Dopamine D2 Long Receptors Are Critical for Caveolae-Mediated ?-Synuclein Uptake in Cultured Dopaminergic Neurons
<p>The primary sequence of mouse dopamine D2 receptor long (<b>left</b>) and short (<b>right</b>) isoforms. Amino acid sequences in red letters are specifically expressed in the long type. The dopamine D2 receptor short isoform (<b>right</b>) lacks these 29 amino acid sequences, which interact with fatty acid-binding protein 3 (FABP3). Asterisks indicate the antigen used to produce D<sub>2L</sub> specific antibody used in this study.</p> "> Figure 2
<p>Distribution of dopamine D2 long (D<sub>2L</sub>) receptors and their co-localization with FABP3 in dopaminergic neurons. (<b>A</b>) Cultured mesencephalic neurons were stained with anti-D<sub>2L</sub>-specific (red) and anti-tyrosine hydroxylase) (TH (green) antibodies. No D<sub>2L</sub> signal was observed in D<sub>2L</sub><sup>−/−</sup> neurons. Right images in each group were magnified by three times. Scale bar 10 μm. (<b>B</b>) Cultured mesencephalic neurons were counterstained with anti-D<sub>2L</sub>-specific (red), anti-FABP3 (green), and anti-TH (red) antibodies. D<sub>2L</sub> and FABP3 were co-distributed. Right images in each group were magnified by 2.5 times. Scale bar 10 μm.</p> "> Figure 2 Cont.
<p>Distribution of dopamine D2 long (D<sub>2L</sub>) receptors and their co-localization with FABP3 in dopaminergic neurons. (<b>A</b>) Cultured mesencephalic neurons were stained with anti-D<sub>2L</sub>-specific (red) and anti-tyrosine hydroxylase) (TH (green) antibodies. No D<sub>2L</sub> signal was observed in D<sub>2L</sub><sup>−/−</sup> neurons. Right images in each group were magnified by three times. Scale bar 10 μm. (<b>B</b>) Cultured mesencephalic neurons were counterstained with anti-D<sub>2L</sub>-specific (red), anti-FABP3 (green), and anti-TH (red) antibodies. D<sub>2L</sub> and FABP3 were co-distributed. Right images in each group were magnified by 2.5 times. Scale bar 10 μm.</p> "> Figure 3
<p>Cultured dopaminergic neurons require dopamine D2 receptors to take up α-synuclein. (<b>A</b>) Representative images of TH<sup>+</sup> mesencephalic neurons at 12 days in vitro (DIV) derived from wild type (WT) or D<sub>2L</sub><sup>−/−</sup> C57BL6 mice. Neurons were treated with 1 μM ATTO-550-labeled α-synuclein monomer for 48 h and stained with anti-TH antibody (TH, green). The magnified images were enlarged by three times. Scale bar 10 μm. The right graph shows the quantitative analysis of ATTO-550-labeled α-synuclein monomer fluorescence intensity of individual TH<sup>+</sup> neurons. **** <span class="html-italic">p</span> < 0.0001 in wild type (WT) versus D<sub>2L</sub><sup>−/−</sup>, n = 34 in three independent experiments. (<b>B</b>) Representative images of TH<sup>+</sup> mesencephalic neurons derived from wild type or D2 null knockout mice. Neurons were treated with ATTO-550-labeled α-synuclein monomer in the same condition as in (<b>A</b>) and stained with anti-TH antibody (TH, green) and dopamine D2 receptor (DRD2, blue). The magnified images were enlarged by three times. Scale bar 10 μm. The quantitative analysis of ATTO-550-labeled α-synuclein monomer fluorescence intensity of individual TH<sup>+</sup> neurons on the right. **** <span class="html-italic">p</span> < 0.0001 in WT versus D2 null knockout (D2 null), n = 28 in three independent experiments.</p> "> Figure 4
<p>Structure of α-synuclein mutant lacking C-terminal region and the effect of C-terminus deletion on the ability of α-synuclein uptake in dopaminergic neurons. (<b>A</b>) The structure of a mutant form of α-synuclein with an 11-amino acid deletion in the C-terminal region. (<b>B</b>) Cultured mesencephalic neurons were treated with 1 μM ATTO-550-labeled wild type or Δ130–140 deletant α-synuclein monomer for 48 h. C-terminus deletion decreased the ability of α-synuclein uptake. The magnified images were enlarged by three times. Scale bar 10 μm. The right graph shows the quantitative analysis of ATTO-550-labeled α-synuclein monomer fluorescence intensity of individual TH<sup>+</sup> neurons. **** <span class="html-italic">p</span> < 0.0001 in α-synuclein wild type (WT) versus Δ130–140 deletant (Δ130–140), n = 27 in three independent experiments.</p> "> Figure 5
<p>Schematic illustration for the inhibition of caveolae formation and the effect of the inhibition on the α-synuclein uptake in dopaminergic neurons. (<b>A</b>) Schematic illustration for the inhibition of caveolae formation by a dynamin inhibitor dynasore and caveolin knockdown by siRNA. D<sub>2L</sub> receptors are abundant in the caveolae. (<b>B</b>) Effect of the treatment with dynasore and caveolin siRNA on the ability of α-synuclein uptake in dopaminergic neurons. Cells were stained with anti-TH (green) and anti-caveolin-1 (blue) antibodies. Scale bar 10 μm. The quantitative analysis of ATTO-550-labeled α-synuclein monomer fluorescence intensity of individual TH<sup>+</sup> neurons on the right. **** <span class="html-italic">p</span> < 0.0001 in control versus dynasore and caveolin-1 siRNA, n = 33 in three independent experiments. N.S. means no significant difference was observed between dynasore and caveolin-1 knockdown.</p> "> Figure 6
<p>Cultured dopaminergic neurons require dopamine FABP3 and D<sub>2L</sub> receptors to take up α-synuclein fibrils. (<b>A</b>) Representative images of TH<sup>+</sup> mesencephalic neurons derived from wild type (WT), D<sub>2L</sub><sup>−/−</sup> or FABP3<sup>−/−</sup> C57BL6 mice. Neurons were treated with 1 μM ATTO-550-labeled α-synuclein fibrils for 48 h and stained with anti-TH antibody (TH, green). The magnified images were enlarged by three times. Scale bar 10 μm. (<b>B</b>) The quantitative analysis of ATTO-550-labeled α-synuclein fibril fluorescence intensity of individual TH<sup>+</sup> neurons. **** <span class="html-italic">p</span> < 0.0001 versus WT, n = 31 in three independent experiments. N.S. means no significant difference was observed between D<sub>2L</sub><sup>−/−</sup> and FABP3<sup>−/−</sup>. (<b>C</b>) Lewy neurites-like morphology of the accumulated α-synuclein fibrils in the neurites of dopaminergic neurons. Scale bar 10 μm.</p> "> Figure 7
<p>Co-localization of D<sub>2L</sub> receptors with α-synuclein fibrils in dopaminergic neurons. (<b>A</b>) Cultured mesencephalic neurons were treated with 1 μM α-synuclein fibril ATTO-550 and stained with anti-D<sub>2L</sub> (green) and anti-TH (blue) antibodies. The magnified images were enlarged by three times. Scale bar 10 µm. (<b>B</b>) Z-dimension analysis of D<sub>2L</sub> receptor-positive dotted immunoreactivities and α-synuclein fibrils. (<b>C</b>) Quantified fluorescence intensities of D<sub>2L</sub> receptors and α-synuclein fibrils analyzed in (<b>B</b>). Both signals were tightly co-distributed.</p> "> Figure 8
<p>Schematic illustration of α-synuclein uptake in dopaminergic neurons. We demonstrated that dopaminergic neurons require dopamine D<sub>2L</sub> receptors, FABP3, and dynamin/caveolin-1-coupled caveolae formation to take up α-synuclein monomers as well as fibrils. In this context, FABP3 and caveolin can interact with α-synuclein, and dopamine D2L receptors bind to FABP3. Caveolin and dopamine D<sub>2L</sub> receptors are abundant in lipid raft. The caveolae-mediated endocytosis is coupled with dopamine D<sub>2L</sub> receptors and FABP3, and the structure is abundantly associated with α-synuclein. The structure of D<sub>2L</sub>/FABP3 in the endocytotic process holds α-synuclein and does not release until its recycling. We also suggest that α-synuclein uptake by different mechanisms in other cell types, such as glial cells, is also conceivable.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Animals
2.2. Cell Culture
2.3. Reagents
2.4. Immunocytochemistry
2.5. Analyses of Fluorescence Intensity and Morphological Characteristics
2.6. Statistical Analyses
3. Results
3.1. Generation of D2L Specific Antibody and the Co-Localization Analysis of D2L with FABP3 Distribution in Cultured Dopaminergic Neurons
3.2. D2L Is Critical for α-Synuclein Uptake in Cultured Dopaminergic Neurons
3.3. The C-Terminal of α-Synuclein Is Essential for the Uptake into Dopaminergic Neurons
3.4. α-Synuclein Uptake Is Mediated by Dynamin and Caveolin-1 in Dopaminergic Neurons
3.5. D2L Receptors and FABP3 Are Critical for the Uptake of α-Synuclein Fibrils and Monomers in Dopaminergic Neurons
3.6. D2L Receptors Are Predominantly Co-Localized with α-Synuclein Fibril ATTO-550 in Dopaminergic Neurons
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Spillantini, M.G.; Crowther, R.A.; Jakes, R.; Hasegawa, M.; Goedert, M. α-Synuclein in filamentous inclusions of Lewy bodies from Parkinson’s disease and dementia with lewy bodies. Proc. Natl. Acad. Sci. USA 1998, 95, 6469–6473. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Spillantini, M.G.; Crowther, R.A.; Jakes, R.; Cairns, N.J.; Lantos, P.L.; Goedert, M. Filamentous α-synuclein inclusions link multiple system atrophy with Parkinson’s disease and dementia with Lewy bodies. Neurosci. Lett. 1998, 251, 205–208. [Google Scholar] [CrossRef]
- Kawahata, I.; Fukunaga, K. Degradation of tyrosine hydroxylase by the ubiquitin-proteasome system in the pathogenesis of Parkinson’s disease and dopa-responsive dystonia. Int. J. Mol. Sci. 2020, 21, 3779. [Google Scholar] [CrossRef] [PubMed]
- Kawahata, I.; Ohtaku, S.; Tomioka, Y.; Ichinose, H.; Yamakuni, T. Dopamine or biopterin deficiency potentiates phosphorylation at (40)Ser and ubiquitination of tyrosine hydroxylase to be degraded by the ubiquitin proteasome system. Biochem. Biophys. Res. Commun. 2015, 465, 53–58. [Google Scholar] [CrossRef]
- Kawahata, I.; Tokuoka, H.; Parvez, H.; Ichinose, H. Accumulation of phosphorylated tyrosine hydroxylase into insoluble protein aggregates by inhibition of an ubiquitin-proteasome system in PC12D cells. J. Neural Transm. 2009, 116, 1571–1578. [Google Scholar] [CrossRef]
- Kawahata, I.; Yagishita, S.; Hasegawa, K.; Nagatsu, I.; Nagatsu, T.; Ichinose, H. Immunohistochemical analyses of the postmortem human brains from patients with Parkinson’s disease with anti-tyrosine hydroxylase antibodies. Biog. Amines 2009, 23, 1–7. [Google Scholar]
- Peelaerts, W.; Baekelandt, V.; Brundin, P. Prion-Like propagation in neurodegenerative diseases. In The Molecular and Cellular Basis of Neurodegenerative Diseases; Wolfe, M.S., Ed.; Academic Press: Cambridge, MA, USA, 2018; pp. 189–242. [Google Scholar]
- Breen, D.P.; Halliday, G.M.; Lang, A.E. Gut-Brain axis and the spread of α-synuclein pathology: Vagal highway or dead end? Mov. Disord. 2019, 34, 307–316. [Google Scholar] [CrossRef]
- Kawahata, I.; Bousset, L.; Melki, R.; Fukunaga, K. Fatty acid-binding protein 3 is critical for α-synuclein uptake and MPP(+)-induced mitochondrial dysfunction in cultured dopaminergic neurons. Int. J. Mol. Sci. 2019, 20, 5358. [Google Scholar] [CrossRef] [Green Version]
- Yabuki, Y.; Matsuo, K.; Kawahata, I.; Fukui, N.; Mizobata, T.; Kawata, Y.; Owada, Y.; Shioda, N.; Fukunaga, K. Fatty acid binding protein 3 enhances the spreading and toxicity of α-synuclein in mouse brain. Int. J. Mol. Sci. 2020, 21, 2230. [Google Scholar] [CrossRef] [Green Version]
- Sharon, R.; Goldberg, M.S.; Bar-Josef, I.; Betensky, R.A.; Shen, J.; Selkoe, D.J. α-Synuclein occurs in lipid-rich high molecular weight complexes, binds fatty acids, and shows homology to the fatty acid-binding proteins. Proc. Natl. Acad. Sci. USA 2001, 98, 9110–9115. [Google Scholar] [CrossRef] [Green Version]
- Sharon, R.; Bar-Joseph, I.; Frosch, M.P.; Walsh, D.M.; Hamilton, J.A.; Selkoe, D.J. The formation of highly soluble oligomers of α-synuclein is regulated by fatty acids and enhanced in Parkinson’s disease. Neuron 2003, 37, 583–595. [Google Scholar] [CrossRef] [Green Version]
- Shioda, N.; Yabuki, Y.; Kobayashi, Y.; Onozato, M.; Owada, Y.; Fukunaga, K. FABP3 protein promotes α-synuclein oligomerization associated with 1-methyl-1,2,3,6-tetrahydropiridine-induced neurotoxicity. J. Biol. Chem. 2014, 289, 18957–18965. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Teunissen, C.E.; Veerhuis, R.; De Vente, J.; Verhey, F.R.; Vreeling, F.; van Boxtel, M.P.; Glatz, J.F.; Pelsers, M.A. Brain-Specific fatty acid-binding protein is elevated in serum of patients with dementia-related diseases. Eur. J. Neurol. 2011, 18, 865–871. [Google Scholar] [CrossRef] [PubMed]
- O’Bryant, S.E.; Edwards, M.; Zhang, F.; Johnson, L.A.; Hall, J.; Kuras, Y.; Scherzer, C.R. Potential two-step proteomic signature for Parkinson’s disease: Pilot analysis in the Harvard Biomarkers Study. Alzheimers Dement. 2019, 11, 374–382. [Google Scholar] [CrossRef] [PubMed]
- Mollenhauer, B.; Steinacker, P.; Bahn, E.; Bibl, M.; Brechlin, P.; Schlossmacher, M.G.; Locascio, J.J.; Wiltfang, J.; Kretzschmar, H.A.; Poser, S.; et al. Serum heart-type fatty acid-binding protein and cerebrospinal fluid tau: Marker candidates for dementia with Lewy bodies. Neurodegener. Dis. 2007, 4, 366–375. [Google Scholar] [CrossRef] [Green Version]
- Shioda, N.; Yamamoto, Y.; Watanabe, M.; Binas, B.; Owada, Y.; Fukunaga, K. Heart-Type fatty acid binding protein regulates dopamine D2 receptor function in mouse brain. J. Neurosci. 2010, 30, 3146–3155. [Google Scholar] [CrossRef]
- Takeuchi, Y.; Fukunaga, K. Differential subcellular localization of two dopamine D2 receptor isoforms in transfected NG108-15 cells. J. Neurochem. 2003, 85, 1064–1074. [Google Scholar] [CrossRef]
- Kim, S.J.; Kim, S.Y.; Na, Y.S.; Lee, H.J.; Chung, K.C.; Baik, J.H. α-Synuclein enhances dopamine D2 receptor signaling. Brain Res. 2006, 1124, 5–9. [Google Scholar] [CrossRef]
- Wang, Y.; Xu, R.; Sasaoka, T.; Tonegawa, S.; Kung, M.P.; Sankoorikal, E.B. Dopamine D2 long receptor-deficient mice display alterations in striatum-dependent functions. J. Neurosci. 2000, 20, 8305–8314. [Google Scholar] [CrossRef] [Green Version]
- Schaap, F.G.; Binas, B.; Danneberg, H.; van der Vusse, G.J.; Glatz, J.F. Impaired long-chain fatty acid utilization by cardiac myocytes isolated from mice lacking the heart-type fatty acid binding protein gene. Circ. Res. 1999, 85, 329–337. [Google Scholar] [CrossRef]
- Binas, B.; Danneberg, H.; McWhir, J.; Mullins, L.; Clark, A.J. Requirement for the heart-type fatty acid binding protein in cardiac fatty acid utilization. FASEB J. 1999, 13, 805–812. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Peelaerts, W.; Bousset, L.; Van der Perren, A.; Moskalyuk, A.; Pulizzi, R.; Giugliano, M.; Van den Haute, C.; Melki, R.; Baekelandt, V. α-Synuclein strains cause distinct synucleinopathies after local and systemic administration. Nature 2015, 522, 340–344. [Google Scholar] [CrossRef] [PubMed]
- Zunke, F.; Moise, A.C.; Belur, N.R.; Gelyana, E.; Stojkovska, I.; Dzaferbegovic, H.; Toker, N.J.; Jeon, S.; Fredriksen, K.; Mazzulli, J.R. Reversible conformational conversion of α-synuclein into toxic assemblies by glucosylceramide. Neuron 2018, 97, 92–107.e10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lautenschlager, J.; Stephens, A.D.; Fusco, G.; Strohl, F.; Curry, N.; Zacharopoulou, M.; Michel, C.H.; Laine, R.; Nespovitaya, N.; Fantham, M.; et al. C-Terminal calcium binding of α-synuclein modulates synaptic vesicle interaction. Nat. Commun. 2018, 9, 712. [Google Scholar] [CrossRef] [Green Version]
- Dasari, A.K.R.; Kayed, R.; Wi, S.; Lim, K.H. Tau interacts with the C-terminal region of α-synuclein, promoting formation of toxic aggregates with distinct molecular conformations. Biochemistry 2019, 58, 2814–2821. [Google Scholar] [CrossRef]
- Kim, T.D.; Paik, S.R.; Yang, C.H. Structural and functional implications of C-terminal regions of α-synuclein. Biochemistry 2002, 41, 13782–13790. [Google Scholar] [CrossRef]
- Li, W.; West, N.; Colla, E.; Pletnikova, O.; Troncoso, J.C.; Marsh, L.; Dawson, T.M.; Jakala, P.; Hartmann, T.; Price, D.L.; et al. Aggregation promoting C-terminal truncation of α-synuclein is a normal cellular process and is enhanced by the familial Parkinson’s disease-linked mutations. Proc. Natl. Acad. Sci. USA 2005, 102, 2162–2167. [Google Scholar] [CrossRef] [Green Version]
- Hijaz, B.A.; Volpicelli-Daley, L.A. Initiation and propagation of α-synuclein aggregation in the nervous system. Mol. Neurodegener. 2020, 15, 19. [Google Scholar] [CrossRef]
- Sharma, M.; Celver, J.; Octeau, J.C.; Kovoor, A. Plasma membrane compartmentalization of D2 dopamine receptors. J. Biol. Chem. 2013, 288, 12554–12568. [Google Scholar] [CrossRef] [Green Version]
- Cho, D.I.; Min, C.; Jung, K.S.; Cheong, S.Y.; Zheng, M.; Cheong, S.J.; Oak, M.H.; Cheong, J.H.; Lee, B.K.; Kim, K.M. The N-terminal region of the dopamine D2 receptor, a rhodopsin-like GPCR, regulates correct integration into the plasma membrane and endocytic routes. Br. J. Pharmacol. 2012, 166, 659–675. [Google Scholar] [CrossRef] [Green Version]
- Macia, E.; Ehrlich, M.; Massol, R.; Boucrot, E.; Brunner, C.; Kirchhausen, T. Dynasore, a cell-permeable inhibitor of dynamin. Dev. Cell 2006, 10, 839–850. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xue, W.F.; Hellewell, A.L.; Gosal, W.S.; Homans, S.W.; Hewitt, E.W.; Radford, S.E. Fibril fragmentation enhances amyloid cytotoxicity. J. Biol. Chem. 2009, 284, 34272–34282. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stern, C.M.; Mermelstein, P.G. Caveolin regulation of neuronal intracellular signaling. Cell. Mol. Life Sci. 2010, 67, 3785–3795. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, X.A.; Everson, W.V.; Smart, E.J. Caveolae, lipid rafts, and vascular disease. Trends Cardiovasc. Med. 2005, 15, 92–96. [Google Scholar] [CrossRef] [PubMed]
- Yamada, E. The fine structure of the gall bladder epithelium of the mouse. J. Biophys. Biochem. Cytol. 1955, 1, 445–458. [Google Scholar] [CrossRef] [Green Version]
- Madeira, A.; Yang, J.; Zhang, X.; Vikeved, E.; Nilsson, A.; Andren, P.E.; Svenningsson, P. Caveolin-1 interacts with α-synuclein and mediates toxic actions of cellular α-synuclein overexpression. Neurochem. Int. 2011, 59, 280–289. [Google Scholar] [CrossRef]
- Henley, J.R.; Krueger, E.W.; Oswald, B.J.; McNiven, M.A. Dynamin-Mediated internalization of caveolae. J. Cell Biol. 1998, 141, 85–99. [Google Scholar] [CrossRef] [Green Version]
- Filippini, A.; Mutti, V.; Faustini, G.; Longhena, F.; Ramazzina, I.; Rizzi, F.; Kaganovich, A.; Roosen, D.A.; Landeck, N.; Duffy, M.; et al. Extracellular clusterin limits the uptake of α-synuclein fibrils by murine and human astrocytes. Glia 2020. [Google Scholar] [CrossRef]
- Takeuchi, Y.; Fukunaga, K. Dopamine D2 receptor activates extracellular signal-regulated kinase through the specific region in the third cytoplasmic loop. J. Neurochem. 2004, 89, 1498–1507. [Google Scholar] [CrossRef]
- Takeuchi, Y.; Miyamoto, E.; Fukunaga, K. Activation of the rat dopamine D2 receptor promoter by mitogen-activated protein kinase and Ca2+/calmodulin-dependent protein kinase II pathways. J. Neurochem. 2002, 83, 784–796. [Google Scholar] [CrossRef]
- Owada, Y. Fatty acid binding protein: Localization and functional significance in the brain. Tohoku J. Exp. Med. 2008, 214, 213–220. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Owada, Y.; Yoshimoto, T.; Kondo, H. Spatio-Temporally differential expression of genes for three members of fatty acid binding proteins in developing and mature rat brains. J. Chem. Neuroanat. 1996, 12, 113–122. [Google Scholar] [CrossRef]
- Xu, R.; Hranilovic, D.; Fetsko, L.A.; Bucan, M.; Wang, Y. Dopamine D2S and D2L receptors may differentially contribute to the actions of antipsychotic and psychotic agents in mice. Mol. Psychiatry 2002, 7, 1075–1082. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Centonze, D.; Gubellini, P.; Usiello, A.; Rossi, S.; Tscherter, A.; Bracci, E.; Erbs, E.; Tognazzi, N.; Bernardi, G.; Pisani, A.; et al. Differential contribution of dopamine D2S and D2L receptors in the modulation of glutamate and GABA transmission in the striatum. Neuroscience 2004, 129, 157–166. [Google Scholar] [CrossRef] [PubMed]
- Lindgren, N.; Usiello, A.; Goiny, M.; Haycock, J.; Erbs, E.; Greengard, P.; Hokfelt, T.; Borrelli, E.; Fisone, G. Distinct roles of dopamine D2L and D2S receptor isoforms in the regulation of protein phosphorylation at presynaptic and postsynaptic sites. Proc. Natl. Acad. Sci. USA 2003, 100, 4305–4309. [Google Scholar] [CrossRef] [Green Version]
- Hranilovic, D.; Bucan, M.; Wang, Y. Emotional response in dopamine D2L receptor-deficient mice. Behav. Brain Res. 2008, 195, 246–250. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Haga, H.; Yamada, R.; Izumi, H.; Shinoda, Y.; Kawahata, I.; Miyachi, H.; Fukunaga, K. Novel fatty acid-binding protein 3 ligand inhibits dopaminergic neuronal death and improves motor and cognitive impairments in Parkinson’s disease model mice. Pharmacol. Biochem. Behav. 2020, 191, 172891. [Google Scholar] [CrossRef] [PubMed]
- Matsuo, K.; Cheng, A.; Yabuki, Y.; Takahata, I.; Miyachi, H.; Fukunaga, K. Inhibition of MPTP-induced α-synuclein oligomerization by fatty acid-binding protein 3 ligand in MPTP-treated mice. Neuropharmacology 2019, 150, 164–174. [Google Scholar] [CrossRef] [PubMed]
- Cheng, A.; Shinoda, Y.; Yamamoto, T.; Miyachi, H.; Fukunaga, K. Development of FABP3 ligands that inhibit arachidonic acid-induced α-synuclein oligomerization. Brain Res. 2019, 1707, 190–197. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kawahata, I.; Sekimori, T.; Wang, H.; Wang, Y.; Sasaoka, T.; Bousset, L.; Melki, R.; Mizobata, T.; Kawata, Y.; Fukunaga, K. Dopamine D2 Long Receptors Are Critical for Caveolae-Mediated ?-Synuclein Uptake in Cultured Dopaminergic Neurons. Biomedicines 2021, 9, 49. https://doi.org/10.3390/biomedicines9010049
Kawahata I, Sekimori T, Wang H, Wang Y, Sasaoka T, Bousset L, Melki R, Mizobata T, Kawata Y, Fukunaga K. Dopamine D2 Long Receptors Are Critical for Caveolae-Mediated ?-Synuclein Uptake in Cultured Dopaminergic Neurons. Biomedicines. 2021; 9(1):49. https://doi.org/10.3390/biomedicines9010049
Chicago/Turabian StyleKawahata, Ichiro, Tomoki Sekimori, Haoyang Wang, Yanyan Wang, Toshikuni Sasaoka, Luc Bousset, Ronald Melki, Tomohiro Mizobata, Yasushi Kawata, and Kohji Fukunaga. 2021. "Dopamine D2 Long Receptors Are Critical for Caveolae-Mediated ?-Synuclein Uptake in Cultured Dopaminergic Neurons" Biomedicines 9, no. 1: 49. https://doi.org/10.3390/biomedicines9010049
APA StyleKawahata, I., Sekimori, T., Wang, H., Wang, Y., Sasaoka, T., Bousset, L., Melki, R., Mizobata, T., Kawata, Y., & Fukunaga, K. (2021). Dopamine D2 Long Receptors Are Critical for Caveolae-Mediated ?-Synuclein Uptake in Cultured Dopaminergic Neurons. Biomedicines, 9(1), 49. https://doi.org/10.3390/biomedicines9010049