Grapefruit-Derived Vesicles Loaded with Recombinant HSP70 Activate Antitumor Immunity in Colon Cancer In Vitro and In Vivo
<p>Size, concentration, and morphology of grapefruit-derived vesicles before (GEV) and after loading procedure (GEV-HSP70). (<b>A</b>,<b>B</b>) Typical examples of nanoparticle tracking analysis (NTA) of the sample of isolated GEV (<b>A</b>) and GEV-HSP70 (<b>B</b>). (<b>C</b>,<b>D</b>) Cryo-EM images of GEV (<b>C</b>) or GEV-HSP70 (<b>D</b>). White arrows indicate vesicles with intact membrane, red arrows indicate vesicles with broken membrane, and black arrows—debris in the sample. The blue arrows depict a lipid bilayer membrane of the vesicle. Scale bars are 50 nm. Inset–size distribution histogram. A total of 100 particles were analyzed. (<b>E</b>,<b>F</b>) Loading efficiency of GEV with HSP70 protein: (<b>E</b>) Example of Western blot (WB) of HSP70 in the initial GEV (line 7) and GEV-HSP70 (lines 5,6) in an amount of 10<sup>11</sup> particles per line. Recombinant HSP70 in an amount from 0.2 μg to 2 μg per line (lines 1–4). (<b>F</b>) Cumulative quantification of HSP70 loaded into GEV obtained from WB.</p> "> Figure 2
<p>Effect of free HSP70 and GEV-HSP70 on the proliferative activity of human and murine colon cancer cells when attacked by cytotoxic lymphocytes (CTL) from naïve C3HA mice or human NK-92 cells. (<b>A</b>,<b>B</b>) GEV-HSP70 increases the sensitivity of human colon cancer cells to the NK cells action: HCT-116 (<b>A</b>) and DLD1 (<b>B</b>) cells were seeded to wells of E-plate and incubated or not with GEV-HSP70 for 24 h, and then NK-92 cells were added into wells. Recoding on xCELLigence equipment lasted 45 h. (<b>C</b>–<b>F</b>) Effect of free and GEV-loaded HSP70 on the proliferative activity of CT-26 cells when attacked by CTL from naïve C3HA mice or human NK-92 cells. (<b>C</b>,<b>E</b>) Proliferative activity of CT-26 cells preincubated with HSP70 (10 μg), GEV (0 μg HSP70), and GEV-HSP70 (about 0.5 μg HSP70) when exposed to the CTL. (F,H). Proliferative activity of CT-26 cells preincubated with HSP70 (10 μg or 1 μg), GEV (0 μg HSP70), and GEV-HSP70 (about 0.5 μg HSP70) upon exposure to NK-92 cells. Addition of rHSP70, GEV-HSP70, and naïve GEVs at 24 h of incubation, addition of effector cells at 40 h of incubation. For the (<b>E</b>,<b>F</b>) panels, the last observation time point was chosen for analysis. In panels (<b>A</b>–<b>D</b>), the normalization point for the proliferation curves is chosen to correspond to the time point of effector cells. Pairwise multiple comparisons were performed using ANOVA with Tukey’s posterior test. A statistically significant difference between the is indicated as **** for <span class="html-italic">p</span> < 0.0001, *** for <span class="html-italic">p</span> ≤ 0.0005, * for <span class="html-italic">p</span> < 0.05, ns—not statistically significant.</p> "> Figure 3
<p>Antitumor effect of HSP70 and GEV-HSP70 in a mouse model of colorectal carcinoma. (<b>A</b>) Analysis of the growth rate of the tumor node during the 21st day of observation in 4 groups of animals after inoculation of CT-26 cells (Untreated) or CT-26 cells mixed with GEV, GEV-HSP70 (2 μg HSP70/dose), and with HSP70 (50 μg/dose) (N = 8) (<b>B</b>,<b>C</b>) Twenty-one days after CT-26 cells inoculation tumors were isolated, photographed (<b>B</b>) and weighed (<b>C</b>) (N = 8). (<b>D</b>,<b>E</b>) Analysis of the tumor size by the intravital luminescence imaging system (N = 5). (<b>F</b>) Life expectancy of animals in control and experimental groups (N = 10). Legend *** for <span class="html-italic">p</span> ≤ 0.0005, ** for <span class="html-italic">p</span> ≤ 0.005, * for <span class="html-italic">p</span> < 0.05, ns—not statistically significant.</p> "> Figure 4
<p>GEV-HSP70 and free HSP70 induce a specific antitumor immune response in the CT-26 mouse model of colorectal carcinoma. (<b>A</b>,<b>B</b>) Assessment of the concentration of cytokines IL-10 and TGFB-1 in the blood plasma of mice 21 days after inoculation with CT-26 cells (Untreated), CT-26 cells mixed with GEV, GEV-HSP70 (about 2 μg HSP70/dose) or HSP70 (50 μg/dose) (N = 5). (<b>C</b>) Proliferative activity of CT-26 cells when exposed to the total fraction of lymphocytes isolated from the spleens of mice of experimental and control groups. (<b>D</b>) The influence of the lymphocyte fraction depleted of CD8+ T-lymphocytes on the proliferative activity of CT-26 cells. (<b>E</b>) Cytostatic effect of CD8+ T lymphocytes from mice from experimental and control groups on the proliferation of CT-26 cells (N = 5). Pairwise multiple comparisons were performed using ANOVA with Tukey’s posterior test. <span class="html-italic">p</span> < 0.0001 = ****, <span class="html-italic">p</span> ≤ 0.0005 = ***, <span class="html-italic">p</span> ≤ 0.005 = **, ns—not statistically significant.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Recombinant HSP70 Preparation
2.2. Isolation of Vesicles from Fruit Parts of Citrus × Paradisi (Grapefruits) and Loading of Grapefruit-Derived Vesicles with Proteins
2.3. Evaluation of the Efficiency of the GEV Loading by Western-Blotting
2.4. Cryo-Electron Microscopy Evaluation of the Efficiency of the GEV Loading Using Western-Blotting
2.5. Cells
2.6. Cytotoxicity Assay
2.7. Animal Experiments
2.8. Statistics
3. Results
3.1. Characterization of Native and HSP70-Loaded GEVs
3.2. Recombinant HSP70 Loaded into GEVs Effectively Stimulates Immune Cell Activity In Vitro
3.3. Antitumor Effect of HSP70 and GEV-HSP70 in a Mouse Model of Colorectal Cancer
3.4. Activation of a Specific Immune Response in Animals Received HSP70 and GEV-HSP70 in a Mouse Model of Colon Carcinoma
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cuzzubbo, S.; Mangsbo, S.; Nagarajan, D.; Habra, K.; Pockley, A.G.; McArdle, S.E.B. Cancer Vaccines: Adjuvant Potency, Importance of Age, Lifestyle, and Treatments. Front. Immunol. 2021, 11, 615240. [Google Scholar] [CrossRef] [PubMed]
- Hu, B.; Liu, G.; Zhao, K.; Zhang, G. Diversity of extracellular HSP70 in cancer: Advancing from a molecular biomarker to a novel therapeutic target. Front. Oncol. 2024, 14, 1388999. [Google Scholar] [CrossRef] [PubMed]
- Noessner, E.; Gastpar, R.; Milani, V.; Brandl, A.; Hutzler, P.J.S.; Kuppner, M.C.; Roos, M.; Kremmer, E.; Asea, A.; Calderwood, S.K.; et al. Tumor-Derived Heat Shock Protein 70 Peptide Complexes Are Cross-Presented by Human Dendritic Cells. J. Immunol. 2002, 169, 5424–5432. [Google Scholar] [CrossRef] [PubMed]
- Cho, J.; Lee, Y.-S.; Kim, S.-H.; Ko, J.-K.; Kim, C.-W. MHC independent anti-tumor immune responses induced by Hsp70-enriched exosomes generate tumor regression in murine models. Cancer Lett. 2009, 275, 256–265. [Google Scholar] [CrossRef] [PubMed]
- Huang, C.; Zhao, J.; Li, Z.; Li, D.; Xia, D.; Wang, Q.; Jin, H. Multi-chaperone-peptide-rich mixture from colo-carcinoma cells elicits potent anticancer immunity. Cancer Epidemiol. 2010, 34, 494–500. [Google Scholar] [CrossRef]
- Albakova, Z.; Armeev, G.A.; Kanevskiy, L.M.; Kovalenko, E.I.; Sapozhnikov, A.M. HSP70 Multi-Functionality in Cancer. Cells 2020, 9, 587. [Google Scholar] [CrossRef]
- Asghari Vostakolaei, M.; Abdolalizadeh, J.; Hejazi, M.S.; Kordi, S.; Molavi, O. Hsp70 in Cancer: Partner or Traitor to Immune System. Iran. J. Allergy Asthma Immunol. 2020, 18, 589–604. [Google Scholar] [CrossRef]
- Zhao, K.; Zhou, G.; Liu, Y.; Zhang, J.; Chen, Y.; Liu, L.; Zhang, G. HSP70 Family in Cancer: Signaling Mechanisms and Therapeutic Advances. Biomolecules 2023, 13, 601. [Google Scholar] [CrossRef]
- Das, J.K.; Xiong, X.; Ren, X.; Yang, J.-M.; Song, J. Heat Shock Proteins in Cancer Immunotherapy. J. Oncol. 2019, 2019, 3267207. [Google Scholar] [CrossRef]
- Zhang, X.; Huang, Y.; Li, X.; Wang, Y.; Yuan, Y.; Li, M. Preparation of a new combination nanoemulsion-encapsulated MAGE1-MAGE3-MAGEn/HSP70 vaccine and study of its immunotherapeutic effect. Pathol. Res. Pract. 2020, 216, 152954. [Google Scholar] [CrossRef]
- Weng, D.; Calderwood, S.K.; Gong, J. A Novel Heat Shock Protein 70-Based Vaccine Prepared from DC Tumor Fusion Cells: An Update. In Chaperones. Methods in Molecular Biology; Humana: New York, NY, USA, 2023; pp. 209–219. [Google Scholar]
- Ito, A.; Matsuoka, F.; Honda, H.; Kobayashi, T. Antitumor effects of combined therapy of recombinant heat shock protein 70 and hyperthermia using magnetic nanoparticles in an experimental subcutaneous murine melanoma. Cancer Immunol. Immunother. 2004, 53, 26–32. [Google Scholar] [CrossRef] [PubMed]
- Geng, H.; Zhang, G.; Xiao, H.; Yuan, Y.; Li, D.; Zhang, H.; Qiu, H.; He, Y.; Feng, Z. HSP70 vaccine in combination with gene therapy with plasmid DNA encoding sPD-1 overcomes immune resistance and suppresses the progression of pulmonary metastatic melanoma. Int. J. Cancer 2006, 118, 2657–2664. [Google Scholar] [CrossRef] [PubMed]
- Shevtsov, M.A.; Pozdnyakov, A.V.; Mikhrina, A.L.; Yakovleva, L.Y.; Nikolaev, B.P.; Dobrodumov, A.V.; Komarova, E.Y.; Meshalkina, D.A.; Ischenko, A.M.; Pitkin, E.; et al. Effective immunotherapy of rat glioblastoma with prolonged intratumoral delivery of exogenous heat shock protein Hsp70. Int. J. Cancer 2014, 135, 2118–2128. [Google Scholar] [CrossRef] [PubMed]
- Schilling, D.; Gehrmann, M.; Steinem, C.; De Maio, A.; Pockley, A.G.; Abend, M.; Molls, M.; Multhoff, G. Binding of heat shock protein 70 to extracellular phosphatidylserine promotes killing of normoxic and hypoxic tumor cells. FASEB J. 2009, 23, 2467–2477. [Google Scholar] [CrossRef]
- Abkin, S.V.; Pankratova, K.M.; Komarova, E.Y.; Guzhova, I.V.; Margulis, B.A. Hsp70 chaperone-based gel composition as a novel immunotherapeutic anti-tumor tool. Cell Stress Chaperones 2013, 18, 391–396. [Google Scholar] [CrossRef]
- Komarova, E.Y.; Suezov, R.V.; Nikotina, A.D.; Aksenov, N.D.; Garaeva, L.A.; Shtam, T.A.; Zhakhov, A.V.; Martynova, M.G.; Bystrova, O.A.; Istomina, M.S.; et al. Hsp70-containing extracellular vesicles are capable of activating of adaptive immunity in models of mouse melanoma and colon carcinoma. Sci. Rep. 2021, 11, 21314. [Google Scholar] [CrossRef]
- Shevtsov, M.A.; Komarova, E.Y.; Meshalkina, D.A.; Bychkova, N.V.; Aksenov, N.D.; Abkin, S.V.; Margulis, B.A.; Guzhova, I.V. Exogenously delivered heat shock protein 70 displaces its endogenous analogue and sensitizes cancer cells to lymphocytes-mediated cytotoxicity. Oncotarget 2014, 5, 3101–3114. [Google Scholar] [CrossRef]
- Gonzalez-Melero, L.; Hernandez, R.M.; Santos-Vizcaino, E.; Igartua, M. Tumour-derived extracellular vesicle based vaccines for melanoma treatment. Drug Deliv. Transl. Res. 2023, 13, 1520–1542. [Google Scholar] [CrossRef]
- Cui, Y.; Gao, J.; He, Y.; Jiang, L. Plant extracellular vesicles. Protoplasma 2020, 257, 3–12. [Google Scholar] [CrossRef]
- Feng, H.; Yue, Y.; Zhang, Y.; Liang, J.; Liu, L.; Wang, Q.; Feng, Q.; Zhao, H. Plant-Derived Exosome-Like Nanoparticles: Emerging Nanosystems for Enhanced Tissue Engineering. Int. J. Nanomed. 2024, 19, 1189–1204. [Google Scholar] [CrossRef]
- Akuma, P.; Okagu, O.D.; Udenigwe, C.C. Naturally. Occurring Exosome Vesicles as Potential Delivery Vehicle for Bioactive Compounds. Front. Sustain. Food Syst. 2019, 3, 23. [Google Scholar] [CrossRef]
- Li, Z.; Wang, H.; Yin, H.; Bennett, C.; Zhang, H.; Guo, P. Arrowtail RNA for Ligand Display on Ginger Exosome-like Nanovesicles to Systemic Deliver siRNA for Cancer Suppression. Sci. Rep. 2018, 8, 14644. [Google Scholar] [CrossRef] [PubMed]
- You, J.Y.; Kang, S.J.; Rhee, W.J. Isolation of cabbage exosome-like nanovesicles and investigation of their biological activities in human cells. Bioact. Mater. 2021, 6, 4321–4332. [Google Scholar] [CrossRef] [PubMed]
- Feng, W.; Teng, Y.; Zhong, Q.; Zhang, Y.; Zhang, J.; Zhao, P.; Chen, G.; Wang, C.; Liang, X.-J.; Ou, C. Biomimetic Grapefruit-Derived Extracellular Vesicles for Safe and Targeted Delivery of Sodium Thiosulfate against Vascular Calcification. ACS Nano 2023, 17, 24773–24789. [Google Scholar] [CrossRef] [PubMed]
- Garaeva, L.; Kamyshinsky, R.; Kil, Y.; Varfolomeeva, E.; Verlov, N.; Komarova, E.; Garmay, Y.; Landa, S.; Burdakov, V.; Myasnikov, A.; et al. Delivery of functional exogenous proteins by plant-derived vesicles to human cells in vitro. Sci. Rep. 2021, 11, 6489. [Google Scholar] [CrossRef]
- Naryzhny, S.N. Blue Dry Western: Simple, economic, informative, and fast way of immunodetection. Anal. Biochem. 2009, 392, 90–95. [Google Scholar] [CrossRef]
- Emelyanov, A.; Shtam, T.; Kamyshinsky, R.; Garaeva, L.; Verlov, N.; Miliukhina, I.; Kudrevatykh, A.; Gavrilov, G.; Zabrodskaya, Y.; Pchelina, S.; et al. Cryo-electron microscopy of extracellular vesicles from cerebrospinal fluid. PLoS ONE 2020, 15, e0227949. [Google Scholar] [CrossRef]
- Peper, J.K.; Schuster, H.; Löffler, M.W.; Schmid-Horch, B.; Rammensee, H.-G.; Stevanović, S. An impedance-based cytotoxicity assay for real-time and label-free assessment of T-cell-mediated killing of adherent cells. J. Immunol. Methods 2014, 405, 192–198. [Google Scholar] [CrossRef]
- Mazurakova, A.; Solarova, Z.; Koklesova, L.; Caprnda, M.; Prosecky, R.; Khakymov, A.; Baranenko, D.; Kubatka, P.; Mirossay, L.; Kruzliak, P.; et al. Heat shock proteins in cancer—Known but always being rediscovered: Their perspectives in cancer immunotherapy. Adv. Med. Sci. 2023, 68, 464–473. [Google Scholar] [CrossRef]
- Elmallah, M.I.Y.; Cordonnier, M.; Vautrot, V.; Chanteloup, G.; Garrido, C.; Gobbo, J. Membrane-anchored heat-shock protein 70 (Hsp70) in cancer. Cancer Lett. 2020, 469, 134–141. [Google Scholar] [CrossRef]
- Chalmin, F.; Ladoire, S.; Mignot, G.; Vincent, J.; Bruchard, M.; Remy-Martin, J.-P.; Boireau, W.; Rouleau, A.; Simon, B.; Lanneau, D.; et al. Membrane-associated Hsp72 from tumor-derived exosomes mediates STAT3-dependent immunosuppressive function of mouse and human myeloid-derived suppressor cells. J. Clin. Invest. 2010, 120, 457–471. [Google Scholar] [CrossRef] [PubMed]
- Diao, J.; Yang, X.; Song, X.; Chen, S.; He, Y.; Wang, Q.; Chen, G.; Luo, C.; Wu, X.; Zhang, Y. Exosomal Hsp70 mediates immunosuppressive activity of the myeloid-derived suppressor cells via phosphorylation of Stat3. Med. Oncol. 2015, 32, 35. [Google Scholar] [CrossRef] [PubMed]
- Guo, D.; Chen, Y.; Wang, S.; Yu, L.; Shen, Y.; Zhong, H.; Yang, Y. Exosomes from heat-stressed tumour cells inhibit tumour growth by converting regulatory T cells to Th17 cells via IL-6. Immunology 2018, 154, 132–143. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Garaeva, L.; Komarova, E.; Emelianova, S.; Putevich, E.; Konevega, A.L.; Margulis, B.; Guzhova, I.; Shtam, T. Grapefruit-Derived Vesicles Loaded with Recombinant HSP70 Activate Antitumor Immunity in Colon Cancer In Vitro and In Vivo. Biomedicines 2024, 12, 2759. https://doi.org/10.3390/biomedicines12122759
Garaeva L, Komarova E, Emelianova S, Putevich E, Konevega AL, Margulis B, Guzhova I, Shtam T. Grapefruit-Derived Vesicles Loaded with Recombinant HSP70 Activate Antitumor Immunity in Colon Cancer In Vitro and In Vivo. Biomedicines. 2024; 12(12):2759. https://doi.org/10.3390/biomedicines12122759
Chicago/Turabian StyleGaraeva, Luiza, Elena Komarova, Svetlana Emelianova, Elena Putevich, Andrey L. Konevega, Boris Margulis, Irina Guzhova, and Tatiana Shtam. 2024. "Grapefruit-Derived Vesicles Loaded with Recombinant HSP70 Activate Antitumor Immunity in Colon Cancer In Vitro and In Vivo" Biomedicines 12, no. 12: 2759. https://doi.org/10.3390/biomedicines12122759
APA StyleGaraeva, L., Komarova, E., Emelianova, S., Putevich, E., Konevega, A. L., Margulis, B., Guzhova, I., & Shtam, T. (2024). Grapefruit-Derived Vesicles Loaded with Recombinant HSP70 Activate Antitumor Immunity in Colon Cancer In Vitro and In Vivo. Biomedicines, 12(12), 2759. https://doi.org/10.3390/biomedicines12122759