Mossy Fiber Sprouting in Temporal Lobe Epilepsy: The Impact of Netrin-1, DCC, and Gene Expression Changes
<p>Subregions of healthy hippocampi (noHS) and sclerotic hippocampi (HS) stained with CD68. Activated microglia is recognizable by thickened and retracted branches. In the bar diagrams, bars and error bars indicate medians and IQR. (<b>A</b>) CA1 subregion of noHS. (<b>B</b>) CA1 subregion of HS. (<b>C</b>) CA2 subregion of noHS. (<b>D</b>) CA2 subregion of HS—here you can detect a significant overexpression of Iba-1. (<b>E</b>) CA3 subregion of noHS. (<b>F</b>) CA3 subregion of HS. (<b>G</b>) CA4 subregion of noHS. (<b>H</b>) CA4 subregion of HS. (<b>I</b>) Granule cell layer of noHS. (<b>J</b>) Granule cell layer of HS.</p> "> Figure 2
<p>The levels of DCC in noHS and HS hippocampal slices. (<b>A</b>) Expression of DCC in noHS. (<b>B</b>) Expression of DCC in HS revealing a loss of DCC in all subregions. (<b>C</b>) One-factorial analysis of DCC-positive stained area/tissue area mm<sup>2</sup> in HS and noHS. The semi-automatized analysis shows a significant downregulation of DCC in subregion CA2, CA3, CA4, and GCL in the sclerotic tissue. Bars and error bars indicate medians and IQR. * <span class="html-italic">p</span> < 0.05; ** <span class="html-italic">p</span> < 0.01; *** <span class="html-italic">p</span> < 0.001.</p> "> Figure 3
<p>IHC staining of Netrin-1 in noHS and HS in hippocampal slices. (<b>A</b>) Expression of Netrin-1 in noHS (<b>B</b>) and in HS, displaying a loss of Netrin-1 in almost all subregions. (<b>C</b>) One-factorial analysis of Netrin-1-positive area/tissue area mm<sup>2</sup> in HS. A significant upregulation is detectable in the GCL region of HS. Bars and error bars indicate medians and IQR. ** <span class="html-italic">p</span> < 0.01.</p> "> Figure 4
<p>Cell type analyses according to the expression of different cell type scores in noHS and HS. For the investigation, six samples were used per group. Each point represents a sample. Boxes, bars and error bars indicate medians and IQR. The score is calculated from the cell type abundances by taking the logarithm of the expression of the genes specific to the cell types. (<b>A</b>) Astrocytes score (<b>B</b>) Oligodendrocytes score—An increased oligodendrocytes score (genes that occur in oligodendrocytes) is detectable in the sclerosis but there are no significant differences. (<b>C</b>) Microglia score—Surprisingly, an increased number of genes encoding for macrophages in general is apparent, even though the results are not significant. (<b>D</b>) Activated microglia score—The genes specifically associated with activated microglia exhibit higher expression in the noHS group, although without a significant result.</p> "> Figure 5
<p>Differential levels of mRNAs and proteins between non-sclerotic (noHS) and sclerotic tissue (HS) are presented in volcano plots. (<b>A</b>) Differential levels of mRNAs and proteins involved in activated microglia. The largest differences were seen in the proteins NPAS4, FLT1, and BCL2, but none reached statistical significance. (<b>B</b>) Differential levels of cytokine mRNAs and proteins in HS and noHS. The highest differences were seen in VEGFA and FLT1, which, however, did not reach statistical significance. (<b>C</b>) Differential levels of mRNAs and proteins involved in vesicle trafficking. The highest differences are observed in NPAS4, ARC, KCNA1, and GRIA1; however, this did not reach statistical significance. (<b>D</b>) Differential levels of mRNAs involved in axon and dendrite structure in HS and noHS. The highest differences were seen in ARC, KCNA1, and GRIA1, again without reaching statistical significance.</p> "> Figure 6
<p>Exemplary scheme of the expression of signaling influenced by cAMP in HS. The pathway was created by the summarization of pathway scores, which were calculated on the principal component analysis of the pathway genes’ normalized expression (refer to the <a href="#sec2-biomedicines-12-02869" class="html-sec">Section 2</a> for details). The mRNAs, which were found to be downregulated are blue colored, whereas upregulated mRNAs are gold colored. Interestingly, the expression of IκB was upregulated, which, in turn, leads to reduced activity of NFκB, as the NFκB pathway is inhibited by IκB. This could be interpreted as a sign of reduced neuroinflammation.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Patient Selection
2.2. Tissue Preparation and Immunohistochemistry
2.3. Neuronal Cell Nuclei Counting
2.4. Microglial Density Analysis
2.5. Neuronal Cell Density Analysis
2.6. RNA and Protein Isolation
2.7. NCounter Expression Profiling
2.8. Statistical Analysis
3. Results
3.1. Neuronal Cell Loss Correlates with a Decreased Microglial Activty of the M1 Phenotype
3.2. Epileptic Conditions Cause a Shift in Expression of Neuronal Markers Inducing Mossy Fiber Sprouting
3.3. Epileptic Conditions Lead to Variable Changes in Gene Expression Profiles (nCounter Expression Profiling) and Influence Neural Activity
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ndoye, N.; Sow, A.; Diop, A.; Sessouma, B.; Séne-Diouf, F.; Boissy, L.; Wone, I.; Touré, K.; Ndiaye, M.; Ndiaye, P.; et al. Prevalence of epilepsy its treatment gap and knowledge, attitude and practice of its population in sub-urban Senegal an ILAE/IBE/WHO study. Seizure 2005, 14, 106–111. [Google Scholar] [CrossRef] [PubMed]
- Blümcke, I.; Coras, R.; Miyata, H.; Özkara, C. Defining Clinico-Neuropathological Subtypes of Mesial Temporal Lobe Epilepsy with Hippocampal Sclerosis: Neuropathological Findings in mTLE-HS. Brain Pathol. 2012, 22, 402–411. [Google Scholar] [CrossRef] [PubMed]
- Cavanagh, J.B.; Meyer, A. Aetiological Aspects of Ammon’s Horn Sclerosis Associated with Temporal Lobe Epilepsy. BMJ 1956, 2, 1403–1407. [Google Scholar] [CrossRef] [PubMed]
- Blümcke, I.; Thom, M.; Aronica, E.; Armstrong, D.D.; Bartolomei, F.; Bernasconi, A.; Bernasconi, N.; Bien, C.G.; Cendes, F.; Coras, R.; et al. International consensus classification of hippocampal sclerosis in temporal lobe epilepsy: A Task Force report from the ILAE Commission on Diagnostic Methods. Epilepsia 2013, 54, 1315–1329. [Google Scholar] [CrossRef]
- Thom, M. Review: Hippocampal sclerosis in epilepsy: A neuropathology review. Neuropathol. Appl. Neurobiol. 2014, 40, 520–543. [Google Scholar] [CrossRef]
- Blümcke, I.; Kistner, I.; Clusmann, H.; Schramm, J.; Becker, A.J.; Elger, C.E.; Bien, C.G.; Merschhemke, M.; Meencke, H.-J.; Lehmann, T.; et al. Towards a clinico-pathological classification of granule cell dispersion in human mesial temporal lobe epilepsies. Acta Neuropathol. 2009, 117, 535–544. [Google Scholar] [CrossRef]
- Thom, M.; Eriksson, S.; Martinian, L.; Caboclo, L.O.; McEvoy, A.W.; Duncan, J.S.; Sisodiya, S.M. Temporal Lobe Sclerosis Associated with Hippocampal Sclerosis in Temporal Lobe Epilepsy: Neuropathological Features. J. Neuropathol. Exp. Neurol. 2009, 68, 928–938. [Google Scholar] [CrossRef]
- Schmeiser, B.; Li, J.; Brandt, A.; Zentner, J.; Doostkam, S.; Freiman, T.M. Different mossy fiber sprouting patterns in ILAE hippocampal sclerosis types. Epilepsy Res. 2017, 136, 115–122. [Google Scholar] [CrossRef]
- Schmeiser, B.; Zentner, J.; Prinz, M.; Brandt, A.; Freiman, T.M. Extent of mossy fiber sprouting in patients with mesiotemporal lobe epilepsy correlates with neuronal cell loss and granule cell dispersion. Epilepsy Res. 2017, 129, 51–58. [Google Scholar] [CrossRef]
- De La Torre, J.R.; Höpker, V.H.; Ming, G.L.; Poo, M.M.; Tessier-Lavigne, M.; Hemmati-Brivanlou, A.; Holt, C.E. Turning of Retinal Growth Cones in a Netrin-1 Gradient Mediated by the Netrin Receptor DCC. Neuron 1997, 19, 1211–1224. [Google Scholar] [CrossRef]
- Finci, L.I.; Krüger, N.; Sun, X.; Zhang, J.; Chegkazi, M.; Wu, Y.; Schenk, G.; Mertens, H.D.; Svergun, D.I.; Zhang, Y.; et al. The Crystal Structure of Netrin-1 in Complex with DCC Reveals the Bifunctionality of Netrin-1 As a Guidance Cue. Neuron 2014, 83, 839–849. [Google Scholar] [CrossRef] [PubMed]
- Sushentsev, N.; Hamm, G.; Flint, L.; Birtles, D.; Zakirov, A.; Richings, J.; Ling, S.; Tan, J.Y.; McLean, M.A.; Ayyappan, V.; et al. Metabolic imaging across scales reveals distinct prostate cancer phenotypes. Nat. Commun. 2024, 15, 5980. [Google Scholar] [CrossRef] [PubMed]
- Todorović, V.; Su, Z.; Putman, C.B.; Kakavas, S.J.; Salte, K.M.; McDonald, H.A.; Wetter, J.B.; Paulsboe, S.E.; Sun, Q.; Gerstein, C.E.; et al. Small Molecule IL-36γ Antagonist as a Novel Therapeutic Approach for Plaque Psoriasis. Sci. Rep. 2019, 9, 9089. [Google Scholar] [CrossRef] [PubMed]
- Goralski, T.M.; Meyerdirk, L.; Breton, L.; Brasseur, L.; Kurgat, K.; DeWeerd, D.; Turner, L.; Becker, K.; Adams, M.; Newhouse, D.J.; et al. Spatial transcriptomics reveals molecular dysfunction associated with cortical Lewy pathology. Nat. Commun. 2024, 15, 2642. [Google Scholar] [CrossRef]
- Wu, W.; Li, Y.; Wei, Y.; Bosco, D.B.; Xie, M.; Zhao, M.-G.; Richardson, J.R.; Wu, L.-J. Microglial depletion aggravates the severity of acute and chronic seizures in mice. Brain Behav. Immun. 2020, 89, 245–255. [Google Scholar] [CrossRef]
- Vezzani, A.; Moneta, D.; Richichi, C.; Aliprandi, M.; Burrows, S.J.; Ravizza, T.; Perego, C.; De Simoni, M.G. Functional Role of Inflammatory Cytokines and Antiinflammatory Molecules in Seizures and Epileptogenesis. Epilepsia 2002, 43, 30–35. [Google Scholar] [CrossRef]
- Shapiro, L.A.; Wang, L.; Ribak, C.E. Rapid astrocyte and microglial activation following pilocarpine-induced seizures in rats. Epilepsia 2008, 49, 33–41. [Google Scholar] [CrossRef]
- Rakhade, S.N.; Jensen, F.E. Epileptogenesis in the immature brain: Emerging mechanisms. Nat. Rev. Neurol. 2009, 5, 380–391. [Google Scholar] [CrossRef]
- Abraham, J.; Fox, P.D.; Condello, C.; Bartolini, A.; Koh, S. Minocycline attenuates microglia activation and blocks the long-term epileptogenic effects of early-life seizures. Neurobiol. Dis. 2012, 46, 425–430. [Google Scholar] [CrossRef]
- Freiman, T.M.; Häussler, U.; Zentner, J.; Doostkam, S.; Beck, J.; Scheiwe, C.; Brandt, A.; Haas, C.A.; Puhahn-Schmeiser, B. Mossy fiber sprouting into the hippocampal regionCA2in patients with temporal lobe epilepsy. Hippocampus 2021, 31, 580–592. [Google Scholar] [CrossRef]
- Muramatsu, R.; Nakahara, S.; Ichikawa, J.; Watanabe, K.; Matsuki, N.; Koyama, R. The ratio of ‘deleted in colorectal cancer’ to ’uncoordinated-5A‘ netrin-1 receptors on the growth cone regulates mossy fibre directionality. Brain 2010, 133, 60–75. [Google Scholar] [CrossRef] [PubMed]
- Lenz, M.; Ben Shimon, M.; Deller, T.; Vlachos, A.; Maggio, N. Pilocarpine-Induced Status Epilepticus Is Associated with Changes in the Actin-Modulating Protein Synaptopodin and Alterations in Long-Term Potentiation in the Mouse Hippocampus. Neural Plast. 2017, 2017, 2652560. [Google Scholar] [CrossRef] [PubMed]
- Zhu, X.; Han, X.; Blendy, J.A.; Porter, B.E. Decreased CREB levels suppress epilepsy. Neurobiol. Dis. 2012, 45, 253–263. [Google Scholar] [CrossRef] [PubMed]
- Zhu, X.; Dubey, D.; Bermudez, C.; Porter, B.E. Suppressing cAMP response element-binding protein transcription shortens the duration of status epilepticus and decreases the number of spontaneous seizures in the pilocarpine model of epilepsy. Epilepsia 2015, 56, 1870–1878. [Google Scholar] [CrossRef]
- de Armentia, M.L.; Jancic, D.; Olivares, R.; Alarcon, J.M.; Kandel, E.R.; Barco, A. cAMP Response Element-Binding Protein-Mediated Gene Expression Increases the Intrinsic Excitability of CA1 Pyramidal Neurons. J. Neurosci. 2007, 27, 13909–13918. [Google Scholar] [CrossRef]
- Li, J.; Shi, D.; Wang, L.; Wu, G. Chronic neuroinflammation regulates cAMP response element-binding protein in the formation of drug-resistant epilepsy by activating glial cells. J. Neurorestoratol. 2022, 10, 100006. [Google Scholar] [CrossRef]
- Mertz, C.; Krarup, S.; Jensen, C.D.; Lindholm, S.E.H.; Kjær, C.; Pinborg, L.H.; Bak, L.K. Aspects of cAMP Signaling in Epileptogenesis and Seizures and Its Potential as Drug Target. Neurochem. Res. 2020, 45, 1247–1255. [Google Scholar] [CrossRef]
- Choy, F.C.; Klarić, T.S.; Koblar, S.A.; Lewis, M.D. The Role of the Neuroprotective Factor Npas4 in Cerebral Ischemia. Int. J. Mol. Sci. 2015, 16, 29011–29028. [Google Scholar] [CrossRef]
- Fu, J.; Guo, O.; Zhen, Z.; Zhen, J. Essential Functions of the Transcription Factor Npas4 in Neural Circuit Development, Plasticity, and Diseases. Front. Neurosci. 2020, 14, 603373. [Google Scholar] [CrossRef]
- Coutellier, L.; Beraki, S.; Ardestani, P.M.; Saw, N.L.; Shamloo, M. Npas4: A Neuronal Transcription Factor with a Key Role in Social and Cognitive Functions Relevant to Developmental Disorders. PLoS ONE 2012, 7, e46604. [Google Scholar] [CrossRef]
- Selçuk, B.; Aksu, T.; Dereli, O.; Adebali, O. Downregulated NPAS4 in multiple brain regions is associated with major depressive disorder. Sci. Rep. 2023, 13, 21596. [Google Scholar] [CrossRef] [PubMed]
- Shan, W.; Nagai, T.; Tanaka, M.; Itoh, N.; Furukawa-Hibi, Y.; Nabeshima, T.; Sokabe, M.; Yamada, K. Neuronal PAS domain protein 4 (Npas4) controls neuronal homeostasis in pentylenetetrazole-induced epilepsy through the induction of Homer1a. J. Neurochem. 2018, 145, 19–33. [Google Scholar] [CrossRef] [PubMed]
- Engel, T.; Henshall, D.C. Apoptosis, Bcl-2 family proteins and caspases: The ABCs of seizure-damage and epileptogenesis? Int. J. Physiol. Pathophysiol. Pharmacol. 2009, 1, 97–115. [Google Scholar] [PubMed]
- Yu, J.; Shi, Z.; Su, X.; Zhou, Y.; Li, B.; Wang, S.; Jia, L.; Zhao, B.; Zhu, M.; Feng, X.; et al. Expression of Bcl-2 and Bad in hippocampus of status epileptic rats and molecular mechanism of intervened recombinant human erythropoietin. Exp. Ther. Med. 2018, 16, 847–855. [Google Scholar] [CrossRef] [PubMed]
- Smart, S.L.; Lopantsev, V.; Zhang, C.; Robbins, C.A.; Wang, H.; Chiu, S.; Schwartzkroin, P.A.; Messing, A.; Tempel, B.L. Deletion of the KV1.1 Potassium Channel Causes Epilepsy in Mice. Neuron 1998, 20, 809–819. [Google Scholar] [CrossRef]
- Glasscock, E.; Qian, J.; Yoo, J.W.; Noebels, J.L. Masking epilepsy by combining two epilepsy genes. Nat. Neurosci. 2007, 10, 1554–1558. [Google Scholar] [CrossRef]
- Kim, J.-E.; Lee, D.-S.; Park, H.; Kim, T.-H.; Kang, T.-C. Inhibition of AKT/GSK3β/CREB Pathway Improves the Responsiveness to AMPA Receptor Antagonists by Regulating GRIA1 Surface Expression in Chronic Epilepsy Rats. Biomedicines 2021, 9, 425. [Google Scholar] [CrossRef]
- Kim, J.E.; Lee, D.S.; Park, H.; Kim, T.H.; Kang, T.C. AMPA Receptor Antagonists Facilitate NEDD4-2-Mediated GRIA1 Ubiquitination by Regulating PP2B-ERK1/2-SGK1 Pathway in Chronic Epilepsy Rats. Biomedicines 2021, 9, 1069. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Onay, M.; Harter, P.N.; Weber, K.; Piiper, A.; Czabanka, M.; Plate, K.H.; Freiman, T.M.; Gessler, F.; Puhahn-Schmeiser, B. Mossy Fiber Sprouting in Temporal Lobe Epilepsy: The Impact of Netrin-1, DCC, and Gene Expression Changes. Biomedicines 2024, 12, 2869. https://doi.org/10.3390/biomedicines12122869
Onay M, Harter PN, Weber K, Piiper A, Czabanka M, Plate KH, Freiman TM, Gessler F, Puhahn-Schmeiser B. Mossy Fiber Sprouting in Temporal Lobe Epilepsy: The Impact of Netrin-1, DCC, and Gene Expression Changes. Biomedicines. 2024; 12(12):2869. https://doi.org/10.3390/biomedicines12122869
Chicago/Turabian StyleOnay, Melis, Patrick N. Harter, Katherina Weber, Albrecht Piiper, Marcus Czabanka, Karl H. Plate, Thomas M. Freiman, Florian Gessler, and Barbara Puhahn-Schmeiser. 2024. "Mossy Fiber Sprouting in Temporal Lobe Epilepsy: The Impact of Netrin-1, DCC, and Gene Expression Changes" Biomedicines 12, no. 12: 2869. https://doi.org/10.3390/biomedicines12122869
APA StyleOnay, M., Harter, P. N., Weber, K., Piiper, A., Czabanka, M., Plate, K. H., Freiman, T. M., Gessler, F., & Puhahn-Schmeiser, B. (2024). Mossy Fiber Sprouting in Temporal Lobe Epilepsy: The Impact of Netrin-1, DCC, and Gene Expression Changes. Biomedicines, 12(12), 2869. https://doi.org/10.3390/biomedicines12122869