A Reversible Data Hiding Method in Encrypted Images for Controlling Trade-Off between Hiding Capacity and Compression Efficiency
<p>Block diagram of RDH-EtC method [<a href="#B21-jimaging-07-00268" class="html-bibr">21</a>]. <math display="inline"><semantics> <mrow> <mi>P</mi> <mi>P</mi> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <mi>Z</mi> <mi>P</mi> </mrow> </semantics></math> are bins with the highest and lowest frequency bins in the original-image histogram.</p> "> Figure 2
<p>Block diagram of the RDH-MSB method [<a href="#B18-jimaging-07-00268" class="html-bibr">18</a>].</p> "> Figure 3
<p>Classification for region <math display="inline"><semantics> <mi>α</mi> </semantics></math> and region <math display="inline"><semantics> <mi>β</mi> </semantics></math>. Region <math display="inline"><semantics> <mi>α</mi> </semantics></math> is areas inside red frames, and region <math display="inline"><semantics> <mi>β</mi> </semantics></math> is other areas. (<b>a</b>) kodim09, (<b>b</b>) kodim18.</p> "> Figure 4
<p>Block diagram of the proposed method.</p> "> Figure 5
<p>Restoration process of the proposed method.</p> "> Figure 6
<p>Restoration options for region <math display="inline"><semantics> <mi>α</mi> </semantics></math>. (<b>a</b>) Normal, (<b>b</b>) decryption without data extraction, (<b>c</b>) decryption then data extraction.</p> "> Figure 7
<p>Restoration process of the RDH-MSB method [<a href="#B18-jimaging-07-00268" class="html-bibr">18</a>].</p> "> Figure 8
<p>Resulting image with <math display="inline"><semantics> <mi>α</mi> </semantics></math> decryption only (kodim23). (<b>a</b>) Original image, (<b>b</b>) marked image.</p> "> Figure 9
<p>Examples of test images. (<b>a</b>) kodim09, (<b>b</b>) kodim18.</p> "> Figure 10
<p>Marked encrypted images with the proposed method (kodim9). (<b>a</b>) Grayscale-based image, (<b>b</b>) <math display="inline"><semantics> <mi>α</mi> </semantics></math>:<math display="inline"><semantics> <mi>β</mi> </semantics></math>=100:0, (<b>c</b>) <math display="inline"><semantics> <mi>α</mi> </semantics></math>:<math display="inline"><semantics> <mi>β</mi> </semantics></math>=75:25, (<b>d</b>) <math display="inline"><semantics> <mi>α</mi> </semantics></math>, <math display="inline"><semantics> <mi>β</mi> </semantics></math>=50:50, (<b>e</b>) <math display="inline"><semantics> <mi>α</mi> </semantics></math>:<math display="inline"><semantics> <mi>β</mi> </semantics></math>=25:75, (<b>f</b>) <math display="inline"><semantics> <mi>α</mi> </semantics></math>:<math display="inline"><semantics> <mi>β</mi> </semantics></math>=0:100.</p> "> Figure 11
<p>Marked encrypted images with the proposed method (kodim18). (<b>a</b>) Grayscale-based image, (<b>b</b>) <math display="inline"><semantics> <mi>α</mi> </semantics></math>:<math display="inline"><semantics> <mi>β</mi> </semantics></math>=100:0, (<b>c</b>) <math display="inline"><semantics> <mi>α</mi> </semantics></math>:<math display="inline"><semantics> <mi>β</mi> </semantics></math>=75:25, (<b>d</b>) <math display="inline"><semantics> <mi>α</mi> </semantics></math>:<math display="inline"><semantics> <mi>β</mi> </semantics></math>=50:50, (<b>e</b>) <math display="inline"><semantics> <mi>α</mi> </semantics></math>:<math display="inline"><semantics> <mi>β</mi> </semantics></math>=25:75, (<b>f</b>) <math display="inline"><semantics> <mi>α</mi> </semantics></math>:<math display="inline"><semantics> <mi>β</mi> </semantics></math>=0:100.</p> "> Figure 12
<p>Lossless compression performance. (<b>a</b>) JPEG-LS, (<b>b</b>) JPEG 2000.</p> "> Figure 13
<p>Data hiding capacity.</p> "> Figure 14
<p>Transition in lossless compression performance and hiding capacity for three images (kodim11, kodim18, kodim24). (<b>a</b>) Lossless compression performance by JPEG-LS, (<b>b</b>) data hiding capacity.</p> ">
Abstract
:1. Introduction
2. Related Work
2.1. RDH Method for EtC Images
- Step1-1:
- Perform preprocessing on an original image I to prevent overflow and underflow, and an intermediate image is obtained.
- Step1-2:
- Divide into multiple blocks with pixels.
- Step1-3:
- Determine the data hiding order within/among the blocks according to the defined conditions.
- Step1-4:
- Extract target blocks for block rotation/flip and position scrambling according to the defined conditions.
- Step1-5:
- Perform block rotation/flip and position scrambling on the target blocks defined in Step 1–4.
- Step1-6:
- Embed a payload into the target blocks in the data hiding order defined in Step 1–5.
- Step1-7:
- Integrate all the blocks, and a marked encrypted image is derived.
2.2. MSB Prediction Based RDH Method
- Step2-1:
- Detect MSB prediction errors in the plain domain using adjacent pixels, and store the errors in an error location binary map e.
- Step2-2:
- Encrypt an original image I using the exclusive-or operation with a pseudo-random number sequence.
- Step2-3:
- Divide the encrypted image and e into blocks with pixels and 8 bits, respectively.
- Step2-4:
- In accordance with e, if one or more prediction errors are identified in a block, exclude the block from embedding and substitute the MSBs with the values of e. In the meantime, the blocks without prediction errors are defined as embeddable blocks.
- Step2-5:
- Assign flags to the first and final blocks in each sequence of embeddable blocks.
- Step2-6:
- In each embeddable block, replace the MSBs of the eight pixels with payload bits.
- Step2-7:
- Encrypt the entire MSBs, and derive a marked encrypted image .
3. Proposed Method
3.1. Framework of Proposed Method
3.2. Procedure of Proposed Method
- Combine R, G, and B components of an original image I, and a grayscale-based image is obtained.
- Classify into region and region , and define them as and , respectively.
- Perform the RDH-EtC method [21] for , and is derived.
- Perform the RDH-MSB method [18] for , and is derived.
- Integrate and into the marked encrypted image .
3.3. Effectiveness of Proposed Method
4. Experimental Results
4.1. Lossless Compression Performance and Hiding Capacity
4.2. Comparisons between Proposed Method and Related Work
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Shi, Y.Q.; Li, X.; Zhang, X.; Wu, H.T.; Ma, B. Reversible data hiding: Advances in the past two decades. IEEE Access. 2016, 4, 3210–3237. [Google Scholar] [CrossRef]
- Ni, Z.; Shi, Y.Q.; Ansari, N.; Su, W. Reversible data hiding. IEEE Trans. Circuits Syst. Video Technol. 2006, 16, 354–362. [Google Scholar]
- Fujiyoshi, M.; Sato, S.; Jin, H.L.; Kiya, H. A Location-Map Free Reversible Data Hiding Method using Block-Based Single Parameter. In Proceedings of the IEEE International Conference on Image Processing, San Antonio, TX, USA, 16 September–19 October 2007; pp. 257–260. [Google Scholar]
- Weng, S.; Shi, Y.Q.; Hong, W.; Yao, Y. Dynamic improved pixel value ordering reversible data hiding. Inf. Sci. 2019, 489, 136–154. [Google Scholar] [CrossRef]
- Wang, J.; Chen, X.; Ni, J.; Mao, N.; Shi, Y. Multiple histograms-based reversible data hiding: Framework and realization. IEEE Trans. Circuits Syst. Video Technol. 2020, 30, 2313–2328. [Google Scholar] [CrossRef]
- He, W.; Xiong, G.; Wang, Y. Reversible Data Hiding Based on Adaptive Multiple Histograms Modification. IEEE Trans. Inf. Forensics Secur. 2021, 16, 3000–3012. [Google Scholar] [CrossRef]
- Kim, S.; Qu, X.; Sachnev, V.; Kim, H.J. Skewed Histogram Shifting for Reversible Data Hiding Using a Pair of Extreme Predictions. IEEE Trans. Circuits Syst. Video Technol. 2019, 29, 3236–3246. [Google Scholar] [CrossRef]
- Zhang, T.; Li, W.; Qi, W.; Guo, Z. Location-Based PVO and Adaptive Pairwise Modification for Efficient Reversible Data Hiding. IEEE Trans. Inf. Forensics Secur. 2020, 15, 2306–2319. [Google Scholar] [CrossRef]
- Qu, B.; Li, X.; Zhang, W.; Zhao, Y. Improving Pairwise PEE via Hybrid-Dimensional Histogram Generation and Adaptive Mapping Selection. IEEE Trans. Circuits Syst. Video Technol. 2019, 29, 2176–2190. [Google Scholar]
- Zhang, X. Reversible data hiding in encrypted image. IEEE Signal Process. Lett. 2011, 18, 255–258. [Google Scholar] [CrossRef]
- Hong, W.; Chen, T.; Wu, H. An Improved Reversible Data Hiding in Encrypted Images Using Side Match. IEEE Signal Process. Lett. 2012, 19, 199–202. [Google Scholar] [CrossRef]
- Zhang, X. Separable reversible data hiding in encrypted image. IEEE Trans. Inf. Forensics Secur. 2012, 7, 826–832. [Google Scholar] [CrossRef]
- Ma, K.; Zhang, W.; Zhao, X.; Yu, N.; Li, F. Reversible data hiding in encrypted images by reserving room before encryption. IEEE Trans. Inf. Forensics Secur. 2013, 8, 553–562. [Google Scholar] [CrossRef]
- Puteaux, P.; Puech, W. An Efficient MSB Prediction-Based Method for High-Capacity Reversible Data Hiding in Encrypted Images. IEEE Trans. Inf. Forensics Secur. 2018, 13, 1670–1681. [Google Scholar] [CrossRef] [Green Version]
- Dragoi, I.C.; Coltuc, D. On the Security of Reversible Data Hiding in Encrypted Images by MSB Prediction, IEEE Trans. Inf. Forensics Secur. 2021, 16, 187–189. [Google Scholar] [CrossRef]
- Puyang, Y.; Yin, Z.; Qian, Z. Reversible data hiding in encrypted images with two-MSB prediction. In Proceedings of the IEEE International Workshop on Information Forensics and Security, Hong Kong, China, 11–13 December 2018; pp. 1–7. [Google Scholar]
- Puteaux, P.; Puech, W. EPE-based huge-capacity reversible data hiding in encrypted images. In Proceedings of the IEEE International Workshop on Information Forensics and Security, Hong Kong, China, 11–13 December 2018; pp. 1–7. [Google Scholar]
- Hirasawa, R.; Imaizumi, S.; Kiya, H. An MSB Prediction-Based Method with Marker Bits for Reversible Data Hiding in Encrypted Images. In Proceedings of the IEEE 3rd Global Conference on Life Sciences and Technologies, Nara, Japan, 9–11 March 2021; pp. 48–50. [Google Scholar]
- Wu, H.T.; Yang, Z.; Cheung, Y.M.; Xu, L.; Tang, S. High-capacity reversible data Hiding in encrypted images by bit plane partition and MSB prediction. IEEE Access. 2019, 7, 62361–62371. [Google Scholar] [CrossRef]
- Puteaux, P.; Puech, W. A recursive reversible data hiding in encrypted images method with a very high payload. IEEE Trans. Multimedia. 2021, 23, 636–650. [Google Scholar] [CrossRef]
- Imaizumi, S.; Izawa, Y.; Hirasawa, R.; Kiya, H. A Reversible Data Hiding Method in Compressible Encrypted Images. IEICE Trans. Fundamentals. 2020, E103-A, 1579–1588. [Google Scholar] [CrossRef]
- Puteaux, P.; Ong, S.Y.; Wong, K.S.; Puech, W. A survey of reversible data hiding in encrypted images – The first 12 years. J. Vis. Commun. Image Represent. 2021, 77, 103085. [Google Scholar] [CrossRef]
- Kurihara, K.; Kikuchi, M.; Imaizumi, S.; Shiota, S.; Kiya, H. An encryption-then-compression system for JPEG/Motion JPEG standard. IEICE Trans. Fundamentals. 2015, E98-A, 2238–2245. [Google Scholar] [CrossRef]
- Imaizumi, S.; Kiya, H. A block-permutation-based encryption scheme with independent processing of RGB components. IEICE Trans. Inf. Syst. 2018, E101-D, 3150–3157. [Google Scholar] [CrossRef] [Green Version]
- Weinberger, M.J.; Seroussi, G.; Sapiro, G. The LOCO-I lossless image compression algorithm: Principles and standardization into JPEG-LS. IEEE Trans. Image Process. 2000, 9, 1309–1324. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- International Organization for Standardization. ISO/IEC IS–15444–1 Information technology—JPEG 2000 Image Coding System—Part 1: Core Coding System; International Organization for Standardization: Geneva, Switzerland, 2019. [Google Scholar]
- Chuman, T.; Sirichotedumrong, W.; Kiya, H. Encryption-Then-Compression Systems Using Grayscale-Based Image Encryption for JPEG Images. IEEE Trans. Inf. Forensics Secur. 2019, 14, 1515–1525. [Google Scholar] [CrossRef] [Green Version]
- Kodak Lossless True Color Image Suite. Available online: https://www.math.purdue.edu/~lucier/PHOTO_CD/BMP_IMAGES/ (accessed on 6 December 2021).
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Motomura, R.; Imaizumi, S.; Kiya, H. A Reversible Data Hiding Method in Encrypted Images for Controlling Trade-Off between Hiding Capacity and Compression Efficiency. J. Imaging 2021, 7, 268. https://doi.org/10.3390/jimaging7120268
Motomura R, Imaizumi S, Kiya H. A Reversible Data Hiding Method in Encrypted Images for Controlling Trade-Off between Hiding Capacity and Compression Efficiency. Journal of Imaging. 2021; 7(12):268. https://doi.org/10.3390/jimaging7120268
Chicago/Turabian StyleMotomura, Ryota, Shoko Imaizumi, and Hitoshi Kiya. 2021. "A Reversible Data Hiding Method in Encrypted Images for Controlling Trade-Off between Hiding Capacity and Compression Efficiency" Journal of Imaging 7, no. 12: 268. https://doi.org/10.3390/jimaging7120268
APA StyleMotomura, R., Imaizumi, S., & Kiya, H. (2021). A Reversible Data Hiding Method in Encrypted Images for Controlling Trade-Off between Hiding Capacity and Compression Efficiency. Journal of Imaging, 7(12), 268. https://doi.org/10.3390/jimaging7120268