Circular Pear Production Using Compost Fertilization: Influence on Tree Growth and Nitrogen Leaf Concentration
<p>Romanian disease-resistant pear cultivars.</p> "> Figure 2
<p>The experimental design for the compost fertilization study.</p> "> Figure 3
<p>Total N concentration (%) dynamic for ‘Tudor’ pear cultivar fertilized with compost (a,b—significance letters, Tukey post-hoc test, <span class="html-italic">p</span> < 0.5).</p> "> Figure 4
<p>Total N concentration (%) dynamic for ‘Corina’ pear cultivar fertilized with compost (a,b—significance letters, Tukey post-hoc test, <span class="html-italic">p</span> < 0.5).</p> "> Figure 5
<p>Total N concentration (%) dynamic for the ‘Cristal’ pear cultivar fertilized with compost (a,b—significance letters, Tukey post-hoc test, <span class="html-italic">p</span> < 0.5).</p> "> Figure 6
<p>Total N concentration (%) dynamic for ‘Orizont’ pear cultivar fertilized with compost (a,b—significance letters, Tukey post-hoc test, <span class="html-italic">p</span> < 0.5).</p> "> Figure 7
<p>Total N concentration (%) dynamic for ‘Romcor’ pear cultivar fertilized with compost (a,b—significance letters, Tukey post-hoc test, <span class="html-italic">p</span> < 0.5).</p> "> Figure 8
<p>Total N concentration (%) dynamic for ‘Euras’ pear cultivar fertilized with compost (a,b—significance letters, Tukey post-hoc test, <span class="html-italic">p</span> < 0.5).</p> "> Figure 9
<p>Comparison between pear cultivars on Quince rootstock: total N concentration (%) dynamic (a,b—significance letters, Tukey post-hoc test, <span class="html-italic">p</span> < 0.5).</p> "> Figure 10
<p>Comparison between pear cultivars on their own roots: total N concentration (%) dynamic (a,b—significance letters, Tukey post-hoc test, <span class="html-italic">p</span> < 0.5).</p> "> Figure 11
<p>Comparison between pear cultivars on Franc rootstock: total N concentration (%) dynamic (a,b—significance letters, Tukey post-hoc test, <span class="html-italic">p</span> < 0.5).</p> "> Figure 12
<p>Comparison between pear cultivars on Quince rootstock: total C concentration (%) dynamic (a,b—significance letters, Tukey post-hoc test, <span class="html-italic">p</span> < 0.5).</p> "> Figure 13
<p>Comparison between pear cultivars on own-rooted: total C concentration (%) dynamic (a,b—significance letters, Tukey post-hoc test, <span class="html-italic">p</span> < 0.5).</p> "> Figure 14
<p>Comparison between pear cultivars on Franc rootstock: total C concentration (%) dynamic (a,b—significance letters, Tukey post-hoc test, <span class="html-italic">p</span> < 0.5).</p> "> Figure 15
<p>The influence of the fertilization scheme on the soil respiration coefficient (µmol m<sup>−2</sup> s<sup>−1</sup>).</p> "> Figure 16
<p>Heatmap of average IAD in pear fruits correlated by Cultivar × Rootstock × Fertilization.</p> "> Figure 17
<p>Dynamics of IAD for ‘Tudor’ pear cultivar by Rootstock × Fertilization.</p> "> Figure 18
<p>Dynamics of IAD for ‘Cristal’ pear cultivar by Rootstock × Fertilization.</p> "> Figure 19
<p>Dynamics of IAD for ‘Corina’ pear cultivar by Rootstock × Fertilization.</p> "> Figure 20
<p>Dynamics of IAD for ‘Orizont’ pear cultivar by Rootstock × Fertilization.</p> "> Figure 21
<p>Dynamics of IAD for ‘Romcor’ pear cultivar by Rootstock × Fertilization.</p> "> Figure 22
<p>Dynamics of IAD for ‘Euras’ pear cultivar by Rootstock × Fertilization.</p> "> Figure 23
<p>TCSA growth rate (2023–2022) comparison by Cultivar × Rootstock × Fertilization.</p> "> Figure 24
<p>Total annual vegetative growth rate (2023–2022) comparison by Cultivar × Rootstock × Fertilization.</p> "> Figure 25
<p>Total rate (2023–2022) comparison by Cultivar × Rootstock × Fertilization for annual fruiting shoots.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Setup
2.2. Compost Fertilization
Experimental Design
2.3. Total Nitrogen (N) and Carbon (C) Concentration in Leaves Analyses
2.4. Determination of the Soil Respiration Coefficient as a Soil Microbiota Parameter Indicator
2.5. Fruit Ripening (Phenophases BBCH70-87) Corresponding to the Experimental Variants, Measured in IAD (Using a DA-Meter)
2.6. Analysis of Annual Vegetative Growth After Compost Application (2022–2023)
2.7. Statistical Data Analyses
3. Results
3.1. Compost Application’s Influence on Nitrogen (N) Absorption in the Pear Tree Leaves and Carbon Concentration Is Correlated to Cultivar × Rootstock
3.1.1. Nitrogen Absorption in Pear Leaves
3.1.2. Carbon Concentration in Pear Leaves Correlated to Cultivar × Rootstock
3.2. Determination of the Soil Respiration Coefficient as a Soil Microbiota Parameter Indicator
3.3. Maturity Stage of the Fruits
3.4. Influence of the Compost Fertilization on the Annual Vegetative Growth
3.4.1. Trunk Cross-Section Area Growth Rate
3.4.2. Total Annual Vegetative Growth
3.4.3. Total Annual Fruiting Shoots by Number
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Eurostat Waste Statistics. Available online: https://ec.europa.eu/eurostat/statistics-explained/index.php?title=Waste_statistics (accessed on 21 October 2024).
- Awasthi, A.K.; Cheela, V.R.S.; D’Adamo, I.; Iacovidou, E.; Islam, M.R.; Johnson, M.; Miller, T.R.; Parajuly, K.; Parchomenko, A.; Radhakrishan, L.; et al. Zero Waste Approach towards a Sustainable Waste Management. Resour. Environ. Sustain. 2021, 3, 100014. [Google Scholar] [CrossRef]
- Klug, K.; Niemand, T. The Lifestyle of Sustainability: Testing a Behavioral Measure of Precycling. J. Clean. Prod. 2021, 297, 126699. [Google Scholar] [CrossRef]
- Zaman, A.U. A Comprehensive Review of the Development of Zero Waste Management: Lessons Learned and Guidelines. J. Clean. Prod. 2015, 91, 12–25. [Google Scholar] [CrossRef]
- Zaman, A.U.; Lehmann, S. The Zero Waste Index: A Performance Measurement Tool for Waste Management Systems in a ‘Zero Waste City’. J. Clean. Prod. 2013, 50, 123–132. [Google Scholar] [CrossRef]
- Bogusz, M.; Matysik-Pejas, R.; Krasnodębski, A.; Dziekański, P. The Concept of Zero Waste in the Context of Supporting Environmental Protection by Consumers. Energies 2021, 14, 5964. [Google Scholar] [CrossRef]
- Zaman, A. Zero-Waste: A New Sustainability Paradigm for Addressing the Global Waste Problem. In The Vision Zero Handbook; Edvardsson Björnberg, K., Hansson, S.O., Belin, M.-Å., Tingvall, C., Eds.; Springer International Publishing: Cham, Switzerland, 2023; pp. 1195–1218. ISBN 978-3-030-76504-0. [Google Scholar]
- Kirchherr, J.; Reike, D.; Hekkert, M. Conceptualizing the Circular Economy: An Analysis of 114 Definitions. Resour. Conserv. Recycl. 2017, 127, 221–232. [Google Scholar] [CrossRef]
- Liu, Q.; Li, H.; Zuo, X.; Zhang, F.; Wang, L. A Survey and Analysis on Public Awareness and Performance for Promoting Circular Economy in China: A Case Study from Tianjin. J. Clean. Prod. 2009, 17, 265–270. [Google Scholar] [CrossRef]
- Lieder, M.; Rashid, A. Towards Circular Economy Implementation: A Comprehensive Review in Context of Manufacturing Industry. J. Clean. Prod. 2016, 115, 36–51. [Google Scholar] [CrossRef]
- Van Buren, N.; Demmers, M.; Van Der Heijden, R.; Witlox, F. Towards a Circular Economy: The Role of Dutch Logistics Industries and Governments. Sustainability 2016, 8, 647. [Google Scholar] [CrossRef]
- Kirchherr, J.; Yang, N.-H.N.; Schulze-Spüntrup, F.; Heerink, M.J.; Hartley, K. Conceptualizing the Circular Economy (Revisited): An Analysis of 221 Definitions. Resour. Conserv. Recycl. 2023, 194, 107001. [Google Scholar] [CrossRef]
- Arruda, E.H.; Melatto, R.A.P.B.; Levy, W.; Conti, D.D.M. Circular Economy: A Brief Literature Review (2015–2020). Sustain. Oper. Comput. 2021, 2, 79–86. [Google Scholar] [CrossRef]
- De Pascale, A.; Arbolino, R.; Szopik-Depczyńska, K.; Limosani, M.; Ioppolo, G. A Systematic Review for Measuring Circular Economy: The 61 Indicators. J. Clean. Prod. 2021, 281, 124942. [Google Scholar] [CrossRef]
- Nikolaou, I.E.; Tsagarakis, K.P. An Introduction to Circular Economy and Sustainability: Some Existing Lessons and Future Directions. Sustain. Prod. Consum. 2021, 28, 600–609. [Google Scholar] [CrossRef]
- Borrello, M.; Pascucci, S.; Cembalo, L. Three Propositions to Unify Circular Economy Research: A Review. Sustainability 2020, 12, 4069. [Google Scholar] [CrossRef]
- Geissdoerfer, M.; Savaget, P.; Bocken, N.M.P.; Hultink, E.J. The Circular Economy—A New Sustainability Paradigm? J. Clean. Prod. 2017, 143, 757–768. [Google Scholar] [CrossRef]
- Velenturf, A.P.M.; Purnell, P. Principles for a Sustainable Circular Economy. Sustain. Prod. Consum. 2021, 27, 1437–1457. [Google Scholar] [CrossRef]
- Morseletto, P. Targets for a Circular Economy. Resour. Conserv. Recycl. 2020, 153, 104553. [Google Scholar] [CrossRef]
- Corvellec, H.; Stowell, A.F.; Johansson, N. Critiques of the Circular Economy. J. Ind. Ecol. 2022, 26, 421–432. [Google Scholar] [CrossRef]
- Calisto Friant, M.; Vermeulen, W.J.V.; Salomone, R. Analysing European Union Circular Economy Policies: Words Versus Actions. Sustain. Prod. Consum. 2021, 27, 337–353. [Google Scholar] [CrossRef]
- Awan, U.; Sroufe, R. Sustainability in the Circular Economy: Insights and Dynamics of Designing Circular Business Models. Appl. Sci. 2022, 12, 1521. [Google Scholar] [CrossRef]
- Grafström, J.; Aasma, S. Breaking Circular Economy Barriers. J. Clean. Prod. 2021, 292, 126002. [Google Scholar] [CrossRef]
- Sandu, M.A.; Virsta, A. The Water Footprint in Context of Circular Economy. AgroLife Sci. J. 2021, 10, 170–177. [Google Scholar] [CrossRef]
- Neves, S.A.; Marques, A.C. Drivers and Barriers in the Transition from a Linear Economy to a Circular Economy. J. Clean. Prod. 2022, 341, 130865. [Google Scholar] [CrossRef]
- Vîrsta, A.; Sandu, M.A.; Daraban, A.E. Dealing with the Transition from in Line Economy to Circular Economy—Public Awareness Investigation in Bucharest. AgroLife Sci. J. 2020, 9, 355–361. [Google Scholar]
- Koul, B.; Yakoob, M.; Shah, M.P. Agricultural Waste Management Strategies for Environmental Sustainability. Environ. Res. 2022, 206, 112285. [Google Scholar] [CrossRef]
- Farhidi, F.; Madani, K.; Crichton, R. How the US Economy and Environment Can Both Benefit From Composting Management. Environ. Health Insights 2022, 16, 11786302221128454. [Google Scholar] [CrossRef]
- Kliopova, I. Integrated Waste Management System for Resort Town. Environ. Res. Eng. Manag. 2016, 72, 31–55. [Google Scholar] [CrossRef]
- Morrow, O.; Davies, A. Creating Careful Circularities: Community Composting in New York City. Trans. Inst. Br. Geogr. 2022, 47, 529–546. [Google Scholar] [CrossRef]
- Bruni, C.; Akyol, Ç.; Cipolletta, G.; Eusebi, A.L.; Caniani, D.; Masi, S.; Colón, J.; Fatone, F. Decentralized Community Composting: Past, Present and Future Aspects of Italy. Sustainability 2020, 12, 3319. [Google Scholar] [CrossRef]
- Dusa, E.M.; Sicuia, O.; Stan, V. Study on the Effects of Fertilization on the Abundance of Soil Microbial Community, Its Composition and Antifungal Efficacy. AgroLife Sci. J. 2022, 11, 39–51. [Google Scholar] [CrossRef]
- Bertici, R.; Dicu, D.; Herbei, M.; Sala, F. Model for Describing the Variation of Some Agrochemical Indices of the Soil. AgroLife Sci. J. 2022, 11, 18–26. [Google Scholar] [CrossRef]
- Sharaf, H.; Thompson, A.A.; Williams, M.A.; Peck, G.M. Compost Applications Increase Bacterial Community Diversity in the Apple Rhizosphere. Soil Sci. Soc. Am. J. 2021, 85, 1105–1121. [Google Scholar] [CrossRef]
- Cojocaru, O. Ecosystem—Reproduction of Sustainable Structure in Agriculture as a Factor of Soil Fertility. AgroLife Sci. J. 2019, 8, 71–76. [Google Scholar]
- Ayilara, M.; Olanrewaju, O.; Babalola, O.; Odeyemi, O. Waste Management through Composting: Challenges and Potentials. Sustainability 2020, 12, 4456. [Google Scholar] [CrossRef]
- Waqas, M.; Hashim, S.; Humphries, U.W.; Ahmad, S.; Noor, R.; Shoaib, M.; Naseem, A.; Hlaing, P.T.; Lin, H.A. Composting Processes for Agricultural Waste Management: A Comprehensive Review. Processes 2023, 11, 731. [Google Scholar] [CrossRef]
- Zhou, Y.; Xiao, R.; Klammsteiner, T.; Kong, X.; Yan, B.; Mihai, F.-C.; Liu, T.; Zhang, Z.; Kumar Awasthi, M. Recent Trends and Advances in Composting and Vermicomposting Technologies: A Review. Bioresour. Technol. 2022, 360, 127591. [Google Scholar] [CrossRef]
- Von Heynicz, K. Compost in the Household; Casa Publisher House: Bihor, Romania, 2012; ISBN 978-606-8189-58-1. [Google Scholar]
- Palaniveloo, K.; Amran, M.A.; Norhashim, N.A.; Mohamad-Fauzi, N.; Peng-Hui, F.; Hui-Wen, L.; Kai-Lin, Y.; Jiale, L.; Chian-Yee, M.G.; Jing-Yi, L.; et al. Food Waste Composting and Microbial Community Structure Profiling. Processes 2020, 8, 723. [Google Scholar] [CrossRef]
- Liu, M.; Wang, J.; Wang, L.; Liu, P.; Zhao, J.; Zhao, Z.; Yao, S.; Stănică, F.; Liu, Z.; Wang, L.; et al. The Historical and Current Research Progress on Jujube—A Superfruit for the Future. Hortic. Res. 2020, 7, 119. [Google Scholar] [CrossRef]
- Azis, F.A.; Rijal, M.; Suhaimi, H.; Abas, P.E. Patent Landscape of Composting Technology: A Review. Inventions 2022, 7, 38. [Google Scholar] [CrossRef]
- Kliopova, I.; Staniškis, J.K.; Stunžėnas, E.; Jurovickaja, E. Bio-Nutrient Recycling with a Novel Integrated Biodegradable Waste Management System for Catering Companies. J. Clean. Prod. 2019, 209, 116–125. [Google Scholar] [CrossRef]
- Raclavská, H.; Růžičková, J.; Juchelková, D.; Šafář, M.; Brťková, H.; Slamová, K. The Quality of Composts Prepared in Automatic Composters from Fruit Waste Generated by the Production of Beverages. Bioresour. Technol. 2021, 341, 125878. [Google Scholar] [CrossRef] [PubMed]
- Kucbel, M.; Raclavská, H.; Růžičková, J.; Švédová, B.; Sassmanová, V.; Drozdová, J.; Raclavský, K.; Juchelková, D. Properties of Composts from Household Food Waste Produced in Automatic Composters. J. Environ. Manag. 2019, 236, 657–666. [Google Scholar] [CrossRef] [PubMed]
- Chen, T.; Zhang, S.; Yuan, Z. Adoption of Solid Organic Waste Composting Products: A Critical Review. J. Clean. Prod. 2020, 272, 122712. [Google Scholar] [CrossRef]
- Walling, E.; Trémier, A.; Vaneeckhaute, C. A Review of Mathematical Models for Composting. Waste Manag. 2020, 113, 379–394. [Google Scholar] [CrossRef]
- DuPont, T.; Granatstein, D.; Sallato, B. Soil Health in Orchards; Washington State University Extension; Pullman, WA, USA, 2020.
- Assefa, S. The Principal Role of Organic Fertilizer on Soil Properties and Agricultural Productivity—A Review. Agric. Res. Technol. Open Access J. 2019, 22, 556192. [Google Scholar] [CrossRef]
- Chatzistathis, T.; Kavvadias, V.; Sotiropoulos, T.; Papadakis, I.E. Organic Fertilization and Tree Orchards. Agriculture 2021, 11, 692. [Google Scholar] [CrossRef]
- Lawrence, B.T.; Melgar, J.C. Annual Compost Amendments Can Replace Synthetic Fertilizer, Improve Soil Moisture, and Ensure Tree Performance during Peach Orchard Establishment in a Humid Subtropical Climate. Front. Plant Sci. 2023, 14, 1172038. [Google Scholar] [CrossRef]
- Wang, Y.; Tang, Y.; Yuan, Z. Improving Food Waste Composting Efficiency with Mature Compost Addition. Bioresour. Technol. 2022, 349, 126830. [Google Scholar] [CrossRef]
- Shi, C.; Wang, X.; Jiang, S.; Zhang, L.; Luo, J. Revealing the Role of the Rhizosphere Microbiota in Reproductive Growth for Fruit Productivity When Inorganic Fertilizer Is Partially Replaced by Organic Fertilizer in Pear Orchard Fields. Microb. Biotechnol. 2023, 16, 1373–1392. [Google Scholar] [CrossRef]
- Musacchi, S. Analysis of Pear Sustainability: What Are the Limitations and Opportunities? Acta Hortic. 2024, 1403, 1–20. [Google Scholar] [CrossRef]
- Ghena, N.; Braniste, N. Cultura Specială a Pomilor [Tree Special Cultivation]; Matrix Rom: Bucharest, Romania, 2003. (In Romanian) [Google Scholar]
- Andreies, N. Achievements in Pear Breeding Obtained at the Voinești Fruit Growing Research and Development Station; Pitesti: Arges, Romania, 2017. [Google Scholar]
- Stănică, F.; Asănică, A.C.; Mihai, C.A.; Butcaru, A.C.; Andreieș, N. Fire-Blight Tolerant/Resistant Romanian Pear Cultivars. Acta Hortic. 2024, 1403, 95–104. [Google Scholar] [CrossRef]
- Musacchi, S.; Iglesias, I.; Neri, D. Training Systems and Sustainable Orchard Management for European Pear (Pyrus communis L.) in the Mediterranean Area: A Review. Agronomy 2021, 11, 1765. [Google Scholar] [CrossRef]
- Sharma, J.B.; Chauhan, N.; Rana, K.; Bakshi, M. Evaluation of Rootstocks for Temperate Fruit Crops-A Review. Int. J. Curr. Microbiol. Appl. Sci. 2020, 9, 3533–3539. [Google Scholar] [CrossRef]
- Plavcová, L.; Mészáros, M.; Šilhán, K.; Jupa, R. Relationships between Trunk Radial Growth and Fruit Yield in Apple and Pear Trees on Size-Controlling Rootstocks. Ann. Bot. 2022, 130, 477–489. [Google Scholar] [CrossRef] [PubMed]
- Öztürk, A. The Effects of Different Rootstocks on the Graft Success and Stion Development of Some Pear Cultivars. Int. J. Fruit Sci. 2021, 21, 932–944. [Google Scholar] [CrossRef]
- Spornberger, A.; Osterc, G.; Schüller, E.; Noll, D. Vermehrung von Birnenbäumen der Sorte ‘Uta’ als Grünsteckling und Anbauverhalten im Vergleich zu Wurzelechten aus in vitro Vermehrung und auf zwei Unterlagen veredelten Bäumen unter biologischen Anbaubedingungen in Ostösterreich. Erwerbs-Obstbau 2021, 63, 125–133. [Google Scholar] [CrossRef]
- Coban, N. Effect of Rootstock and Cultivars on Some Branch and Leaf Characteristics in Pear. Turk. J. Food Agric. Sci. 2020, 2, 15–22. [Google Scholar] [CrossRef]
- Kurt, T.; Öztürk, A.; FaïZï, Z.A. Survival Rate of Young Pear Trees in Different Rootstock and Cultivar Combinations under Field Conditions: Preliminary Results. ANADOLU J. Agric. Sci. 2022, 37, 405–420. [Google Scholar] [CrossRef]
- Pasa, M.D.S.; Schmitz, J.D.; Rosa Júnior, H.F.D.; Souza, A.L.K.D.; Malgarim, M.B.; Mello-Farias, P.C.D. Performance of ‘William’s’ Pear Grafted onto Three Rootstocks. Rev. Ceres 2020, 67, 133–136. [Google Scholar] [CrossRef]
- Mészáros, M.; Laňar, L.; Kosina, J.; Náměstek, J. Aspects Influencing the Rootstock—Scion Performance during Long Term Evaluation in Pear Orchard. Hortic. Sci. 2019, 46, 1–8. [Google Scholar] [CrossRef]
- Kul, Y.M.; Öztürk, A.; Faizi, Z.A. Evaluation of Different Rootstocks and Cultivars on Pruning Weight in Young Pear Trees. Black Sea J. Agric. 2022, 5, 440–447. [Google Scholar] [CrossRef]
- Almeida, G.K.D.; Fioravanço, J.C.; Marodin, G.A.B. Vegetative Growth and Productive Performance of “Abate Fetel” and “Rocha” Pear Trees on Quince Rootstocks. Pesqui. Agropecuária Bras. 2020, 55, e01306. [Google Scholar] [CrossRef]
- Caracciolo, G.; Pietrella, M.; Pallotti, G.; Faedi, G.; Sirri, S.; Baruzzi, G. Productivity and Fruit Quality of ‘FalstaffPBR’ Pear Variety Grafted on Different Rootstocks. Horticulturae 2024, 10, 237. [Google Scholar] [CrossRef]
- Hudina, M.; Jakopic, J.; Veberic, R. Long-Term Performance of the Pear (Pyrus communis L.) Cultivars ‘Williams’, ‘Abate Fetel’ and ‘Conference’ Grafted on Various Rootstocks. Acta Hortic. 2024, 1403, 313–320. [Google Scholar] [CrossRef]
- Iqbal, M.; Singh, K.K. Propagation of Temperate Fruit Crops. Available online: https://www.researchgate.net/publication/343837097_Propagation_of_Temperate_Fruit_Crops (accessed on 21 October 2024).
- Wu, Y.; Sun, M.; Liu, J.; Wang, W.; Liu, S. Fertilizer and Soil Nitrogen Utilization of Pear Trees as Affected by the Timing of Split Fertilizer Application in Rain-Fed Orchard. Sci. Hortic. 2019, 252, 363–369. [Google Scholar] [CrossRef]
- Bright, J. Apple and pear nutrition. Primefact 2005, 85, 1–12. [Google Scholar]
- Chira, L.; Chira, A.; Delian, E.; Ion, L.; Nicolae, C. Studies Regarding the Economical Approach of Pear Fruits Commercialization According to the Qualitative Aspects. Sci. Pap. Ser. Manag. Econ. Eng. Agric. Rural Dev. 2020, 20, 131–136. [Google Scholar]
- Wertheim, S.J. Rootstocks for European Pear: A Review. Acta Hortic. 2002, 596, 299–309. [Google Scholar] [CrossRef]
- Peticilă, A.G.; Madjar, R.M.; Drăghici, E.M.; Stănică, F.; Asănică, A.; Ciubotărăşu, R.; Butcaru, A.C. Results Regarding the 24-Hour Composts (Oklin) Composition and Their Use as Fertiliser. Sci. Pap. Ser. B Hortic. 2023, LXVII, 536–545. [Google Scholar]
- Moț, A.; Ion, V.A.; Madjar, R.M.; Bădulescu, L. Dynamic PREGL-DUMAS Technique Applied in Nitrogen Determination from Inputs Used in Organic Agriculture. Sci. Pap. Ser. Agron. 2022, LXV, 105–110. [Google Scholar]
- Butcaru, A.C. Post-Harvest Monitoring of Pear Fruit Quality Parameters Using Da-Meter. Ann. Univ. Craiova Ser. Biol. Hortic. Food Prod. Process. Technol. Environ. Eng. 2021, 26, 21–26. [Google Scholar] [CrossRef]
- Tahir, I.; Vangdal, E. Determination of Optimum Harvest Maturity for Five Apple Cultivars Using the Chlorophyll Absorbance Index. Acta Hortic. 2019, 1261, 219–224. [Google Scholar] [CrossRef]
- Turpin, S.R.; Stefanelli, D.; Jones, L.; Norton, J.; Probst, R.; Konings, J.; Langford, G. Perfect Pears for the Next Generation of Consumers. Acta Hortic. 2016, 1120, 507–514. [Google Scholar] [CrossRef]
- Bonora, E. Modeling Systems and vis/NIR Device to Improve Peach and Nectarine Pre and Post-Harvest Fruit Maturity Management; Alma Mater Studiorum—Università di Bologna, 2013.
- Vidoni, S.; Rocchi, L.; Donati, I.; Spinelli, F.; Costa, G. Combined Use of Planttoon® and IAD to Characterize Fruit Ripening Homogeneity in “Abbé Fétel” Pears. Acta Hortic. 2015, 1094, 495–499. [Google Scholar] [CrossRef]
- Torres, C.A.; Valdivia, A.; Jorquera, G.; Hernandez, O. The Use of DA Meter to Assess Apple and Pear Maturity in Chile. Acta Hortic. 2019, 1256, 63–70. [Google Scholar] [CrossRef]
- Gomes, R.; Silva, F.; Oliveira, C.M. Utilizing the I AD Index to Predict ‘Rocha’ Pear Quality and Physiological Disorders after Storage. Acta Hortic. 2021, 1303, 461–468. [Google Scholar] [CrossRef]
- Costa, G.; Rocchi, L.; Farneti, B.; Busatto, N.; Spinelli, F.; Vidoni, S. Use of Nondestructive Devices to Support Pre- and Postharvest Fruit Management. Horticulturae 2016, 3, 12. [Google Scholar] [CrossRef]
- Wang, Y.; Castagnoli, S.; Sugar, D. Integrating IAD Index into the Current Firmness-Based Maturity Assessment of European Pears. Acta Hortic. 2015, 1094, 525–531. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhao, Y.; Chen, Y.; Lu, Q.; Li, M.; Wang, X.; Wei, Y.; Xie, X.; Wei, Z. A Regulating Method for Reducing Nitrogen Loss Based on Enriched Ammonia-Oxidizing Bacteria during Composting. Bioresour. Technol. 2016, 221, 276–283. [Google Scholar] [CrossRef]
- Kumar, N.; Gupta, S.K. Exploring the Feasibility of Thermal Digestion Process: A Novel Technique, for the Rapid Treatment and Reuse of Solid Organic Waste as Organic Fertilizer. J. Clean. Prod. 2021, 318, 128600. [Google Scholar] [CrossRef]
- Wang, D.; Ding, C.; Feng, Z.; Ji, S.; Cui, D. Recent Advances in Portable Devices for Fruit Firmness Assessment. Crit. Rev. Food Sci. Nutr. 2023, 63, 1143–1154. [Google Scholar] [CrossRef] [PubMed]
- Dar, M.A.; Wani, J.A.; Sanjay Kumar, R.; Bhat, M.Y.; Malik, M.A. Relationship of Leaf Nutrient Content with Fruit Yield and Quality of Pear. J. Environ. Biol. 2015, 36, 649–653. [Google Scholar]
- Sete, P.B.; Comin, J.J.; Nara Ciotta, M.; Almeida Salume, J.; Thewes, F.; Brackmann, A.; Toselli, M.; Nava, G.; Rozane, D.E.; Loss, A.; et al. Nitrogen Fertilization Affects Yield and Fruit Quality in Pear. Sci. Hortic. 2019, 258, 108782. [Google Scholar] [CrossRef]
- Perazzoli, B.E.; Pauletti, V.; Quartieri, M.; Toselli, M.; Gotz, L.F. Changes in Leaf Nutrient Content and Quality of Pear Fruits by Biofertilizer Application in Northeastern Italy. Rev. Bras. Frutic. 2020, 42, e-530. [Google Scholar] [CrossRef]
- Kučinskas, O.; Marozas, V.; Kučinskas, O. Diurnal and Seasonal Soil CO2 Efflux Variation in Scots Pine (Pinus sylvestris L.) Forests in the European Hemi-Boreal Zone, Lithuania. J. Elem. 2021, 26, 731–754. [Google Scholar] [CrossRef]
- Sasnauskienė, J.; Sabienė, N.; Marozas, V.; Česonienė, L.; Lingytė, K. Soil Respiration in Stands of Different Tree Species. In Proceedings of the 8th International Scientific Conference, Akademija, Lithuania, 23–24 November 2017; Aleksandras Stulginskis University: Akademija, Lithuania, 2018. [Google Scholar] [CrossRef]
- Erälinna, L.; Szymoniuk, B. Managing a Circular Food System in Sustainable Urban Farming. Experimental Research at the Turku University Campus (Finland). Sustainability 2021, 13, 6231. [Google Scholar] [CrossRef]
- Torrijos, V.; Calvo Dopico, D.; Soto, M. Integration of Food Waste Composting and Vegetable Gardens in a University Campus. J. Clean. Prod. 2021, 315, 128175. [Google Scholar] [CrossRef]
- Olukanni, D.O.; Ogedengbe, V.O.; Ogundare, O.J. Examining the Potential Recovery of Compost from Mixed Fruit Wastes from a Campus Eatery Wastes. IOP Conf. Ser. Mater. Sci. Eng. 2021, 1036, 012065. [Google Scholar] [CrossRef]
- Vatsanidou, A.; Fountas, S.; Liakos, V.; Nanos, G.; Katsoulas, N.; Gemtos, T. Life Cycle Assessment of Variable Rate Fertilizer Application in a Pear Orchard. Sustainability 2020, 12, 6893. [Google Scholar] [CrossRef]
Cultivar | Rootstock | Fertilization | 2021 | 2022 | 2023 | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
August | October | May | June | October | May | June | August | October | |||
‘Corina’ | Franc | Compost | 47.01 (a) | 41.67 (a) | 47.71 (a) | 47.45 (a) | 47.52 (a) | 46.02 (a) | 45.56 (a) | 52.14 (a) | 47.45 (b) |
Control | 47.22 (a) | 38.12 (a) | 48.57 (a) | 47.42 (a) | 44.15 (b) | 45.16 (a) | 46.03 (a) | 47.19 (b) | 51.36 (a) | ||
Own roots | Compost | 48.90 (a) | - | 48.40 (a) | 47.43 (b) | 44.69 (a) | 46.56 (a) | 48.24 (a) | 47.75 (a) | 46.30 (b) | |
Control | 47.65 (a) | - | 47.51 (a) | 48.44 (a) | 46.02 (a) | 46.11 (a) | 47.95 (a) | 47.55 (a) | 50.95 (a) | ||
Quince | Compost | 48.40 (a) | 43.92 (a) | 47.00 (b) | 46.76 (a) | 43.50 (b) | 45.06 (a) | 46.10 (a) | 46.90 (a) | 46.88 (a) | |
Control | 46.51 (b) | 46.03 (a) | 48.22 (a) | 43.49 (b) | 46.41 (a) | 45.65 (a) | 47.25 (a) | 46.92 (a) | 46.6 (a) | ||
‘Cristal’ | Franc | Compost | 47.69 (b) | 29.02 (b) | 53.12 (a) | 47.48 (a) | 43.44 (a) | 44.59 (a) | 46.5 (a) | 51.14 (a) | 47.28 (a) |
Control | 49.43 (a) | 42.04 (a) | 47.84 (a) | 46.13 (b) | 37.6 (b) | 44.61 (a) | 44.5 (a) | 45.77 (b) | 45.00 (b) | ||
Own roots | Compost | 47.92 (a) | 25.99 (a) | 48.41 (a) | 46.61 (b) | 44.96 (b) | 45.74 (a) | 48.02 (a) | 45.94 (b) | 46.4 (a) | |
Control | 48.64 (a) | 29.51 (a) | 48.39 (a) | 48.13 (a) | 46.92 (a) | 44.73 (a) | 48.02 (a) | 47.43 (a) | 45.66 (a) | ||
Quince | Compost | 47.01 (a) | 45.07 (a) | 48.03 (a) | 47.6 (a) | 45.59 (a) | 45.64 (a) | 45.44 (a) | - | 48.10 (a) | |
Control | 45.63 (b) | 42.39 (b) | 47.53 (a) | 47.18 (a) | 45.79 (a) | 44.91 (a) | 46.15 (a) | - | 46.83 (a) | ||
‘Euras’ | Franc | Compost | 45.58 (a) | 42.27 (a) | 52.02 (a) | 48.76 (a) | 43.35 (b) | 45.48 (a) | 48.09 (a) | 51.03 (a) | 48.69 (b) |
Control | 47.65 (a) | 30.29 (b) | 48.16 (a) | 49.00 (a) | 46.21 (a) | 46.46 (a) | 47.84 (a) | 47.29 (b) | 53.67 (a) | ||
Own roots | Compost | 48.70 (b) | - | 47.73 (b) | 49.54 (a) | 46.91 (a) | 46.62 (a) | 49.38 (a) | 47.52 (a) | 47.77 (a) | |
Control | 49.29 (a) | - | 50.32 (a) | 49.05 (a) | 44.15 (b) | 46.34 (a) | 47.65 (b) | 47.83 (a) | 48.87 (a) | ||
Quince | Compost | 49.10 (a) | 44.80 (a) | 47.31 (a) | 48.24 (a) | 33.72 (b) | 45.29 (a) | 46.22 (a) | 45.52 (a) | 47.01 (a) | |
Control | 47.56 (b) | 41.46 (b) | 47.49 (a) | 47.52 (b) | 44.49 (a) | 43.74 (b) | 46.24 (a) | 45.91 (a) | 45.57 (a) | ||
‘Orizont’ | Franc | Compost | 49.45 (a) | 44.01 (a) | 47.34 (b) | 47.33 (b) | 32.45 (b) | 47.05 (a) | 45.74 (b) | 51.93 (a) | 48.69 (b) |
Control | 48.37 (b) | 45.74 (a) | 49.49 (a) | 49.37 (a) | 46.38 (a) | 46.21 (b) | 47.03 (a) | 47.22 (b) | 53.49 (a) | ||
Own roots | Compost | 48.47 (a) | 24.20 (b) | 50.21 (a) | 48.07 (b) | 46.86 (b) | 46.95 (a) | 47.67 (a) | 48.12 (a) | 60.70 (a) | |
Control | 48.26 (a) | 32.86 (a) | 49.83 (a) | 49.78 (a) | 48.82 (a) | 45.87 (a) | 48.33 (a) | 47.94 (a) | 47.51 (b) | ||
Quince | Compost | 47.84 (a) | 22.83 (b) | 48.03 (a) | 49.14 (a) | 31.64 (b) | 46.18 (a) | 47.06 (a) | 52.25 (a) | 47.20 (a) | |
Control | 47.86 (a) | 43.63 (a) | 48.68 (a) | 48.49 (a) | 45.79 (a) | 45.24 (b) | 46.23 (a) | 46.27 (b) | 46.97 (a) | ||
‘Romcor’ | Franc | Compost | 48.71 (a) | 45.72 (a) | 47.35 (b) | 48.66 (b) | 47.46 (a) | 46.31 (a) | 45.49 (b) | 52.67 (a) | 46.21 (b) |
Control | 49.74 (a) | 45.30 (a) | 48.20 (a) | 50.57 (a) | 33.26 (b) | 46.23 (a) | 48.21 (a) | 48.77 (b) | 54.80 (a) | ||
Own roots | Compost | 49.28 (a) | 41.8 (b) | - | 48.83 (a) | 45.17 (a) | 45.78 (a) | 49.2 (a) | 47.58 (a) | 46.67 (b) | |
Control | 49.8 (a) | 44.7 (a) | - | 48.01 (b) | 48.22 (a) | 45.86 (a) | 46.11 (b) | 47.39 (a) | 51.33 (a) | ||
Quince | Compost | 47.19 (a) | 43.47 (a) | 46.67 (b) | 46.45 (b) | - | 44.01 (a) | 47.03 (a) | - | 47.97 (a) | |
Control | 47.69 (a) | 31.48 (b) | 49.3 (a) | 47.92 (a) | - | 44.53 (a) | 45.32 (b) | - | 45.32 (b) | ||
‘Tudor’ | Franc | Compost | 48.75 (a) | 28.95 (a) | - | 47.81 (a) | 43.94 (b) | 45.56 (a) | 47.85 (a) | 53.71 (a) | 49.33 (a) |
Control | 47.58 (b) | 29.51 (a) | - | 47.65 (a) | 45.18 (a) | 45.09 (a) | 46.97 (a) | 46.82 (b) | 46.10 (b) | ||
Own roots | Compost | 49.90 (a) | 45.89 (a) | 49.12 (a) | 47.19 (b) | 34.65 (b) | 47.19 (a) | 45.93 (a) | 47.45 (a) | 48.42 (a) | |
Control | 49.64 (a) | 46.77 (a) | 48.79 (a) | 48.76 (a) | 46.25 (a) | 45.77 (b) | 45.86 (a) | 46.81 (b) | 53.39 (a) | ||
Quince | Compost | 46.91 (b) | 41.24 (a) | 47.96 (a) | - | 42.93 (b) | 45.24 (a) | 45.90 (a) | 51.24 (a) | 47.26 (a) | |
Control | 47.75 (a) | 44.29 (a) | 47.14 (a) | - | 45.92 (a) | 44.99 (a) | 46.08 (a) | 45.55 (b) | 46.38 (a) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Butcaru, A.C.; Mihai, C.A.; Moț, A.; Gogoț, R.; Hoza, D.; Stănică, F. Circular Pear Production Using Compost Fertilization: Influence on Tree Growth and Nitrogen Leaf Concentration. Horticulturae 2024, 10, 1209. https://doi.org/10.3390/horticulturae10111209
Butcaru AC, Mihai CA, Moț A, Gogoț R, Hoza D, Stănică F. Circular Pear Production Using Compost Fertilization: Influence on Tree Growth and Nitrogen Leaf Concentration. Horticulturae. 2024; 10(11):1209. https://doi.org/10.3390/horticulturae10111209
Chicago/Turabian StyleButcaru, Ana Cornelia, Cosmin Alexandru Mihai, Andrei Moț, Ruxandra Gogoț, Dorel Hoza, and Florin Stănică. 2024. "Circular Pear Production Using Compost Fertilization: Influence on Tree Growth and Nitrogen Leaf Concentration" Horticulturae 10, no. 11: 1209. https://doi.org/10.3390/horticulturae10111209