The Cultivation of Lipid-Rich Microalgae Biomass as Anaerobic Digestate Valorization Technology—A Pilot-Scale Study
<p>The photobioreactor: (<b>a</b>) a general view, (<b>b</b>) a chamber for microalgae cultivation and (<b>c</b>) a control system.</p> "> Figure 2
<p>Microalgae biomass production over the cultivation time in stage 1.</p> "> Figure 3
<p>Microalgae biomass production over the cultivation time in Stage 2.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Design
2.2. Feedstock Origin and Characteristics, and the Microalgae Inoculum
2.3. Research Station and Operation Parameters
2.4. Analytical Methods
2.5. Statistical Methods
3. Results and Discussion
3.1. Stage 1
3.2. Stage 2
3.3. Stage 3
3.4. Stage 4
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Belotti, G.; Caprariis, B.; Filippis, P.; Scarsella, M.; Verdone, N. Effect of Chlorella vulgaris growing conditions on bio-oil production via fast pyrolysis. Biomass Bioenergy 2014, 61, 187–195. [Google Scholar] [CrossRef]
- Goli, A.; Shamiri, A.; Khosroyar, S.; Talaiekhozani, A.; Sanaye, R.; Azizi, K. A review on different aerobic and anaerobic treatment methods in dairy industry wastewater. J. Environ. Treat. Tech. 2019, 6, 113–141. [Google Scholar]
- Daneshvar, E.; Zarrinmehr, M.J.; Koutra, E.; Kornaros, M.; Farhadian, O.; Bhatnagar, A. Sequential cultivation of microalgae in raw and recycled dairy wastewater: Microalgal growth, wastewater treatment and biochemical composition. Bioresour. Technol. 2019, 273, 556–564. [Google Scholar] [CrossRef] [PubMed]
- García, L.M.; Gariépy, Y.; Barnabé, S.; Raghavan, V. Biorefinery of microalgae biomass cultivated in wastewaters. In Refining Biomass Residues for Sustainable Energy and Bioproducts; Academic Press: Cambridge, MA, USA, 2020; pp. 149–180. [Google Scholar]
- Sabliy, L.; Kuzminskiy, Y.; Zhukova, V.; Kozar, M.; Sobczuk, H. New approaches in biological wastewater treatment aimed at removal of organic matter and nutrients. Ecol. Chem. 2019, 26, 331–343. [Google Scholar] [CrossRef] [Green Version]
- Deviram, G.; Mathimani, T.; Anto, S.; Ahamed, T.S.; Ananth, D.A.; Pugazhendhi, A. Applications of microalgal and cyanobacterial biomass on a way to safe, cleaner and a sustainable environment. J. Clean. Prod. 2019, 253, 119770. [Google Scholar] [CrossRef]
- Zhu, S.; Huo, S.; Feng, P. Developing designer microalgal consortia: A suitable approach to sustainable wastewater treatment. In Microalgae Biotechnology for Development of Biofuel and Wastewater Treatment; Springer: Singapore, 2019; pp. 569–598. [Google Scholar]
- Chen, W.-H.; Lin, B.-J.; Huang, M.-Y.; Chang, J.-S. Thermochemical conversion of microalgal biomass into biofuels: A review. Bioresour. Technol. 2015, 184, 314–327. [Google Scholar] [CrossRef]
- Trivedi, J.; Aila, M.; Bangwal, D.P.; Kaul, S.; Garg, M.O. Algae based biorefinery—How to make sense? Renew. Sustain. Energy Rev. 2015, 47, 295–307. [Google Scholar] [CrossRef]
- Anto, S.; Mukherjee, S.S.; Muthappa, R.; Mathimani, T.; Deviram, G.; Kumar, S.S.; Verma, T.N.; Pugazhendhi, A. Algae as green energy reserve: Technological outlook on biofuel production. Chemosphere 2020, 242, 125079. [Google Scholar] [CrossRef]
- Jamwal, V.L.; Kapoor, N.; Gandhi, S.G. Biotechnology of Biofuels: Historical Overview, Business Outlook and Future Perspectives. In Biotechnology Business—Concept to Delivery. EcoProduction (Environmental Issues in Logistics and Manufacturing); Saxena, A., Ed.; Springer: Cham, Switzerland, 2020. [Google Scholar]
- Wang, Q.; Sun, J.; Liu, S.; Gao, L.; Zhou, X.; Wang, D.; Song, K.; Nghiem, L.D. Free ammonia pretreatment improves anaerobic methane generation from alga. Water Res. 2019, 162, 269–275. [Google Scholar] [CrossRef]
- Anwar, M.; Lou, S.; Chen, L.; Li, H.; Hu, Z. Recent advancement and strategy on bio-hydrogen production from photosynthetic microalgae. Bioresource Technol. 2019, 292, 121972. [Google Scholar] [CrossRef]
- Hao, X.; Peng, H.; Xu, P.; He, M.; Dou, B. Production of H2 by steam reforming in schizochytrium algae oil of cell disruption and extraction via ultrasound metod. Int. J. Hydrogen Energy 2019, 44, 15779–15786. [Google Scholar] [CrossRef]
- Guo, W.Q.; Zheng, H.S.; Li, S.; Du, J.S.; Feng, X.C.; Yin, R.L.; Wu, Q.L.; Ren, N.Q.; Chang, J.S. Removal of cephalosporin antibiotics 7-ACA from wastewater during the cultivation of lipid-accumulating microal-gae. Bioresour Technol. 2016, 221, 284–290. [Google Scholar] [CrossRef] [PubMed]
- Cheah, W.Y.; Ling, T.C.; Show, P.L.; Ching, J.J.; Chang, J.S.; Lee, D.L. Cultivation in waste-waters for energy: A microalgae platform. Appl. Energy 2016, 179, 609–625. [Google Scholar] [CrossRef]
- Quispea, C.A.G.; Coronadoc, C.J.R.; Carvalho, J.A., Jr. Glycerol: Production, consumption, prices, characterization and new trends in combustion. Renew. Sustain. Energy Rev. 2013, 27, 475–493. [Google Scholar] [CrossRef]
- Chisti, Y. Chapter 1—Introduction to algal fuels. In Biofuels from Algae Sustainable Platform for Fuels, Chemicals and Remediation Biomass, Biofuels, Biochemicals, 2nd ed.; Elsevier: Amsterdam, The Netherlands, 2019; pp. 1–31. [Google Scholar]
- Rayen, F.; Behnam, T.; Dominique, P. Optimization of a raceway pond system for wastewater treatment: A review. Crit. Rev. Biotechnol. 2019, 39, 422–435. [Google Scholar] [CrossRef] [PubMed]
- Suparmaniam, U.; Lam, M.K.; Uemura, Y.; Lim, J.W.; Lee, K.T.; Shuit, S.H. Insights into the microalgae cultivation technology and harvesting process for biofuel production: A review. Renew. Sustain. Energy Rev. 2019, 115, 109361. [Google Scholar] [CrossRef]
- Jiang, Y.; Chen, F. Effects of temperature and temperature shift on doc-osahexaenoic acid production by the marine microalga Crypthecodinium cohnii. J. Am. Oil. Chem. Soc. 2000, 77, 613–617. [Google Scholar] [CrossRef]
- Wen, Z.Y.; Chen, F. Application of statistically-based experimental designs for the optimization of eicosapentaenoic acid production by the diatom Nitzschia laevis. Biotech. Bioeng. 2001, 75, 159–169. [Google Scholar] [CrossRef]
- Richmond, A. Microalgaculture. CRC Crit. Rev. Biotechnol. 1986, 4, 369–438. [Google Scholar] [CrossRef]
- Higashiyama, K.; Murakami, K.; Tsujimura, H.; Matsumoto, N.; Fujikawa, S. Effects of dissolved oxygen on the morphology of an arachidonic acid production by Mortierella alpina 1S-4. Biotech. Bioeng. 1999, 63, 442–448. [Google Scholar] [CrossRef]
- Guo, Z.; Chen, Z.; Zhang, W.; Yu, X.; Jin, M. Improved hydrogen photoproduction regulated by carbonylcyanide m-chlorophenylhrazone from marine green alga Platymonas subcordiformis grown in CO2-supplemented air bubble column bioreactor. Biotechnol. Lett. 2008, 30, 877–883. [Google Scholar] [CrossRef] [PubMed]
- Ji, C.F.; Yu, X.J.; Chen, Z.A.; Xue, S.; Legrand, J.; Zhang, W. Effects of nutrient deprivation on biochemical compositions and photo-hydrogen production of Tetraselmis subcordiformis. Int. J. Hydrogen Energy 2011, 36, 5817–5821. [Google Scholar] [CrossRef]
- Maxwell, D.P.; Falk, S.; Trick, C.G.; Huner, N.P.A. Growth at low temperature mimics high-light acclimation in Chlorella vulgaris. Plant Physiol. 1994, 105, 535–543. [Google Scholar] [CrossRef] [PubMed]
- Liang, Y.; Sarkany, N.; Cui, Y. Biomass and lipid productivities of Chlorella vulgaris under autotrophic, heterotrophic and mixotrophic growth conditions. Biotechnol. Lett. 2009, 31, 1043–1049. [Google Scholar] [CrossRef]
- Bhatnagar, A.; Chinnasamy, S.; Singh, M.; Das, K.C. Renewable biomass production by mixotrophic algae in the presence of various carbon sources and wastewaters. Appl. Energy 2011, 88, 3425–3431. [Google Scholar] [CrossRef]
- Hu, Q.; Sommerfeld, M.; Jarvis, E.; Ghirardi, M.L.; Posewitz, M.C.; Seibert, M. Microalgal triacyglycerols as feedstocks for biofuel production. Plant J. 2008, 54, 621–639. [Google Scholar] [CrossRef]
- Chiu, S.-Y.; Kao, C.-Y.; Tsai, M.-T.; Ong, S.-C.; Chen, C.-H.; Lin, C.-S. Lipid accumulation and CO2 utilization of Nanochloropsis oculata in response to CO2 aeration. Bioresource Technol. 2009, 100, 833–841. [Google Scholar] [CrossRef]
- Widjaja, A.; Chien, C.-C.; Ju, Y.-H. Study of increasing lipid production from fresh water microalgae Chlorella vulgaris. J. Taiwan Inst. Chem. Eng. 2009, 40, 13–20. [Google Scholar] [CrossRef]
- Meng, X.; Yang, J.; Xu, X.; Zhang, L.; Nie, Q.; Xian, M. Biodiesel production from oleaginous microorganisms. Renew. Energy 2009, 34, 1–5. [Google Scholar] [CrossRef]
- Kuei-Ling, Y.; Jo-Shu, C. Effects of cultivation conditions and media composition on cell growth and lipid productivity of indigenous microalga Chlorella vulgaris ESP-31. Bioresource Technol. 2012, 105, 120–127. [Google Scholar]
- Wu, W.-T.; Hsieh, C.-H. Cultivation of microalgae for optimal oil production. J. Biotechnol. 2008, 136, 521–1521. [Google Scholar] [CrossRef]
- Weldy, C.S.; Huesemann, M. Lipid production by Dunaliella salina in batch culture: Effects of nitrogen limitation and light intensity. US Dep. Energy J. Undergrad. Res. 2007, 7, 115–122. [Google Scholar]
- Gao, F.; Li, C.; Yang, Z.H.; Zeng, G.M.; Feng, L.J.; Liu, J.Z.; Liu, M.; Cai, H.W. Continuous microalgae cultivation in aquaculture wastewater by amembrane photobioreactor for biomass production and nutrientsremoval. Ecol. Eng. 2016, 92, 55–61. [Google Scholar] [CrossRef]
- Guo, Z.; Liu, Y.; Guo, H.; Yan, S.; Mu, J. Microalgae cultivation using an aquaculture wastewater as growth medium for biomass and biofuel production. J. Environ. Sci. 2013, 25, 85–88. [Google Scholar] [CrossRef]
- Sawayama, S.; Inoue, S.; Dote, Y.; Yokoyama, S.-Y. CO2 fixation and oil production through microalgae. Energy Convers. Manag. 1995, 36, 729–731. [Google Scholar] [CrossRef]
- Martinez, M.E.; Sánchez, S.; Jiménez, J.M.; El Yousfi, F.; Muñoz, L. Nitrogen and phosphorus removal from urban wastewater by the microalga Scenedesmus obliquus. Bioresource Technol. 2000, 73, 263–272. [Google Scholar] [CrossRef]
- Wang, C.; Ding, H.; Zhang, Y.; Zhu, X. Analysis of property variation and stability on the aging of bio-oil from fractional condensation. Renew. Energy 2020, 148, 720–728. [Google Scholar] [CrossRef]
- Ong, H.C.; Mofijur, M.; Silitonga, A.S.; Gumilang, D.; Kusumo, F.; Mahlia, T.M.I. Physicochemical properties of biodiesel synthesised from grape seed, philippine tung, kesambi, and palm oils. Energies 2020, 13, 1319. [Google Scholar] [CrossRef] [Green Version]
Value | Parameter | ||||||||
---|---|---|---|---|---|---|---|---|---|
BOD5 (mgO2/L) | COD (mgO2/L) | BOD5/COD | pH | TS mg/L | TN mg/L | AN mg/L | TP mg/L | P-PO4 mg/L | |
RAD | |||||||||
Average | 380.4 ± 71.0 | 799.9 ± 93.6 | 0.5 ± 0.1 | 7.4 ± 0.3 | 112.7 ± 13.4 | 255.3 ± 64.1 | 194.9 ± 71.5 | 60.2 ± 11.0 | 42.9 ± 13.1 |
PAD | |||||||||
Average | 492.0 ± 99.4 | 891.2 ± 118.1 | 0.6 ± 0.1 | 7.2 ± 0.2 | 98.2 ± 21.2 | 302.8 ± 99.4 | 222.0 ± 70.7 | 61.7 ± 11.9 | 46.5 ± 12.7 |
Days | Lipid Content (% dm) | Culture Medium (mg/L)—Raw Wastewater | Medium After Cultivation Time (mg/L)—Treated Wastewater | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
COD | BOD5 | TN | AN | TP | P-PO4 | COD | BOD5 | TN | AN | TP | P-PO4 | ||
1 | 14.3 ± 3.6 | 799.3 ± 90.1 | 404.5 ± 71.4 | 181.3 ± 65.3 | 144.9 ± 34.1 | 47.8 ± 11.2 | 31.6 ± 10.3 | 81.3 ± 16.8 | 29.5 ± 5.8 | 3.7 ± 1.3 | 1.3 ± 0.4 | 1.1 ± 0.5 | 0.4 ± 0.1 |
2 | 14.3 ± 3.8 | 799.3 ± 90.1 | 404.5 ± 71.4 | 181.3 ± 65.3 | 144.9 ± 34.1 | 47.8 ± 11.2 | 31.6 ± 10.3 | 82.5 ± 15.9 | 33.7 ± 5.4 | 4.9 ± 1.5 | 1.7 ± 0.5 | 0.9 ± 0.3 | 0.6 ± 0.1 |
3 | 15.1 ± 3.4 | 799.3 ± 90.1 | 404.5 ± 71.4 | 181.3 ± 65.3 | 144.9 ± 34.1 | 47.8 ± 11.2 | 31.6 ± 10.3 | 79.1 ± 14.8 | 38.2 ± 5.5 | 3.9 ± 1.1 | 2.1 ± 0.5 | 1.2 ± 0.4 | 0.3 ± 0.1 |
4 | 15.3 ± 3.9 | 799.3 ± 90.1 | 404.5 ± 71.4 | 181.3 ± 65.3 | 144.9 ± 34.1 | 47.8 ± 11.2 | 31.6 ± 10.3 | 88.2 ± 16.1 | 34.8 ± 5.1 | 3.1 ± 1.1 | 2.3 ± 0.4 | 1.1 ± 0.4 | 0.3 ± 0.1 |
5 | 15.9 ± 4.6 | 824.3 ± 90.6 | 419.3 ± 71.1 | 163.4 ± 64.1 | 137.1 ± 21.6 | 64.2 ± 10.4 | 43.5 ± 9.8 | 73.7 ± 15.5 | 37.1 ± 5.4 | 5.7 ± 1.2 | 2.0 ± 0.5 | 1.0 ± 0.5 | 0.4 ± 0.1 |
6 | 14.6 ± 3.7 | 824.3 ± 90.6 | 419.3 ± 71.1 | 163.4 ± 64.1 | 137.1 ± 21.6 | 64.2 ± 10.4 | 43.5 ± 9.8 | 79.0 ± 14.9 | 30.7 ± 4.9 | 6.0 ± 1.3 | 1.9 ± 0.4 | 0.9 ± 0.4 | 0.2 ± 0.1 |
7 | 15.7 ± 4.5 | 824.3 ± 90.6 | 419.3 ± 71.1 | 163.4 ± 64.1 | 137.1 ± 21.6 | 64.2 ± 10.4 | 43.5 ± 9.8 | 81.3 ± 16.7 | 33.9 ± 5.2 | 5.9 ± 1.3 | 2.4 ± 0.5 | 0.9 ± 0.5 | 0.3 ± 0.1 |
8 | 17.2 ± 4.0 | 824.3 ± 90.6 | 419.3 ± 71.1 | 163.4 ± 64.1 | 137.1 ± 21.6 | 64.2 ± 10.4 | 43.5 ± 9.8 | 84.6 ± 15.7 | 29.6 ± 5.1 | 5.2 ± 1.5 | 1.7 ± 0.4 | 1.4 ± 0.6 | 0.4 ± 0.1 |
9 | 18.1 ± 3.7 | 824.3 ± 90.6 | 419.3 ± 71.1 | 163.4 ± 64.1 | 137.1 ± 21.6 | 64.2 ± 10.4 | 43.5 ± 9.8 | 73.5 ± 14.4 | 28.1 ± 4.7 | 7.1 ± 1.4 | 1.7 ± 0.3 | 1.5 ± 0.5 | 0.4 ± 0.1 |
10 | 21.3 ± 3.5 | 824.3 ± 90.6 | 419.3 ± 71.1 | 163.4 ± 64.1 | 137.1 ± 21.6 | 64.2 ± 10.4 | 43.5 ± 9.8 | 69.9 ± 15.1 | 38.2 ± 5.1 | 6.8 ± 1.3 | 1.9 ± 0.4 | 1.4 ± 0.4 | 0.5 ± 0.1 |
11 | 19.6 ± 4.2 | 809.7 ± 92.4 | 399.8 ± 69.4 | 181.9 ± 60.1 | 139.7 ± 28.5 | 59.9 ± 11.5 | 40.1 ± 9.5 | 70.3 ± 16.0 | 41.0 ± 4.3 | 6.3 ± 1.1 | 2.0 ± 0.5 | 1.6 ± 0.5 | 0.7 ± 0.1 |
12 | 19.2 ± 3.8 | 809.7 ± 92.4 | 399.8 ± 69.4 | 181.9 ± 60.1 | 139.7 ± 28.5 | 59.9 ± 11.5 | 40.1 ± 9.5 | 73.3 ± 15.2 | 37.2 ± 4.8 | 6.1 ± 1.2 | 2.3 ± 0.5 | 1.2 ± 0.4 | 0.5 ± 0.1 |
13 | 20.1 ± 4.5 | 809.7 ± 92.4 | 399.8 ± 69.4 | 181.9 ± 60.1 | 139.7 ± 28.5 | 59.9 ± 11.5 | 40.1 ± 9.5 | 76.1 ± 14.9 | 33.9 ± 4.7 | 6.9 ± 1.1 | 2.2 ± 0.5 | 1.1 ± 0.4 | 0.4 ± 0.1 |
14 | 21.3 ± 3.4 | 809.7 ± 92.4 | 399.8 ± 69.4 | 181.9 ± 60.1 | 139.7 ± 28.5 | 59.9 ± 11.5 | 40.1 ± 9.5 | 80.2 ± 15.5 | 35.5 ± 5.9 | 7.4 ± 1.3 | 2.1 ± 0.4 | 1.4 ± 0.5 | 0.3 ± 0.1 |
15 | 19.8 ± 3.1 | 809.7 ± 92.4 | 399.8 ± 69.4 | 181.9 ± 60.1 | 139.7 ± 28.5 | 59.9 ± 11.5 | 40.1 ± 9.5 | 77.3 ± 16.2 | 30.0 ± 5.6 | 7.2 ± 1.3 | 2.7 ± 0.4 | 1.6 ± 0.3 | 0.7 ± 0.1 |
16 | 19.6 ± 3.2 | 809.7 ± 92.4 | 399.8 ± 69.4 | 181.9 ± 60.1 | 139.7 ± 28.5 | 59.9 ± 11.5 | 40.1 ± 9.5 | 83.1 ± 16.0 | 29.1 ± 5.3 | 7.8 ± 1.1 | 3.0 ± 0.5 | 2.1 ± 0.5 | 0.6 ± 0.1 |
17 | 18.2 ± 3.3 | 809.7 ± 92.4 | 399.8 ± 69.4 | 181.9 ± 60.1 | 139.7 ± 28.5 | 59.9 ± 11.5 | 40.1 ± 9.5 | 73.1 ± 15.5 | 31.6 ± 4.9 | 8.2 ± 1.5 | 3.1 ± 0.5 | 1.3 ± 0.3 | 0.8 ± 0.1 |
18 | 18.7 ± 3.8 | 789.6 ± 94.5 | 406.3 ± 73.1 | 203.6 ± 67.2 | 152.2 ± 36.0 | 64.2 ± 10.8 | 47.4 ± 10.4 | 79.6 ± 15.8 | 29.1 ± 6.1 | 6.9 ± 1.1 | 2.7 ± 0.5 | 1.7 ± 0.4 | 0.8 ± 0.2 |
19 | 18.3 ± 3.3 | 789.6 ± 94.5 | 406.3 ± 73.1 | 203.6 ± 67.2 | 152.2 ± 36.0 | 64.2 ± 10.8 | 47.4 ± 10.4 | 77.8 ± 15.6 | 30.4 ± 5.9 | 7.6 ± 0.9 | 2.3 ± 0.5 | 1.6 ± 0.4 | 1.0 ± 0.2 |
20 | 18.0 ± 3.7 | 789.6 ± 94.5 | 406.3 ± 73.1 | 203.6 ± 67.2 | 152.2 ± 36.0 | 64.2 ± 10.8 | 47.4 ± 10.4 | 80.8 ± 15.8 | 34.7 ± 6.4 | 8.0 ± 1.2 | 2.8 ± 0.4 | 1.4 ± 0.4 | 0.9 ± 0.2 |
21 | 18.6 ± 4.1 | 789.6 ± 94.5 | 406.3 ± 73.1 | 203.6 ± 67.2 | 152.2 ± 36.0 | 64.2 ± 10.8 | 47.4 ± 10.4 | 86.2 ± 15.2 | 39.8 ± 6.8 | 7.9 ± 1.1 | 3.2 ± 0.5 | 1.4 ± 0.3 | 0.9 ± 0.2 |
22 | 18.9 ± 3.2 | 789.6 ± 94.5 | 406.3 ± 73.1 | 203.6 ± 67.2 | 152.2 ± 36.0 | 64.2 ± 10.8 | 47.4 ± 10.4 | 81.7 ± 15.6 | 36.2 ± 5.5 | 8.1 ± 1.0 | 3.1 ± 0.3 | 1.7 ± 0.3 | 0.8 ± 0.2 |
23 | 17.4 ± 3.5 | 789.6 ± 94.5 | 406.3 ± 73.1 | 203.6 ± 67.2 | 152.2 ± 36.0 | 64.2 ± 10.8 | 47.4 ± 10.4 | 84.3 ± 16.8 | 40.9 ± 5.0 | 8.3 ± 1.3 | 3.3 ± 0.4 | 1.3 ± 0.4 | 0.6 ± 0.1 |
24 | 18.9 ± 4.3 | 813.6 ± 93.1 | 431.7 ± 76.8 | 201.1 ± 62.8 | 155.1 ± 38.1 | 62.8 ± 10.5 | 38.9 ± 10.1 | 80.1 ± 17.2 | 37.1 ± 4.8 | 9.4 ± 1.3 | 3.0 ± 0.3 | 1.2 ± 0.4 | 0.5 ± 0.1 |
25 | 18.3 ± 3.0 | 813.6 ± 93.1 | 431.7 ± 76.8 | 201.1 ± 62.8 | 155.1 ± 38.1 | 62.8 ± 10.5 | 38.9 ± 10.1 | 76.3 ± 16.1 | 33.9 ± 4.9 | 10.2 ± 1.4 | 2.7 ± 0.4 | 1.1 ± 0.3 | 0.6 ± 0.1 |
26 | 18.7 ± 4.2 | 813.6 ± 93.1 | 431.7 ± 76.8 | 201.1 ± 62.8 | 155.1 ± 38.1 | 62.8 ± 10.5 | 38.9 ± 10.1 | 74.9 ± 16.3 | 35.6 ± 5.1 | 9.8 ± 1.3 | 2.4 ± 0.4 | 1.6 ± 0.5 | 0.7 ± 0.2 |
Days | Culture Medium (mg/L)—Raw Wastewater | Medium After Cultivation Time (mg/L)—Treated Wastewater | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
COD | BOD5 | TN | AN | TP | P-PO4 | COD | BOD5 | TN | AN | TP | P-PO4 | |
1 | 780.2 ± 9.5 | 401.5 ± 9.4 | 281.3 ± 0.3 | 244.9 ± 5.1 | 68.8 ± 15.2 | 51.6 ± 10.2 | 84.2 ± 15.8 | 19.5 ± 6.5 | 3.4 ± 1.2 | 1.2 ± 0.3 | 1.2 ± 0.4 | 0.5 ± 0.1 |
5 | 820.3 ± 90.2 | 418.1 ± 68.5 | 165.4 ± 62.3 | 134.2 ± 55.2 | 66.1 ± 14.1 | 40.5 ± 11.4 | 68.7 ± 14.2 | 38.2 ± 5.8 | 6.8 ± 1.5 | 1.9 ± 0.5 | 1.4 ± 0.5 | 0.5 ± 0.1 |
10 | 801.2 ± 84.5 | 398.7 ± 67.7 | 286.4 ± 68.5 | 242.71 ± 70.2 | 66.2 ± 16.8 | 42.3 ± 9.8 | 68.7 ± 14.1 | 17.6 ± 4.9 | 3.3 ± 1.2 | 2.2 ± 0.6 | 1.5 ± 0.5 | 0.5 ± 0.1 |
15 | 805.4 ± 88.2 | 399.9 ± 70.4 | 282.4 ± 70.3 | 239.3 ± 68.8 | 66.0 ± 15.5 | 42.1 ± 10.5 | 73.2 ± 15.1 | 17.2 ± 6.3 | 2.1 ± 1.3 | 1.7 ± 0.6 | 1.2 ± 0.4 | 0.4 ± 0.1 |
20 | 789.6 ± 80.4 | 406.3 ± 75.4 | 203.6 ± 63.1 | 152.2 ± 65.4 | 64.2 ± 15.7 | 47.4 ± 11.9 | 80.8 ± 14.3 | 34.7 ± 7.1 | 8.0 ± 1.6 | 2.8 ± 0.5 | 1.4 ± 0.3 | 0.9 ± 0.2 |
25 | 789.6 ± 85.5 | 406.3 ± 77.2 | 303.6 ± 74.3 | 252.2 ± 70.3 | 74.2 ± 17.9 | 57.4 ± 10.7 | 79.6 ± 13.4 | 19.1 ± 5.9 | 3.9 ± 1.4 | 2.7 ± 0.5 | 1.7 ± 0.5 | 0.8 ± 0.1 |
30 | 813.6 ± 86.4 | 431.7 ± 79.5 | 301.1 ± 70.1 | 255.1 ± 71.1 | 72.8 ± 18.1 | 58.9 ± 12.8 | 80.1 ± 15.2 | 27.1 ± 6.6 | 3.4 ± 1.3 | 3.0 ± 0.6 | 1.2 ± 0.4 | 0.5 ± 0.1 |
35 | 806.1 ± 88.7 | 400.7 ± 72.3 | 296.2 ± 69.3 | 271.2 ± 90.1 | 69.1 ± 14.3 | 56.3 ± 11.3 | 84.6 ± 15.0 | 19.6 ± 6.0 | 2.2 ± 1.3 | 1.7 ± 0.4 | 1.4 ± 0.5 | 0.4 ± 0.1 |
40 | 813.9 ± 88.4 | 411.8 ± 76.4 | 301.2 ± 70.6 | 269.4 ± 80.5 | 72.3 ± 16.5 | 49.9 ± 11.4 | 73.5 ± 14.1 | 18.1 ± 6.2 | 2.1 ± 1.2 | 1.7 ± 0.3 | 1.5 ± 0.4 | 0.4 ± 0.1 |
45 | 802.2 ± 89.2 | 399.2 ± 70.1 | 288.9 ± 70.1 | 243.5 ± 82.4 | 70.9 ± 14.8 | 58.2 ± 10.7 | 69.9 ± 14.2 | 18.2 ± 5.5 | 2.8 ± 1.1 | 1.9 ± 0.4 | 1.4 ± 0.4 | 0.5 ± 0.1 |
50 | 793.4 ± 84.1 | 417.3 ± 72.2 | 295.7 ± 71.2 | 260.6 ± 89.5 | 68.3 ± 17.2 | 44.4 ± 12.5 | 79.6 ± 14.8 | 19.1 ± 5.4 | 2.9 ± 1.2 | 2.7 ± 0.5 | 1.7 ± 0.3 | 0.8 ± 0.2 |
55 | 799.1 ± 82.5 | 397.7 ± 69.7 | 299.9 ± 67.4 | 277.2 ± 90.4 | 69.9 ± 17.3 | 50.8 ± 11.4 | 73.3 ± 14.3 | 17.2 ± 5.2 | 3.1 ± 1.1 | 2.3 ± 0.4 | 1.2 ± 0.5 | 0.5 ± 0.1 |
65 | 804.5 ± 86.3 | 399.8 ± 70.4 | 281.9 ± 65.2 | 239.7 ± 87.4 | 59.9 ± 13.7 | 40.1 ± 10.6 | 76.1 ± 14.2 | 13.9 ± 4.9 | 3.4 ± 1.0 | 2.2 ± 0.4 | 1.1 ± 0.4 | 0.4 ± 0.1 |
Days | Removal Efficiency (%) | |||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
COD | BOD5 | TN | AN | TP | P-PO4 | |||||||||||||||||||
1 | 89.21 ± 0.71 | 95.14 ± 0.66 | 98.79 ± 0.10 | 99.51 ± 0.01 | 98.26 ± 0.16 | 99.03 ± 0.01 | ||||||||||||||||||
5 | 91.63 ± 0.73 | 90.86 ± 0.10 | 95.89 ± 0.47 | 98.58 ± 0.15 | 97.88 ± 0.25 | 98.77 ± 0.08 | ||||||||||||||||||
10 | 91.43 ± 0.77 | 95.59 ± 0.41 | 98.85 ± 0.12 | 99.09 ± 0.01 | 97.73 ± 0.14 | 98.82 ± 0.03 | ||||||||||||||||||
15 | 90.91 ± 0.79 | 95.70 ± 0.70 | 99.26 ± 0.22 | 99.29 ± 0.04 | 98.18 ± 0.15 | 99.05 ± 0.01 | ||||||||||||||||||
20 | 89.77 ± 0.70 | 91.46 ± 0.14 | 96.07 ± 0.33 | 98.16 ± 0.32 | 97.82 ± 0.05 | 98.10 ± 0.04 | ||||||||||||||||||
25 | 89.92 ± 0.55 | 95.30 ± 0.47 | 98.72 ± 0.12 | 98.93 ± 0.08 | 97.71 ± 0.10 | 98.61 ± 0.07 | ||||||||||||||||||
30 | 90.15 ± 0.74 | 93.72 ± 0.31 | 98.87 ± 0.14 | 98.82 ± 0.07 | 98.35 ± 0.11 | 99.15 ± 0.01 | ||||||||||||||||||
35 | 89.51 ± 0.64 | 95.11 ± 0.52 | 99.26 ± 0.21 | 99.37 ± 0.05 | 97.97 ± 0.25 | 99.29 ± 0.03 | ||||||||||||||||||
40 | 90.97 ± 0.68 | 95.60 ± 0.58 | 99.30 ± 0.19 | 99.37 ± 0.06 | 97.93 ± 0.06 | 99.20 ± 0.01 | ||||||||||||||||||
45 | 91.29 ± 0.72 | 95.44 ± 0.49 | 99.03 ± 0.12 | 99.22 ± 0.07 | 98.03 ± 0.13 | 99.14 ± 0.01 | ||||||||||||||||||
50 | 89.97 ± 0.73 | 95.42 ± 0.43 | 99.02 ± 0.14 | 98.96 ± 0.12 | 97.51 ± 0.15 | 98.20 ± 0.04 | ||||||||||||||||||
55 | 90.83 ± 0.76 | 95.68 ± 0.47 | 98.97 ± 0.11 | 99.17 ± 0.10 | 98.28 ± 0.23 | 99.02 ± 0.02 | ||||||||||||||||||
65 | 90.54 ± 0.68 | 96.52 ± 0.52 | 98.79 ± 0.06 | 99.08 ± 0.12 | 98.16 ± 0.20 | 99.00 ± 0.01 | ||||||||||||||||||
Ratio of Microalgae Biomass to Introduced Organic Compounds and Nutrients (kg microalgae biomass/kgint.) | Ratio of Microalgae Biomass to Removed Organic Compounds and Nutrients (kg biomasy/kgrem.) | |||||||||||||||||||||||
COD | BOD5 | TN | AN | TP | P-PO4 | COD | BOD5 | TN | AN | TP | P-PO4 | |||||||||||||
0.007 ± 0.001 | 0.013 ± 0.003 | 0.019 ± 0.002 | 0.022 ± 0.002 | 0.081 ± 0.004 | 0.127 ± 0.008 | 0.007 ± 0.001 | 0.014 ± 0.003 | 0.019 ± 0.002 | 0.023 ± 0.002 | 0.083 ± 0.005 | 0.128 ± 0.009 |
Properties | Unit | Fatty Acid Methyl Esters (FAME) According to the PN-EN 14214 Norm | Bio-Oil | |
---|---|---|---|---|
Min. | Max. | |||
Density in 15 °C | kg/m3 | 860 | 900 | 912 ± 35 |
Viscosity in 40 °C | cSt | 3.50 | 5.00 | 33.2 ± 5.1 |
Flash point | °C | 120 | - | - |
Water content | mg/kg | - | 500 | 140 ± 20 |
Acid value | mg KOH/g | - | 0.5 | 0.4 ± 0.1 |
Iodine value | g iodine/100g | - | 120 | 75 ± 5 |
Phosphorus content | mg/kg | - | 10.0 | 4.9 ± 2.2 |
Fatty Acid | Content in Bio-Oil (%) |
---|---|
Lauric (C12:0) | 0.06 ± 0.01 |
Palmitic (C16:0) | 5.27 ± 0.5 |
Oleopalmitic (C16:1) | 0.28 ± 0.01 |
Heptadecenoic (C17:1) | 0.04 ± 0.01 |
Stearic (C18:0) | 1.68 ± 0.25 |
Oleic (C18:1) | 63.15 ± 5.55 |
Linoleic (C18:2) | 20.57 ± 2.82 |
Linolenic (C18:3) | 6.20 ± 0.50 |
Arachidic (C20:0) | 0.56 ± 0.10 |
Arachidonic (C20:1) | 1.25 ± 0.50 |
Behenic (C20:0) | 0.51 ± 0.15 |
Cervic (C22:1) | 0.38 ± 0.11 |
Parameter | Unit | Effluent from UASB Reactor | Required Effluent Quality |
---|---|---|---|
Total solids | mg/L | 100 | 35 |
pH | pH | 7.4 | 6.5–9 |
COD | mg O2/L | 800 | 125 |
BOD5 | mg O2/L | 400 | 25 |
TP | mg P/L | 60 | 2 |
AN | mg NH4/L | 200 | 10 |
TN | mg N/L | 250 | 30 |
Parameter | Value in the Effluent from the UASB Reactor (mg/L) | Efficiency of Removal (%) | Value in the Effluent from the Photobioreactor (mg/L) |
---|---|---|---|
ChZT | 800 | 90 | 80 |
BZT5 | 400 | 95 | 17.5 |
Nog. | 250 | 99 | 2.5 |
Pog | 60 | 98 | 1.2 |
Parameter | Specific Nutrient Requirement (kg/kg dm·d) | Nutrient Requirement (kg/kg dm·d) | Daily Load (kg/d) |
---|---|---|---|
TN | 0.1 | 1440 | 75 |
TP | 0.01 | 144 | 18 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dębowski, M.; Zieliński, M.; Kisielewska, M.; Kazimierowicz, J.; Dudek, M.; Świca, I.; Rudnicka, A. The Cultivation of Lipid-Rich Microalgae Biomass as Anaerobic Digestate Valorization Technology—A Pilot-Scale Study. Processes 2020, 8, 517. https://doi.org/10.3390/pr8050517
Dębowski M, Zieliński M, Kisielewska M, Kazimierowicz J, Dudek M, Świca I, Rudnicka A. The Cultivation of Lipid-Rich Microalgae Biomass as Anaerobic Digestate Valorization Technology—A Pilot-Scale Study. Processes. 2020; 8(5):517. https://doi.org/10.3390/pr8050517
Chicago/Turabian StyleDębowski, Marcin, Marcin Zieliński, Marta Kisielewska, Joanna Kazimierowicz, Magda Dudek, Izabela Świca, and Aleksandra Rudnicka. 2020. "The Cultivation of Lipid-Rich Microalgae Biomass as Anaerobic Digestate Valorization Technology—A Pilot-Scale Study" Processes 8, no. 5: 517. https://doi.org/10.3390/pr8050517
APA StyleDębowski, M., Zieliński, M., Kisielewska, M., Kazimierowicz, J., Dudek, M., Świca, I., & Rudnicka, A. (2020). The Cultivation of Lipid-Rich Microalgae Biomass as Anaerobic Digestate Valorization Technology—A Pilot-Scale Study. Processes, 8(5), 517. https://doi.org/10.3390/pr8050517