Immunogenic Cell Death Traits Emitted from Chronic Lymphocytic Leukemia Cells Following Treatment with a Novel Anti-Cancer Agent, SpiD3
<p>CLL cells display ecto-CALR following SpiD3 treatment. HG-3 ((<b>A</b>,<b>B</b>); n = 3); OSU-CLL ((<b>C</b>,<b>D</b>); n = 3); or patient-derived CLL ((<b>E</b>,<b>F</b>); n = 5) cells were treated with vehicle (Veh), SpiD3 (0.25–2 µM), FeCl<sub>2</sub> (160 μM), or the positive control, etoposide (Etop; 20 µM) for the indicated durations. Viable cells were analyzed by flow cytometry for changes in surface CALR expression (ecto-CALR). Primary patient-derived CLL cells were additionally designated as CD19+/CD5+ by flow cytometry. Data are presented as mean ± SEM. Comparisons across treatment groups were analyzed with respect to the vehicle by one-way ANOVA. Asterisks denote magnitude of significance: * <span class="html-italic">p</span> < 0.05, ** <span class="html-italic">p</span> < 0.01, *** <span class="html-italic">p</span> < 0.001, **** <span class="html-italic">p</span> < 0.0001.</p> "> Figure 2
<p>SpiD3 treatment evokes extracellular ATP release. HG-3 (<b>A</b>); and OSU-CLL (<b>B</b>) cells were treated over 24 h (n = 3) with vehicle (Veh), SpiD3 (0.5–2 µM), or the positive control, etoposide (Etop; 20 µM). Extracellular ATP measurements at 8, 16, and 24 h were parsed out to evaluate the average extracellular ATP measured at these timepoints in comparison to the matched timepoint vehicle. Data are presented as mean ± SEM. Comparisons across treatment groups were analyzed with respect to the matched timepoint average vehicle by one-way ANOVA. Asterisks denote magnitude of significance: * <span class="html-italic">p</span> < 0.05, ** <span class="html-italic">p</span> < 0.01, **** <span class="html-italic">p</span> < 0.0001.</p> "> Figure 3
<p>SpiD3-treated cells release extracellular HMGB1. Supernatant from HG-3 ((<b>A</b>,<b>B</b>); n = 3); OSU-CLL ((<b>C</b>,<b>D</b>); n = 3); and primary CLL ((<b>E</b>); n = 10) cells were evaluated for extracellular HMGB1 after 24 h or 48 h of treatment with the vehicle (Veh), SpiD3 (0.5–2 µM), ibrutinib (1 µM), or positive control, etoposide (Etop; 20 µM). Data are presented as mean ± SEM. Comparisons across treatment groups were analyzed with respect to the vehicle by one-way ANOVA. Asterisks denote magnitude of significance: * <span class="html-italic">p</span> < 0.05, ** <span class="html-italic">p</span> < 0.01, *** <span class="html-italic">p</span> < 0.001, **** <span class="html-italic">p</span> < 0.0001.</p> "> Figure 4
<p>Chemotactic potential of SpiD3-treated cell supernatants. Bone marrow dendritic cells (BMDCs) were allowed to migrate for 6 h toward supernatant collected from HG-3 (<b>A</b>); and OSU-CLL (<b>B</b>) cells after 24 h treatment with the vehicle (Veh), SpiD3 (0.5–2 µM), or the positive control, etoposide (Etop; 20 µM). GM-CSF (20 ng/mL) stimulated media, and supernatant derived from heat-shocked CLL cells (HS) served as positive chemotactic controls. The number of migrated BMDCs were counted via flow cytometry analysis (n = 3). The chemotactic index is a comparison of the migrated events observed from treatment conditions to that of the vehicle condition. Data are represented as mean ± SEM. Comparisons across treatment groups were analyzed with respect to the vehicle by one-way ANOVA. Asterisks denote magnitude of significance: * <span class="html-italic">p</span> < 0.05, ** <span class="html-italic">p</span> < 0.01, *** <span class="html-italic">p</span> < 0.001, **** <span class="html-italic">p</span> < 0.0001.</p> "> Figure 5
<p><span class="html-italic">In vivo</span> SpiD3 treatment yields an immunostimulatory response. (<b>A</b>) Schematic of experiment design: Eµ-TCL1 mice with comparable leukemia burden were treated intravenously with SpiD3 prodrug (SpiD3_AP, 10 mg/kg; n = 6) or equivalent vehicle (Veh; 50% PEG400, 10% DMSO, 40% water; n = 5) once daily for 3 days, as previously reported [<a href="#B20-biomedicines-12-02857" class="html-bibr">20</a>]. Following treatment, spleen cells were collected for flow cytometry analysis and plasma was isolated from murine blood; (<b>B</b>) leukemic (CD19+/CD5+) cells from murine spleens were analyzed by flow cytometry for changes in surface CALR expression (ecto-CALR) and compared to the percentage of leukemic cells detected in spleens of the same mice (as reported in Eiken, et al. [<a href="#B20-biomedicines-12-02857" class="html-bibr">20</a>]). The concentrations of plasma inflammatory cytokines and chemokines were assessed using Mouse Anti-Virus Response (<b>C</b>,<b>E</b>); and Mouse Pro-Inflammatory Chemokine (<b>D</b>,<b>F</b>) LEGENDplex™ flow cytometry-based multiplex immunoassays. (<b>C</b>,<b>D</b>) Heatmaps display fold change in the plasma analyte concentration compared to the average of vehicle-treated mice. Columns represent individual mice per treatment group. (<b>E</b>,<b>F</b>) Raw plasma analyte concentration and correlation with the percentage of CD19+/CD5+ spleen-derived cells are shown for select analytes. Individual data points (Veh = black circles; SpiD3_AP = blue triangles) in addition to summary statistics (mean ± SEM) are shown. Comparisons between treatment groups were analyzed by unpaired <span class="html-italic">t</span>-test. Asterisks denote magnitude of significance: * <span class="html-italic">p</span> < 0.05, ** <span class="html-italic">p</span> < 0.01.</p> "> Figure 6
<p>Illustrative summary of SpiD3 anti-leukemic activity. CLL cell cytotoxicity via SpiD3 is demonstrated by: (i) inhibition of NF-κB signaling; and (ii) accumulation of unfolded proteins, promoting ER stress, activating a futile UPR and, subsequently, the associated programmed cell death pathways. ER stress is a proposed prerequisite for immunogenic DAMP emissions; we hypothesize it is this facet of SpiD3-associated effects that result in detectable hallmarks of immunogenic cell death from CLL cells. This diagram is adapted from Eiken, et al. CLL, chronic lymphocytic leukemia; DC, dendritic cell; iDAMP, immunogenic damage-associated molecular pattern; ER, endoplasmic reticulum; UPR, unfolded protein response.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Pharmacological Agents
2.2. CLL Cell Lines
2.3. Primary CLL Cells
2.4. Surface CALR Expression
2.5. Extracellular ATP Measurement
2.6. Extracellular HMGB1 Detection
2.7. Bone-Marrow Derived Dendritic Cell (BMDC) Migration
2.8. Eμ-TCL1 Spleen and Plasma Analysis
2.9. Flow Cytometry
2.10. Statistics
3. Results
3.1. SpiD3 Treatment Mediates Immunogenic DAMP Release from CLL Cells
3.1.1. SpiD3-Treated CLL Cells Display Ecto-CALR
3.1.2. SpiD3 Treatment Induces ATP and HMGB1 Release from CLL Cells
3.2. SpiD3 Treatment Cultivates an Immunogenic Milieu
3.2.1. SpiD3 Treatment Establishes a Chemotactic Gradient for BMDCs
3.2.2. SpiD3 Treatment Incites an Immunogenic Response In Vivo
4. Discussion
5. Conclusions
6. Patents
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kipps, T.J.; Stevenson, F.K.; Wu, C.J.; Croce, C.M.; Packham, G.; Wierda, W.G.; O’Brien, S.; Gribben, J.; Rai, K. Chronic lymphocytic leukaemia. Nat. Rev. Dis. Primers 2017, 3, 16096. [Google Scholar] [CrossRef] [PubMed]
- Siegel, R.L.; Miller, K.D.; Wagle, N.S.; Jemal, A. Cancer statistics, 2023. CA Cancer J. Clin. 2023, 73, 17–48. [Google Scholar] [CrossRef] [PubMed]
- Yosifov, D.Y.; Wolf, C.; Stilgenbauer, S.; Mertens, D. From Biology to Therapy: The CLL Success Story. Hemasphere 2019, 3, e175. [Google Scholar] [CrossRef]
- Burger, J.A.; Barr, P.M.; Robak, T.; Owen, C.; Ghia, P.; Tedeschi, A.; Bairey, O.; Hillmen, P.; Coutre, S.E.; Devereux, S.; et al. Long-term efficacy and safety of first-line ibrutinib treatment for patients with CLL/SLL: 5 years of follow-up from the phase 3 RESONATE-2 study. Leukemia 2020, 34, 787–798. [Google Scholar] [CrossRef]
- Burger, J.A.; Tedeschi, A.; Barr, P.M.; Robak, T.; Owen, C.; Ghia, P.; Bairey, O.; Hillmen, P.; Bartlett, N.L.; Li, J.; et al. Ibrutinib as Initial Therapy for Patients with Chronic Lymphocytic Leukemia. N. Engl. J. Med. 2015, 373, 2425–2437. [Google Scholar] [CrossRef]
- Hampel, P.J.; Rabe, K.G.; Call, T.G.; Ding, W.; Leis, J.F.; Chanan-Khan, A.A.; Kenderian, S.S.; Muchtar, E.; Wang, Y.; Ailawadhi, S.; et al. Clinical outcomes in patients with chronic lymphocytic leukemia with disease progression on ibrutinib. Blood Cancer J. 2022, 12, 124. [Google Scholar] [CrossRef] [PubMed]
- Browning, R.L.; Byrd, W.H.; Gupta, N.; Jones, J.; Mo, X.; Hertlein, E.; Yu, L.; Muthusamy, N.; Byrd, J.C. Lenalidomide Induces Interleukin-21 Production by T Cells and Enhances IL21-Mediated Cytotoxicity in Chronic Lymphocytic Leukemia B Cells. Cancer Immunol. Res. 2016, 4, 698–707. [Google Scholar] [CrossRef] [PubMed]
- Del Gaizo Moore, V.; Brown, J.R.; Certo, M.; Love, T.M.; Novina, C.D.; Letai, A. Chronic lymphocytic leukemia requires BCL2 to sequester prodeath BIM, explaining sensitivity to BCL2 antagonist ABT-737. J. Clin. Investig. 2007, 117, 112–121. [Google Scholar] [CrossRef]
- Eichhorst, B.; Niemann, C.U.; Kater, A.P.; Furstenau, M.; von Tresckow, J.; Zhang, C.; Robrecht, S.; Gregor, M.; Juliusson, G.; Thornton, P.; et al. First-Line Venetoclax Combinations in Chronic Lymphocytic Leukemia. N. Engl. J. Med. 2023, 388, 1739–1754. [Google Scholar] [CrossRef] [PubMed]
- Ferrer, G.; Bosch, R.; Hodgson, K.; Tejero, R.; Roue, G.; Colomer, D.; Montserrat, E.; Moreno, C. B cell activation through CD40 and IL4R ligation modulates the response of chronic lymphocytic leukaemia cells to BAFF and APRIL. Br. J. Haematol. 2014, 164, 570–578. [Google Scholar] [CrossRef]
- Furstenau, M.; Kater, A.P.; Robrecht, S.; von Tresckow, J.; Zhang, C.; Gregor, M.; Thornton, P.; Staber, P.B.; Tadmor, T.; Lindstrom, V.; et al. First-line venetoclax combinations versus chemoimmunotherapy in fit patients with chronic lymphocytic leukaemia (GAIA/CLL13): 4-year follow-up from a multicentre, open-label, randomised, phase 3 trial. Lancet Oncol. 2024, 25, 744–759. [Google Scholar] [CrossRef]
- Hanada, M.; Delia, D.; Aiello, A.; Stadtmauer, E.; Reed, J.C. bcl-2 gene hypomethylation and high-level expression in B-cell chronic lymphocytic leukemia. Blood 1993, 82, 1820–1828. [Google Scholar] [CrossRef] [PubMed]
- Secchiero, P.; Tiribelli, M.; Barbarotto, E.; Celeghini, C.; Michelutti, A.; Masolini, P.; Fanin, R.; Zauli, G. Aberrant expression of TRAIL in B chronic lymphocytic leukemia (B-CLL) cells. J. Cell Physiol. 2005, 205, 246–252. [Google Scholar] [CrossRef]
- Till, K.J.; Lin, K.; Zuzel, M.; Cawley, J.C. The chemokine receptor CCR7 and alpha4 integrin are important for migration of chronic lymphocytic leukemia cells into lymph nodes. Blood 2002, 99, 2977–2984. [Google Scholar] [CrossRef] [PubMed]
- von Karstedt, S.; Montinaro, A.; Walczak, H. Exploring the TRAILs less travelled: TRAIL in cancer biology and therapy. Nat. Rev. Cancer 2017, 17, 352–366. [Google Scholar] [CrossRef]
- Galluzzi, L.; Vitale, I.; Aaronson, S.A.; Abrams, J.M.; Adam, D.; Agostinis, P.; Alnemri, E.S.; Altucci, L.; Amelio, I.; Andrews, D.W.; et al. Molecular mechanisms of cell death: Recommendations of the Nomenclature Committee on Cell Death 2018. Cell Death Differ. 2018, 25, 486–541. [Google Scholar] [CrossRef] [PubMed]
- Kroemer, G.; Galluzzi, L.; Kepp, O.; Zitvogel, L. Immunogenic cell death in cancer therapy. Annu. Rev. Immunol. 2013, 31, 51–72. [Google Scholar] [CrossRef]
- Rodrigues, M.C.; Morais, J.A.V.; Ganassin, R.; Oliveira, G.R.T.; Costa, F.C.; Morais, A.A.C.; Silveira, A.P.; Silva, V.C.M.; Longo, J.P.F.; Muehlmann, L.A. An Overview on Immunogenic Cell Death in Cancer Biology and Therapy. Pharmaceutics 2022, 14, 1564. [Google Scholar] [CrossRef]
- Eiken, A.P.; Schmitz, E.; Drengler, E.M.; Smith, A.L.; Skupa, S.A.; Mohan, K.; Rana, S.; Singh, S.; Mallareddy, J.R.; Mathew, G.; et al. The Novel Anti-Cancer Agent, SpiD3, Is Cytotoxic in CLL Cells Resistant to Ibrutinib or Venetoclax. Hemato 2024, 5, 321–339. [Google Scholar] [CrossRef] [PubMed]
- Eiken, A.P.; Smith, A.L.; Skupa, S.A.; Schmitz, E.; Rana, S.; Singh, S.; Kumar, S.; Mallareddy, J.R.; de Cubas, A.A.; Krishna, A.; et al. Novel Spirocyclic Dimer, SpiD3, Targets Chronic Lymphocytic Leukemia Survival Pathways with Potent Preclinical Effects. Cancer Res. Commun. 2024, 4, 1328–1343. [Google Scholar] [CrossRef]
- Kour, S.; Rana, S.; Kubica, S.P.; Kizhake, S.; Ahmad, M.; Munoz-Trujillo, C.; Klinkebiel, D.; Singh, S.; Mallareddy, J.R.; Chandra, S.; et al. Spirocyclic dimer SpiD7 activates the unfolded protein response to selectively inhibit growth and induce apoptosis of cancer cells. J. Biol. Chem. 2022, 298, 101890. [Google Scholar] [CrossRef] [PubMed]
- Rana, S.; Blowers, E.C.; Tebbe, C.; Contreras, J.I.; Radhakrishnan, P.; Kizhake, S.; Zhou, T.; Rajule, R.N.; Arnst, J.L.; Munkarah, A.R.; et al. Isatin Derived Spirocyclic Analogues with alpha-Methylene-gamma-butyrolactone as Anticancer Agents: A Structure-Activity Relationship Study. J. Med. Chem. 2016, 59, 5121–5127. [Google Scholar] [CrossRef]
- Rana, S.; Kour, S.; Kizhake, S.; King, H.M.; Mallareddy, J.R.; Case, A.J.; Huxford, T.; Natarajan, A. Dimers of isatin derived alpha-methylene-gamma-butyrolactone as potent anti-cancer agents. Bioorg Med. Chem. Lett. 2022, 65, 128713. [Google Scholar] [CrossRef] [PubMed]
- Hertlein, E.; Beckwith, K.A.; Lozanski, G.; Chen, T.L.; Towns, W.H.; Johnson, A.J.; Lehman, A.; Ruppert, A.S.; Bolon, B.; Andritsos, L.; et al. Characterization of a new chronic lymphocytic leukemia cell line for mechanistic in vitro and in vivo studies relevant to disease. PLoS ONE 2013, 8, e76607. [Google Scholar] [CrossRef]
- de Mingo Pulido, A.; Hanggi, K.; Celias, D.P.; Gardner, A.; Li, J.; Batista-Bittencourt, B.; Mohamed, E.; Trillo-Tinoco, J.; Osunmakinde, O.; Pena, R.; et al. The inhibitory receptor TIM-3 limits activation of the cGAS-STING pathway in intra-tumoral dendritic cells by suppressing extracellular DNA uptake. Immunity 2021, 54, 1154–1167.E7. [Google Scholar] [CrossRef] [PubMed]
- Lutz, M.B.; Kukutsch, N.; Ogilvie, A.L.; Rossner, S.; Koch, F.; Romani, N.; Schuler, G. An advanced culture method for generating large quantities of highly pure dendritic cells from mouse bone marrow. J. Immunol. Methods 1999, 223, 77–92. [Google Scholar] [CrossRef]
- Lutz, M.B.; Kukutsch, N.A.; Menges, M.; Rossner, S.; Schuler, G. Culture of bone marrow cells in GM-CSF plus high doses of lipopolysaccharide generates exclusively immature dendritic cells which induce alloantigen-specific CD4 T cell anergy in vitro. Eur. J. Immunol. 2000, 30, 1048–1052. [Google Scholar] [CrossRef]
- Hanggi, K.; Ruffell, B. Cell death, therapeutics, and the immune response in cancer. Trends Cancer 2023, 9, 381–396. [Google Scholar] [CrossRef]
- Kroemer, G.; Galassi, C.; Zitvogel, L.; Galluzzi, L. Immunogenic cell stress and death. Nat. Immunol. 2022, 23, 487–500. [Google Scholar] [CrossRef] [PubMed]
- Gardai, S.J.; McPhillips, K.A.; Frasch, S.C.; Janssen, W.J.; Starefeldt, A.; Murphy-Ullrich, J.E.; Bratton, D.L.; Oldenborg, P.A.; Michalak, M.; Henson, P.M. Cell-surface calreticulin initiates clearance of viable or apoptotic cells through trans-activation of LRP on the phagocyte. Cell 2005, 123, 321–334. [Google Scholar] [CrossRef]
- Obeid, M.; Tesniere, A.; Ghiringhelli, F.; Fimia, G.M.; Apetoh, L.; Perfettini, J.L.; Castedo, M.; Mignot, G.; Panaretakis, T.; Casares, N.; et al. Calreticulin exposure dictates the immunogenicity of cancer cell death. Nat. Med. 2007, 13, 54–61. [Google Scholar] [CrossRef] [PubMed]
- Cirone, M.; Di Renzo, L.; Lotti, L.V.; Conte, V.; Trivedi, P.; Santarelli, R.; Gonnella, R.; Frati, L.; Faggioni, A. Primary effusion lymphoma cell death induced by bortezomib and AG 490 activates dendritic cells through CD91. PLoS ONE 2012, 7, e31732. [Google Scholar] [CrossRef]
- Fucikova, J.; Kralikova, P.; Fialova, A.; Brtnicky, T.; Rob, L.; Bartunkova, J.; Spisek, R. Human tumor cells killed by anthracyclines induce a tumor-specific immune response. Cancer Res. 2011, 71, 4821–4833. [Google Scholar] [CrossRef]
- Lillis, A.P.; Greenlee, M.C.; Mikhailenko, I.; Pizzo, S.V.; Tenner, A.J.; Strickland, D.K.; Bohlson, S.S. Murine low-density lipoprotein receptor-related protein 1 (LRP) is required for phagocytosis of targets bearing LRP ligands but is not required for C1q-triggered enhancement of phagocytosis. J. Immunol. 2008, 181, 364–373. [Google Scholar] [CrossRef] [PubMed]
- Panaretakis, T.; Joza, N.; Modjtahedi, N.; Tesniere, A.; Vitale, I.; Durchschlag, M.; Fimia, G.M.; Kepp, O.; Piacentini, M.; Froehlich, K.U.; et al. The co-translocation of ERp57 and calreticulin determines the immunogenicity of cell death. Cell Death Differ. 2008, 15, 1499–1509. [Google Scholar] [CrossRef]
- Xu, Q.; Chen, C.; Lin, A.; Xie, Y. Endoplasmic reticulum stress-mediated membrane expression of CRT/ERp57 induces immunogenic apoptosis in drug-resistant endometrial cancer cells. Oncotarget 2017, 8, 58754–58764. [Google Scholar] [CrossRef]
- Obeid, M.; Panaretakis, T.; Tesniere, A.; Joza, N.; Tufi, R.; Apetoh, L.; Ghiringhelli, F.; Zitvogel, L.; Kroemer, G. Leveraging the immune system during chemotherapy: Moving calreticulin to the cell surface converts apoptotic death from “silent” to immunogenic. Cancer Res. 2007, 67, 7941–7944. [Google Scholar] [CrossRef]
- Galluzzi, L.; Vitale, I.; Warren, S.; Adjemian, S.; Agostinis, P.; Martinez, A.B.; Chan, T.A.; Coukos, G.; Demaria, S.; Deutsch, E.; et al. Consensus guidelines for the definition, detection and interpretation of immunogenic cell death. J. Immunother. Cancer 2020, 8, e000337. [Google Scholar] [CrossRef]
- Michaud, M.; Martins, I.; Sukkurwala, A.Q.; Adjemian, S.; Ma, Y.; Pellegatti, P.; Shen, S.; Kepp, O.; Scoazec, M.; Mignot, G.; et al. Autophagy-dependent anticancer immune responses induced by chemotherapeutic agents in mice. Science 2011, 334, 1573–1577. [Google Scholar] [CrossRef]
- Vacchelli, E.; Ma, Y.; Baracco, E.E.; Sistigu, A.; Enot, D.P.; Pietrocola, F.; Yang, H.; Adjemian, S.; Chaba, K.; Semeraro, M.; et al. Chemotherapy-induced antitumor immunity requires formyl peptide receptor 1. Science 2015, 350, 972–978. [Google Scholar] [CrossRef] [PubMed]
- Sims, G.P.; Rowe, D.C.; Rietdijk, S.T.; Herbst, R.; Coyle, A.J. HMGB1 and RAGE in inflammation and cancer. Annu. Rev. Immunol. 2010, 28, 367–388. [Google Scholar] [CrossRef] [PubMed]
- Venereau, E.; Casalgrandi, M.; Schiraldi, M.; Antoine, D.J.; Cattaneo, A.; De Marchis, F.; Liu, J.; Antonelli, A.; Preti, A.; Raeli, L.; et al. Mutually exclusive redox forms of HMGB1 promote cell recruitment or proinflammatory cytokine release. J. Exp. Med. 2012, 209, 1519–1528. [Google Scholar] [CrossRef]
- Gorgun, G.; Ramsay, A.G.; Holderried, T.A.; Zahrieh, D.; Le Dieu, R.; Liu, F.; Quackenbush, J.; Croce, C.M.; Gribben, J.G. E(mu)-TCL1 mice represent a model for immunotherapeutic reversal of chronic lymphocytic leukemia-induced T-cell dysfunction. Proc. Natl. Acad. Sci. USA 2009, 106, 6250–6255. [Google Scholar] [CrossRef]
- Johnson, A.J.; Lucas, D.M.; Muthusamy, N.; Smith, L.L.; Edwards, R.B.; De Lay, M.D.; Croce, C.M.; Grever, M.R.; Byrd, J.C. Characterization of the TCL-1 transgenic mouse as a preclinical drug development tool for human chronic lymphocytic leukemia. Blood 2006, 108, 1334–1338. [Google Scholar] [CrossRef] [PubMed]
- Hou, W.; Zhang, Q.; Yan, Z.; Chen, R.; Zeh Iii, H.J.; Kang, R.; Lotze, M.T.; Tang, D. Strange attractors: DAMPs and autophagy link tumor cell death and immunity. Cell Death Dis. 2013, 4, e966. [Google Scholar] [CrossRef]
- Krombach, J.; Hennel, R.; Brix, N.; Orth, M.; Schoetz, U.; Ernst, A.; Schuster, J.; Zuchtriegel, G.; Reichel, C.A.; Bierschenk, S.; et al. Priming anti-tumor immunity by radiotherapy: Dying tumor cell-derived DAMPs trigger endothelial cell activation and recruitment of myeloid cells. Oncoimmunology 2019, 8, e1523097. [Google Scholar] [CrossRef] [PubMed]
- Marconato, M.; Maringer, Y.; Walz, J.S.; Nelde, A.; Heitmann, J.S. Immunopeptidome Diversity in Chronic Lymphocytic Leukemia Identifies Patients with Favorable Disease Outcome. Cancers 2022, 14, 4659. [Google Scholar] [CrossRef] [PubMed]
- Nelde, A.; Maringer, Y.; Bilich, T.; Salih, H.R.; Roerden, M.; Heitmann, J.S.; Marcu, A.; Bauer, J.; Neidert, M.C.; Denzlinger, C.; et al. Immunopeptidomics-Guided Warehouse Design for Peptide-Based Immunotherapy in Chronic Lymphocytic Leukemia. Front. Immunol. 2021, 12, 705974. [Google Scholar] [CrossRef] [PubMed]
- Cramer, S.L.; Saha, A.; Liu, J.; Tadi, S.; Tiziani, S.; Yan, W.; Triplett, K.; Lamb, C.; Alters, S.E.; Rowlinson, S.; et al. Systemic depletion of L-cyst(e)ine with cyst(e)inase increases reactive oxygen species and suppresses tumor growth. Nat. Med. 2017, 23, 120–127. [Google Scholar] [CrossRef]
- Harris, I.S.; Treloar, A.E.; Inoue, S.; Sasaki, M.; Gorrini, C.; Lee, K.C.; Yung, K.Y.; Brenner, D.; Knobbe-Thomsen, C.B.; Cox, M.A.; et al. Glutathione and thioredoxin antioxidant pathways synergize to drive cancer initiation and progression. Cancer Cell 2015, 27, 211–222. [Google Scholar] [CrossRef]
- Trachootham, D.; Alexandre, J.; Huang, P. Targeting cancer cells by ROS-mediated mechanisms: A radical therapeutic approach? Nat. Rev. Drug Discov. 2009, 8, 579–591. [Google Scholar] [CrossRef]
- Zhang, W.; Trachootham, D.; Liu, J.; Chen, G.; Pelicano, H.; Garcia-Prieto, C.; Lu, W.; Burger, J.A.; Croce, C.M.; Plunkett, W.; et al. Stromal control of cystine metabolism promotes cancer cell survival in chronic lymphocytic leukaemia. Nat. Cell Biol. 2012, 14, 276–286. [Google Scholar] [CrossRef] [PubMed]
- Hattori, T.; Maso, L.; Araki, K.Y.; Koide, A.; Hayman, J.; Akkapeddi, P.; Bang, I.; Neel, B.G.; Koide, S. Creating MHC-Restricted Neoantigens with Covalent Inhibitors That Can Be Targeted by Immune Therapy. Cancer Discov. 2023, 13, 132–145. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Rohweder, P.J.; Ongpipattanakul, C.; Basu, K.; Bohn, M.F.; Dugan, E.J.; Steri, V.; Hann, B.; Shokat, K.M.; Craik, C.S. A covalent inhibitor of K-Ras(G12C) induces MHC class I presentation of haptenated peptide neoepitopes targetable by immunotherapy. Cancer Cell 2022, 40, 1060–1069.e7. [Google Scholar] [CrossRef]
- Brocard, E.; Oizel, K.; Lalier, L.; Pecqueur, C.; Paris, F.; Vallette, F.M.; Oliver, L. Radiation-induced PGE2 sustains human glioma cells growth and survival through EGF signaling. Oncotarget 2015, 6, 6840–6849. [Google Scholar] [CrossRef] [PubMed]
- Hangai, S.; Ao, T.; Kimura, Y.; Matsuki, K.; Kawamura, T.; Negishi, H.; Nishio, J.; Kodama, T.; Taniguchi, T.; Yanai, H. PGE2 induced in and released by dying cells functions as an inhibitory DAMP. Proc. Natl. Acad. Sci. USA 2016, 113, 3844–3849. [Google Scholar] [CrossRef] [PubMed]
- Huang, Q.; Li, F.; Liu, X.; Li, W.; Shi, W.; Liu, F.F.; O’Sullivan, B.; He, Z.; Peng, Y.; Tan, A.C.; et al. Caspase 3-mediated stimulation of tumor cell repopulation during cancer radiotherapy. Nat. Med. 2011, 17, 860–866. [Google Scholar] [CrossRef]
- Kurtova, A.V.; Xiao, J.; Mo, Q.; Pazhanisamy, S.; Krasnow, R.; Lerner, S.P.; Chen, F.; Roh, T.T.; Lay, E.; Ho, P.L.; et al. Blocking PGE2-induced tumour repopulation abrogates bladder cancer chemoresistance. Nature 2015, 517, 209–213. [Google Scholar] [CrossRef] [PubMed]
- Arruga, F.; Gyau, B.B.; Iannello, A.; Vitale, N.; Vaisitti, T.; Deaglio, S. Immune Response Dysfunction in Chronic Lymphocytic Leukemia: Dissecting Molecular Mechanisms and Microenvironmental Conditions. Int. J. Mol. Sci. 2020, 21, 1825. [Google Scholar] [CrossRef] [PubMed]
- Martens, A.W.J.; Kavazovic, I.; Krapic, M.; Pack, S.M.; Arens, R.; Jongejan, A.; Moerland, P.D.; Eldering, E.; van der Windt, G.J.W.; Wensveen, F.M.; et al. Chronic lymphocytic leukemia presence impairs antigen-specific CD8(+) T-cell responses through epigenetic reprogramming towards short-lived effectors. Leukemia 2023, 37, 606–616. [Google Scholar] [CrossRef]
- Rezazadeh, H.; Astaneh, M.; Tehrani, M.; Hossein-Nataj, H.; Zaboli, E.; Shekarriz, R.; Asgarian-Omran, H. Blockade of PD-1 and TIM-3 immune checkpoints fails to restore the function of exhausted CD8(+) T cells in early clinical stages of chronic lymphocytic leukemia. Immunol. Res. 2020, 68, 269–279. [Google Scholar] [CrossRef]
- Riches, J.C.; Davies, J.K.; McClanahan, F.; Fatah, R.; Iqbal, S.; Agrawal, S.; Ramsay, A.G.; Gribben, J.G. T cells from CLL patients exhibit features of T-cell exhaustion but retain capacity for cytokine production. Blood 2013, 121, 1612–1621. [Google Scholar] [CrossRef] [PubMed]
- Ruffell, B.; Chang-Strachan, D.; Chan, V.; Rosenbusch, A.; Ho, C.M.; Pryer, N.; Daniel, D.; Hwang, E.S.; Rugo, H.S.; Coussens, L.M. Macrophage IL-10 blocks CD8+ T cell-dependent responses to chemotherapy by suppressing IL-12 expression in intratumoral dendritic cells. Cancer Cell 2014, 26, 623–637. [Google Scholar] [CrossRef] [PubMed]
- van Attekum, M.H.; Eldering, E.; Kater, A.P. Chronic lymphocytic leukemia cells are active participants in microenvironmental cross-talk. Haematologica 2017, 102, 1469–1476. [Google Scholar] [CrossRef] [PubMed]
- Perutelli, F.; Jones, R.; Griggio, V.; Vitale, C.; Coscia, M. Immunotherapeutic Strategies in Chronic Lymphocytic Leukemia: Advances and Challenges. Front. Oncol. 2022, 12, 837531. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Schmitz, E.; Ridout, A.; Smith, A.L.; Eiken, A.P.; Skupa, S.A.; Drengler, E.M.; Singh, S.; Rana, S.; Natarajan, A.; El-Gamal, D. Immunogenic Cell Death Traits Emitted from Chronic Lymphocytic Leukemia Cells Following Treatment with a Novel Anti-Cancer Agent, SpiD3. Biomedicines 2024, 12, 2857. https://doi.org/10.3390/biomedicines12122857
Schmitz E, Ridout A, Smith AL, Eiken AP, Skupa SA, Drengler EM, Singh S, Rana S, Natarajan A, El-Gamal D. Immunogenic Cell Death Traits Emitted from Chronic Lymphocytic Leukemia Cells Following Treatment with a Novel Anti-Cancer Agent, SpiD3. Biomedicines. 2024; 12(12):2857. https://doi.org/10.3390/biomedicines12122857
Chicago/Turabian StyleSchmitz, Elizabeth, Abigail Ridout, Audrey L. Smith, Alexandria P. Eiken, Sydney A. Skupa, Erin M. Drengler, Sarbjit Singh, Sandeep Rana, Amarnath Natarajan, and Dalia El-Gamal. 2024. "Immunogenic Cell Death Traits Emitted from Chronic Lymphocytic Leukemia Cells Following Treatment with a Novel Anti-Cancer Agent, SpiD3" Biomedicines 12, no. 12: 2857. https://doi.org/10.3390/biomedicines12122857
APA StyleSchmitz, E., Ridout, A., Smith, A. L., Eiken, A. P., Skupa, S. A., Drengler, E. M., Singh, S., Rana, S., Natarajan, A., & El-Gamal, D. (2024). Immunogenic Cell Death Traits Emitted from Chronic Lymphocytic Leukemia Cells Following Treatment with a Novel Anti-Cancer Agent, SpiD3. Biomedicines, 12(12), 2857. https://doi.org/10.3390/biomedicines12122857