google Scholar] [CrossRef] [PubMed]
- Gottschalk, H.C.; Poblotzki, A.; Suhm, M.A.; Al-Mogren, M.M.; Antony, J.; Auer, A.A.; Baptista, L.; Benoit, D.M.; Bistoni, G.; Bohle, F.; et al. The furan microsolvation blind challenge for quantum chemical methods: First steps. J. Chem. Phys. 2018, 148, 014301. [Google Scholar] [CrossRef]
- Oswald, S.; Meyer, E.; Suhm, M.A. Dinitrogen as a Sensor for Metastable Carboxylic Acid Dimers and a Weak Hydrogen Bond Benchmarking Tool. J. Phys. Chem. A 2018, 122, 2933–2946. [Google Scholar] [CrossRef] [PubMed]
- Bernhard, D.; Dietrich, F.; Fatima, M.; Pérez, C.; Gottschalk, H.C.; Wuttke, A.; Mata, R.A.; Suhm, M.A.; Schnell, M.; Gerhards, M. The phenyl vinyl ether–methanol complex: A model system for quantum chemistry benchmarking. Beilstein J. Org. Chem. 2018, 14, 1642–1654. [Google Scholar] [CrossRef]
- Meyer, K.A.E.; Suhm, M.A. Vibrational exciton coupling in homo and hetero dimers of carboxylic acids studied by linear infrared and Raman jet spectroscopy. J. Chem. Phys. 2018, 149, 104307. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oswald, S.; Suhm, M.A.; Coussan, S. Incremental NH stretching downshift through stepwise nitrogen complexation of pyrrole: A combined jet expansion and matrix isolation study. Phys. Chem. Chem. Phys. 2019, 21, 1277–1284. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oswald, S.; Seifert, N.A.; Bohle, F.; Gawrilow, M.; Grimme, S.; Jäger, W.; Xu, Y.; Suhm, M.A. The Chiral Trimer and a Metastable Chiral Dimer of Achiral Hexafluoroisopropanol: A Multi-Messenger Study. Angew. Chem. Int. Ed. 2019, 58, 5080–5084. [Google Scholar] [CrossRef]
- Karir, G.; Lüttschwager, N.O.B.; Suhm, M.A. Phenylacetylene as a gas phase sliding balance for solvating alcohols. Phys. Chem. Chem. Phys. 2019, 21, 7831–7840. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Medel, R.; Stelbrink, C.; Suhm, M.A. Vibrational Signatures of Chirality Recognition Between α-Pinene and Alcohols for Theory Benchmarking. Angew. Chem. Int. Ed. 2019, 58, 8177–8181. [Google Scholar] [CrossRef] [PubMed]
- Oswald, S.; Suhm, M.A. Soft experimental constraints for soft interactions: A spectroscopic benchmark data set for weak and strong hydrogen bonds. Phys. Chem. Chem. Phys. 2019, 21, 18799–18810. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zimmermann, C.; Gottschalk, H.C.; Suhm, M.A. Three-dimensional docking of alcohols to ketones: An experimental benchmark based on acetophenone solvation energy balances. Phys. Chem. Chem. Phys. 2020, 22, 2870–2877. [Google Scholar] [CrossRef] [Green Version]
- Gottschalk, H.C.; Poblotzki, A.; Fatima, M.; Obenchain, D.A.; Pérez, C.; Antony, J.; Auer, A.A.; Baptista, L.; Benoit, D.M.; Bistoni, G.; et al. The first microsolvation step for furans: New experiments and benchmarking strategies. J. Chem. Phys. 2020, 152, 164303. [Google Scholar] [CrossRef] [PubMed]
- Medel, R.; Suhm, M.A. Understanding benzyl alcohol aggregation by chiral modification: The pairing step. Phys. Chem. Chem. Phys. 2020, 22, 25538–25551. [Google Scholar] [CrossRef] [PubMed]
- Zimmermann, C.; Fischer, T.L.; Suhm, M.A. Pinacolone-Alcohol Gas-Phase Solvation Balances as Experimental Dispersion Benchmarks. Molecules 2020, 25, 5095. [Google Scholar] [CrossRef] [PubMed]
- Nejad, A.; Suhm, M.A.; Meyer, K.A.E. Increasing the weights in the molecular work-out of cis- and trans-formic acid: Extension of the vibrational database via deuteration. Phys. Chem. Chem. Phys. 2020, 22, 25492–25501. [Google Scholar] [CrossRef] [PubMed]
- Carney, J.R.; Zwier, T.S. Infrared and Ultraviolet Spectroscopy of Water-Containing Clusters of Indole, 1-Methylindole, and 3-Methylindole. J. Phys. Chem. A 1999, 103, 9943–9957. [Google Scholar] [CrossRef]
- Robertson, E.G. IR–UV ion-dip spectroscopy of N-phenyl formamide, and its hydrated clusters. Chem. Phys. Lett. 2000, 325, 299–307. [Google Scholar] [CrossRef]
- Robertson, E.G.; Hockridge, M.R.; Jelfs, P.D.; Simons, J.P. IR–UV Ion-Dip Spectroscopy of N-Benzylformamide Clusters: Stepwise Hydration of a Model Peptide. J. Phys. Chem. A 2000, 104, 11714–11724. [Google Scholar] [CrossRef]
- Mons, M.; Dimicoli, I.; Tardivel, B.; Piuzzi, F.; Robertson, E.G.; Simons, J.P. Energetics of the Gas Phase Hydrates of trans-Formanilide: A Microscopic Approach to the Hydration Sites of the Peptide Bond. J. Phys. Chem. A 2001, 105, 969–973. [Google Scholar] [CrossRef]
- Le Barbu, K.; Lahmani, F.; Mons, M.; Broquier, M.; Zehnacker, A. IR–UV investigation of the structure of the 1-phenylethanol chromophore and its hydrated complexes. Phys. Chem. Chem. Phys. 2001, 3, 4684–4688. [Google Scholar] [CrossRef]
- Sakai, D.; Matsuda, Y.; Hachiya, M.; Mori, M.; Fujii, A.; Mikami, N. Size-selected Infrared Predissociation Spectroscopy of Neutral and Cationic Formamide-water clusters: Stepwise growth of hydrated structures and intracluster hydrogen transfer induced by vacuum-ultraviolet photoionization. J. Phys. Chem. A 2008, 112, 6840–6849. [Google Scholar] [CrossRef]
- Fricke, H.; Schwing, K.; Gerlach, A.; Unterberg, C.; Gerhards, M. Investigations of the water clusters of the protected amino acid Ac-Phe-OMe by applying IR/UV double resonance spectroscopy: Microsolvation of the backbone. Phys. Chem. Chem. Phys. 2010, 12, 3511–3521. [Google Scholar] [CrossRef]
- Cirtog, M.; Asselin, P.; Soulard, P.; Tremblay, B.; Madebène, B.; Alikhani, M.E.; Georges, R.; Moudens, A.; Goubet, M.; Huet, T.R.; et al. The (CH2)2O–H2O Hydrogen Bonded Complex. Ab Initio Calculations and Fourier Transform Infrared Spectroscopy from Neon Matrix and a New Supersonic Jet Experiment Coupled to the Infrared AILES Beamline of Synchrotron SOLEIL. J. Phys. Chem. A 2011, 115, 2523–2532. [Google Scholar] [CrossRef] [PubMed]
- Schwing, K.; Reyheller, C.; Schaly, A.; Kubik, S.; Gerhards, M. Structural Analysis of an Isolated Cyclic Tetrapeptide and its Monohydrate by Combined IR/UV Spectroscopy. ChemPhysChem 2011, 12, 1981–1988. [Google Scholar] [CrossRef] [PubMed]
- Zischang, J.; Lee, J.J.; Suhm, M.A. Communication: Where does the first water molecule go in imidazole? J. Chem. Phys. 2011, 135, 061102. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hepp, M.; Herregodts, F.; Herman, M. Fourier transform infrared jet spectroscopy using a heated slit source. Chem. Phys. Lett. 1998, 294, 528–532. [Google Scholar] [CrossRef]
- Okada, Y.; Isomura, S.; Satooka, S.; Takeuchi, K. Pulsed Laval nozzle with a large optical path length of 50 cm. Rev. Sci. Instrum. 1994, 65, 2414–2415. [Google Scholar] [CrossRef]
- Potapov, A.; Asselin, P. High-resolution jet spectroscopy of weakly bound binary complexes involving water. Int. Rev. Phys. Chem. 2014, 33, 275–300. [Google Scholar] [CrossRef]
- Huisken, F.; Kaloudis, M.; Kulcke, A. Infrared spectroscopy of small size-selected water clusters. J. Chem. Phys. 1996, 104, 17–25. [Google Scholar] [CrossRef]
- Mukhopadhyay, A.; Cole, W.T.; Saykally, R.J. The water dimer I: Experimental characterization. Chem. Phys. Lett. 2015, 633, 13–26. [Google Scholar] [CrossRef] [Green Version]
- Page, R.H.; Frey, J.G.; Shen, Y.R.; Lee, Y.T. Infrared predissociation spectra of water dimer in a supersonic molecular beam. Chem. Phys. Lett. 1984, 106, 373–376. [Google Scholar] [CrossRef] [Green Version]
- Paul, J.B.; Collier, C.P.; Saykally, R.J.; Scherer, J.J.; O’Keefe, A. Direct Measurement of Water Cluster Concentrations by Infrared Cavity Ringdown Laser Absorption Spectroscopy. J. Phys. Chem. A 1997, 101, 5211–5214. [Google Scholar] [CrossRef]
- Paul, J.B.; Provencal, R.A.; Chapo, C.; Petterson, A.; Saykally, R.J. Infrared cavity ringdown spectroscopy of water clusters: O–D stretching bands. J. Chem. Phys. 1998, 109, 10201–10206. [Google Scholar] [CrossRef] [Green Version]
- General Discussion. Faraday Disc. 2001, 118, 295–314. [CrossRef]
- Häber, T.; Schmitt, U.; Emmeluth, C.; Suhm, M.A. Ragout-jet FTIR spectroscopy of cluster isomerism and cluster dynamics: From carboxylic acid dimers to N2O nanoparticles. Faraday Disc. 2001, 118, 331–359, discussion 361–371. [Google Scholar] [CrossRef]
- Moudens, A.; Georges, R.; Goubet, M.; Makarewicz, J.; Lokshtanov, S.E.; Vigasin, A.A. Direct absorption spectroscopy of water clusters formed in a continuous slit nozzle expansion. J. Chem. Phys. 2009, 131, 204312. [Google Scholar] [CrossRef]
- Nizkorodov, S.A.; Ziemkiewicz, M.; Nesbitt, D.J.; Knight, A.E.W. Overtone spectroscopy of H2O clusters in the νOH=2 manifold: Infrared-ultraviolet vibrationally mediated dissociation studies. J. Chem. Phys. 2005, 122, 194316. [Google Scholar] [CrossRef] [Green Version]
- Tremblay, B.; Bouteiller, Y.; Perchard, J.P. Identification of two quanta simultaneous vibrational transitions in the dimer water trapped in inert matrices. Chem. Phys. 2011, 382, 15–19. [Google Scholar] [CrossRef]
- Suas-David, N.; Vanfleteren, T.; Földes, T.; Kassi, S.; Georges, R.; Herman, M. The Water Dimer Investigated in the 2OH Spectral Range Using Cavity Ring-Down Spectroscopy. J. Phys. Chem. A 2015, 119, 10022–10034. [Google Scholar] [CrossRef] [PubMed]
- Bhargava, R.; Fernandez, D.C.; Schaeberle, M.D.; Levin, I.W. Theory and Application of Gain Ranging to Fourier Transform Infrared Spectroscopic Imaging. Appl. Spectrosc. 2001, 55, 1580–1589. [Google Scholar] [CrossRef]
- Heger, M. Diagonal and Off-Diagonal Anharmonicity in Hydrogen-Bonded Systems. Ph.D. Thesis, Georg-August-Universität Göttingen, Göttingen, Germany, 2015. Available online: https://hdl.handle.net/11858/00-1735-0000-0028-874B-E (accessed on 11 March 2021).
- Meyer, V.; Eisermann, S.; Gottschalk, H.C.; Hildebrandt, R.; Langer, B.; Schmitt, U.; Zippert, M.; Suhm, M.A. Gratin Jet Figures: Version 1.0. 2020. Available online: https://doi.org/10.25625/6V6KSN (accessed on 11 March 2021). [CrossRef]
- Gottschalk, H.C. IR-Untersuchung von Schwach Gebundenen Molekülaggregaten im Überschallstrahl. Ph.D. Thesis, Georg-August-Universität Göttingen, Göttingen, Germany, 2020. Available online: https://hdl.handle.net/21.11130/00-1735-0000-0005-14EE-9 (accessed on 11 March 2021).
- Mertz, L. Auxiliary computation for Fourier spectrometry. Infrared Phys. 1967, 7, 17–23. [Google Scholar] [CrossRef]
- Camy-Peyret, C.; Flaud, J.M.; Guelachvili, G.; Amiot, C. High resolution Fourier transform spectrum of water between 2930 and 4255 cm-1. Mol. Phys. 1973, 26, 825–855. [Google Scholar] [CrossRef]
- Emmeluth, C.; Dyczmons, V.; Kinzel, T.; Botschwina, P.; Suhm, M.A.; Yáñez, M. Combined jet relaxation and quantum chemical study of the pairing preferences of ethanol. Phys. Chem. Chem. Phys. 2005, 7, 991–997. [Google Scholar] [CrossRef] [PubMed]
- Wassermann, T.N.; Suhm, M.A. Ethanol Monomers and Dimers Revisited: A Raman Study of Conformational Preferences and Argon Nanocoating Effects. J. Phys. Chem. A 2010, 114, 8223–8233. [Google Scholar] [CrossRef]
- Fischer, T.L.; Wagner, T.; Gottschalk, H.C.; Nejad, A.; Suhm, M.A. A Rather Universal Vibrational Resonance in 1:1 Hydrates of Carbonyl Compounds. J. Phys. Chem. Lett. 2021, 12, 138–144. [Google Scholar] [CrossRef]
- Gottschalk, H.C.; Meyer, V.; Hildebrandt, R.; Schmitt, U.; Fischer, T.L.; Suhm, M.A. Data Repository for Suhm Publication [186]. 2021. Available online: https://doi.org/10.25625/CNAP14 (accessed on 11 March 2021).
- Zhang, B.; Yu, Y.; Zhang, Y.Y.; Jiang, S.; Li, Q.; Hu, H.S.; Li, G.; Zhao, Z.; Wang, C.; Xie, H.; et al. Infrared spectroscopy of neutral water clusters at finite temperature: Evidence for a noncyclic pentamer. Proc. Natl. Acad. Sci. USA 2020, 117, 15423–15428. [Google Scholar] [CrossRef]
- Otto, K.E.; Xue, Z.; Zielke, P.; Suhm, M.A. The Raman spectrum of isolated water clusters. Phys. Chem. Chem. Phys. 2014, 16, 9849–9858. [Google Scholar] [CrossRef] [Green Version]
- Kuyanov-Prozument, K.; Choi, M.Y.; Vilesov, A.F. Spectrum and infrared intensities of OH-stretching bands of water dimers. J. Chem. Phys. 2010, 132, 014304. [Google Scholar] [CrossRef]
- León, I.; Montero, R.; Castaño, F.; Longarte, A.; Fernández, J.A. Mass-Resolved Infrared Spectroscopy of Complexes without Chromophore by Nonresonant Femtosecond Ionization Detection. J. Phys. Chem. A 2012, 116, 6798–6803. [Google Scholar] [CrossRef]
- Coker, D.F.; Miller, R.E.; Watts, R.O. The infrared predissociation spectra of water clusters. J. Chem. Phys. 1985, 82, 3554–3562. [Google Scholar] [CrossRef]
- Wuelfert, S.; Herren, D.; Leutwyler, S. Supersonic jet CARS spectra of small water clusters. J. Chem. Phys. 1987, 86, 3751–3753. [Google Scholar] [CrossRef]
- Lee, J.J.; Höfener, S.; Klopper, W.; Wassermann, T.N.; Suhm, M.A. Origin of the Argon Nanocoating Shift in the OH Stretching Fundamental of n-Propanol: A Combined Experimental and Quantum Chemical Study. J. Phys. Chem. C 2009, 113, 10929–10938. [Google Scholar] [CrossRef]
- Meyer, K.A.E.; Davies, J.A.; Ellis, A.M. Shifting formic acid dimers into perspective: Vibrational scrutiny in helium nanodroplets. Phys. Chem. Chem. Phys. 2020, 22, 9637–9646. [Google Scholar] [CrossRef]
- Michielsen, B.; Dom, J.J.J.; van der Veken, B.J.; Hesse, S.; Xue, Z.; Suhm, M.A.; Herrebout, W.A. The complexes of halothane with benzene: The temperature dependent direction of the complexation shift of the aliphatic C–H stretching. Phys. Chem. Chem. Phys. 2010, 12, 14034–14044. [Google Scholar] [CrossRef] [PubMed]
- Kjaersgaard, A.; Vogt, E.; Hansen, A.S.; Kjaergaard, H.G. Room Temperature Gas-Phase Detection and Gibbs Energies of Water Amine Bimolecular Complex Formation. J. Phys. Chem. A 2020, 124, 7113–7122. [Google Scholar] [CrossRef]
- Herschel, W. XIV. Experiments on the Refrangibility of the invisible Rays of the sun. Phil. Trans. R. Soc. 1800, 90, 284–292. [Google Scholar] [CrossRef]
- Forsting, T.; Zischang, J.; Suhm, M.A.; Eckhoff, M.; Schröder, B.; Mata, R.A. Strained hydrogen bonding in imidazole trimer: A combined infrared, Raman, and theory study. Phys. Chem. Chem. Phys. 2019, 21, 5989–5998. [Google Scholar] [CrossRef] [Green Version]
- Roy, T.K.; Mani, D.; Schwaab, G.; Havenith, M. A close competition between O–H⋯O and O–H⋯π hydrogen bonding: IR spectroscopy of anisole–methanol complex in helium nanodroplets. Phys. Chem. Chem. Phys. 2020, 22, 22408–22416. [Google Scholar] [CrossRef] [PubMed]
Component/Parameter | Available Options/Values |
---|---|
light source | Globar (int.); tungsten filaments: 50 W (int.), 150 W (ext.) |
beam splitter | broadband, KBr, CaF |
IR windows/lenses | KBr, CaF |
optical velocity/kHz | 1.6, 2.5, 5, 7.5, 10, 20, 40, 60, 80, 120, 140, 160 |
max. resolution/cm | 0.5 |
int. aperture/mm | 0.25, 0.5, 1, 1.5, 2, 2.5, 3, 3.5, 4, 5, 6, 8 |
ext. aperture/mm | 3, 3.5, 4, 6, 8, 10, 12, 14, 16, 18 |
detector | LN-InSb/MCT-SW, RT-DLaTGS (2x), InGaAs |
filter mountings | ⌀25.4 mm, filter wheel (int.) & filter mounting (detector chamber) |
v/kHz | t/ms | |
---|---|---|
Single Sided | Double Sided | |
80 | 107 | 184 |
120 | 71 | 123 |
140 | 60 | 105 |
160 | 55 | 95 |
/cm | /cm | ||||||
---|---|---|---|---|---|---|---|
3732.3 | 3732.13539 | 0 | 0 | 0 | 1 | 0 | 1 |
3779.7 | 3779.49376 | 1 | 0 | 1 | 0 | 0 | 0 |
3801.7 | 3801.41958 | 2 | 0 | 2 | 1 | 0 | 1 |
jet | /mol | /hh:mm | / | |
---|---|---|---|---|
filet | 150 | 44.8 | 1:18 | 2.28 ± 0.21 |
gratin | 1500 | 12.5 | 11:30 | 2.23 ± 0.07 |
gratin (diff) | - | - | - | 2.26 ± 0.27 |
Parameter | Filet Jet | Gratin Jet |
---|---|---|
/ms | 100 | 108 |
/ms | 147 | 133 |
/s | 31 | 28 |
duty cycle/% | 0.32 | 0.39 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gottschalk, H.C.; Fischer, T.L.; Meyer, V.; Hildebrandt, R.; Schmitt, U.; Suhm, M.A. A Sustainable Slit Jet FTIR Spectrometer for Hydrate Complexes and Beyond. Instruments 2021, 5, 12. https://doi.org/10.3390/instruments5010012
Gottschalk HC, Fischer TL, Meyer V, Hildebrandt R, Schmitt U, Suhm MA. A Sustainable Slit Jet FTIR Spectrometer for Hydrate Complexes and Beyond. Instruments. 2021; 5(1):12. https://doi.org/10.3390/instruments5010012
Chicago/Turabian StyleGottschalk, Hannes C., Taija L. Fischer, Volker Meyer, Reinhard Hildebrandt, Ulrich Schmitt, and Martin A. Suhm. 2021. "A Sustainable Slit Jet FTIR Spectrometer for Hydrate Complexes and Beyond" Instruments 5, no. 1: 12. https://doi.org/10.3390/instruments5010012