Cancer Detection Using an Artificial Secretable MicroRNA Found in Blood and Urine
<p>Sec-miR reporter expression from cells could be amplified by inserting multiple copies of Sec-miR into a single construct. Hela cells were transiently transfected with plasmids containing 1, 2, 4, 8, or 12 copies of Sec-miR driven by constitutive EF1 promoter or tumor-specific Survivin promoter (pSurv) in different wells. (<b>A</b>) All the Sec-miR expressions were normalized to the values in wells transfected with the 1X Sec-miR copy plasmid. Data are expressed as mean ± SD. Sec-miR expressions were detected in all the wells transfected with Sec-miR constructs; the Sec-miR expressions significantly increased as the copy numbers of Sec-miR increased in the plasmids. Moreover, Sec-miR expressions in the cells transfected with PP-pSurv-Sec-miR 12X-WPRE and MC-pSurv-Sec-miR 12X-WPRE were also compared. Sec-miR expressions of MC-transfected cells were significantly higher than PP-transfected cells and were comparable to the expressions detected in the cells transfected with pEF1-Luc2-Sec-miR 12X. (<b>B</b>) Bioluminescent signals emitted from cells transfected with different constructs were acquired after medium collection. *, <span class="html-italic">p</span> < 0.05; **, <span class="html-italic">p</span> < 0.01.</p> "> Figure 2
<p>Sec-miR is detectable in the blood and urine of mice bearing Sec-miR-expressing Hela tumors and can be used as a complement to imaging reporters. Both parental Hela and the Hela cells stably express Luc2 and 8 copies of Sec-miR (Sec-miR 8X) were inoculated to mice; blood and urine of these tumor-bearing mice were collected and analyzed. Blood samples were collected once a week after the average tumor size reached 150 mm<sup>3</sup>. (<b>A</b>) Significantly higher Sec-miR expressions were detected in blood from mice with Hela/EF1-Luc2-Sec-miR 8X tumors, and the Sec-miR expression increased as the tumors grew. (<b>B</b>) Detectable Sec-miR expressions were found in urine from the mice with Hela/EF1-Luc2-Sec-miR 8X tumors from week 2 after tumor inoculation. The Sec-miR expressions did not increase as the tumor grew but varied over time. Correlations of tumor sizes and Sec-miR expressions in (<b>C</b>) blood and (<b>D</b>) urine. Data from Hela/EF1-Luc2-Sec-miR 8x mice are normalized to data from parental HeLa mice and expressed as mean ± SD. **, <span class="html-italic">p</span> < 0.01; ***, <span class="html-italic">p</span> < 0.001.</p> "> Figure 3
<p>miRNA clearance in vivo. Normal mice were intravenously injected with 200 µL concentrated Sec-miR containing medium. The blood and urine samples were collected every 12 h for two days to determine the Sec-miR clearance in vivo. (<b>A</b>) Around 25% of Sec-miR expression was detected in the first blood sample (within 2 min after injection) compared to the injected Sec-miR-containing medium. Sec-miR expression in blood was significantly dropped in the first 12 h after injection and remained detectable until 36 h after injection. (<b>B</b>) Three of four Sec-miR injected mice showed around 10-fold expressions of Sec-miR in the first 12 h (0–12 h) urine samples. Decreased Sec-miR expressions were found in the second (12–24 h) and fourth (36–48 h) 12 h time period and came back in the third 12 h after injection.</p> "> Figure 4
<p>Systemic delivery of tumor-specific Sec-miR MC allows the identification of tumor-bearing subjects. After the average tumor size reached 150 mm<sup>3</sup>, tumor-specific Sec-miR MCs (40 µg, N/P = 8) were injected systemically to tumor-bearing mice (Tumor + MC) and healthy normal mice (Normal + MC). Normal (tumor-free) mice received MCs (Normal + MC), and tumor-bearing mice that did not receive MCs (Tumor − MC) were served as control groups. Sec-miR expressions in blood were measured on day 2 after MC injection. Sec-miR expressions significantly increased in blood compared to Normal + MC and Tumor − MC groups. a, compared to Normal + MC, <span class="html-italic">p</span> < 0.01; b, compared to Tumor-MC, <span class="html-italic">p</span> < 0.05.</p> "> Figure A1
<p>qPCR standard curve of Sec-miR. Different copy numbers of synthesized Sec-miR were spiked in 200 µL culture medium. The Sec-miR-containing medium was further processed with an RNA isolation kit and subjected to qPCR assay to generate a qPCR standard curve of Sec-miR. The X-axis is shown as the log 10 of the copy number per µL.</p> "> Figure A2
<p>Representative BLI images of Hela/pEF1-Luc2-Sec-miR 8X mice. BLI images were acquired on weeks 2, 4, and 6 after tumor inoculation. Viable cells present in tumors seemed to decrease as the BLI signal reduced on Week 6 after tumor inoculation.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plasmid and Minicircle Construction
2.2. Cell Culture, Transfection and Stable Clone Establishment
2.3. Sec-miR Injection and Clearance Studies
2.4. Mice Tumor Models and Tumor-Specific Sec-miR MC Injection
2.5. Sample Collections and Preparations
2.6. RNA Isolation and qPCR
2.7. Statistical Analysis
3. Results
3.1. Sec-miR Chaining Strategy Significantly Increases Sec-miR Expressions In Vitro
3.2. Sec-miR Serves as Liquid Biomarker for Cell Monitoring In Vivo
3.3. Sec-miR Has a Short Half Life In Vivo
3.4. Tumor-Bearing Subjects Could Be Differentiated from Healthy Controls Using Systemic Administration of Tumor-Specific Sec-miR Minicircles
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
References
- Bhawal, R.; Oberg, A.L.; Zhang, S.; Kohli, M. Challenges and Opportunities in Clinical Applications of Blood-Based Proteomics in Cancer. Cancers 2020, 12, 2428. [Google Scholar] [CrossRef] [PubMed]
- Bratulic, S.; Gatto, F.; Nielsen, J. The Translational Status of Cancer Liquid Biopsies. Regen. Eng. Transl. Med. 2021, 7, 312–352. [Google Scholar] [CrossRef] [Green Version]
- Hori, S.S.; Lutz, A.M.; Paulmurugan, R.; Gambhir, S.S. A Model-Based Personalized Cancer Screening Strategy for Detecting Early-Stage Tumors Using Blood-Borne Biomarkers. Cancer Res. 2017, 77, 2570. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gaspar, V.; de Melo-Diogo, D.; Costa, E.; Moreira, A.; Queiroz, J.; Pichon, C.; Correia, I.; Sousa, F. Minicircle DNA vectors for gene therapy: Advances and applications. Expert Opin. Biol. Ther. 2015, 15, 353–379. [Google Scholar] [CrossRef] [Green Version]
- Almeida, A.M.; Queiroz, J.A.; Sousa, F.; Sousa, Â. Minicircle DNA: The Future for DNA-Based Vectors? Trends Biotechnol. 2020, 38, 1047–1051. [Google Scholar] [CrossRef] [PubMed]
- Cheng, C.; Tang, N.; Li, J.; Cao, S.; Zhang, T.; Wei, X.; Wang, H. Bacteria-free minicircle DNA system to generate integration-free CAR-T cells. J. Med. Genet. 2019, 56, 10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mulia, G.E.; Picanço-Castro, V.; Stavrou, E.F.; Athanassiadou, A.; Figueiredo, M.L. Advances in the Development and the Applications of Nonviral, Episomal Vectors for Gene Therapy. Hum. Gene Ther. 2021, 32, 1076–1095. [Google Scholar] [CrossRef]
- Ronald, J.A.; Chuang, H.-Y.; Dragulescu-Andrasi, A.; Hori, S.S.; Gambhir, S.S. Detecting cancers through tumor-activatable minicircles that lead to a detectable blood biomarker. Proc. Natl. Acad. Sci. USA 2015, 112, 3068. [Google Scholar] [CrossRef] [Green Version]
- Ruggiero, A.; Villa, C.H.; Bander, E.; Rey, D.A.; Bergkvist, M.; Batt, C.A.; Manova-Todorova, K.; Deen, W.M.; Scheinberg, D.A.; McDevitt, M.R. Paradoxical glomerular filtration of carbon nanotubes. Proc. Natl. Acad. Sci. USA 2010, 107, 12369. [Google Scholar] [CrossRef] [Green Version]
- Zhang, W.; Zhang, X.J.; Chao, S.Y.; Chen, S.J.; Zhang, Z.J.; Zhao, J.; Lv, Y.N.; Yao, J.J.; Bai, Y.Y. Update on urine as a biomarker in cancer: A necessary review of an old story. Expert Rev. Mol. Diagn. 2020, 20, 477–488. [Google Scholar] [CrossRef]
- Sandow, J.J.; Rainczuk, A.; Infusini, G.; Makanji, M.; Bilandzic, M.; Wilson, A.L.; Fairweather, N.; Stanton, P.G.; Garama, D.; Gough, D.; et al. Discovery and Validation of Novel Protein Biomarkers in Ovarian Cancer Patient Urine. Proteom. Clin. Appl. 2018, 12, 1700135. [Google Scholar] [CrossRef] [PubMed]
- Flitcroft, J.G.; Verheyen, J.; Vemulkar, T.; Welbourne, E.N.; Rossi, S.H.; Welsh, S.J.; Cowburn, R.P.; Stewart, G.D. Early detection of kidney cancer using urinary proteins: A truly non-invasive strategy. BJU Int. 2021. [Google Scholar] [CrossRef] [PubMed]
- Zhou, P.; Lu, F.; Wang, J.; Wang, K.; Liu, B.; Li, N.; Tang, B. A portable point-of-care testing system to diagnose lung cancer through the detection of exosomal miRNA in urine and saliva. Chem. Commun. 2020, 56, 8968–8971. [Google Scholar] [CrossRef] [PubMed]
- Gasparri, M.L.; Casorelli, A.; Bardhi, E.; Besharat, A.R.; Savone, D.; Ruscito, I.; Farooqi, A.A.; Papadia, A.; Mueller, M.D.; Ferretti, E.; et al. Beyond circulating microRNA biomarkers: Urinary microRNAs in ovarian and breast cancer. Tumor Biol. 2017, 39, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Hirschfeld, M.; Rücker, G.; Weiß, D.; Berner, K.; Ritter, A.; Jäger, M.; Erbes, T. Urinary Exosomal MicroRNAs as Potential Non-invasive Biomarkers in Breast Cancer Detection. Mol. Diagn. Ther. 2020, 24, 215–232. [Google Scholar] [CrossRef]
- Li, J.; Guan, X.; Fan, Z.; Ching, L.-M.; Li, Y.; Wang, X.; Cao, W.-M.; Liu, D.-X. Non-Invasive Biomarkers for Early Detection of Breast Cancer. Cancers 2020, 12, 2767. [Google Scholar] [CrossRef]
- Iwasaki, H.; Shimura, T.; Kitagawa, M.; Yamada, T.; Nishigaki, R.; Fukusada, S.; Okuda, Y.; Katano, T.; Horike, S.-I.; Kataoka, H. A Novel Urinary miRNA Biomarker for Early Detection of Colorectal Cancer. Cancers 2022, 14, 461. [Google Scholar] [CrossRef]
- O’Brien, J.; Hayder, H.; Zayed, Y.; Peng, C. Overview of MicroRNA Biogenesis, Mechanisms of Actions, and Circulation. Front. Endocrinol. 2018, 9, 402. [Google Scholar] [CrossRef] [Green Version]
- Ronald, J.A.; D’Souza, A.L.; Chuang, H.-Y.; Gambhir, S.S. Artificial MicroRNAs as Novel Secreted Reporters for Cell Monitoring in Living Subjects. PLoS ONE 2016, 11, e0159369. [Google Scholar] [CrossRef]
- Kay, M.A.; He, C.-Y.; Chen, Z.-Y. A robust system for production of minicircle DNA vectors. Nat. Biotechnol. 2010, 28, 1287–1289. [Google Scholar] [CrossRef] [Green Version]
- Kamizono, J.; Nagano, S.; Murofushi, Y.; Komiya, S.; Fujiwara, H.; Matsuishi, T.; Kosai, K. Survivin-responsive conditionally replicating adenovirus exhibits cancer-specific and efficient viral replication. Cancer Res. 2005, 65, 5284–5291. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ahn, B.C.; Ronald, J.A.; Kim, Y.I.; Katzenberg, R.; Singh, A.; Paulmurugan, R.; Ray, S.; Hofmann, L.V.; Gambhir, S.S. Potent, tumor-specific gene expression in an orthotopic hepatoma rat model using a Survivin-targeted, amplifiable adenoviral vector. Gene Ther. 2011, 18, 606–612. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, Y.; Li, Z.; Xu, Z.; Tang, H.; Guo, W.; Sun, X.; Zhang, W.; Zhang, J.; Wan, X.; Jiang, Y.; et al. Use of the XRCC2 promoter for in vivo cancer diagnosis and therapy. Cell Death Dis. 2018, 9, 420. [Google Scholar] [CrossRef] [PubMed]
- Cui, C.-X.; Li, Y.-Q.; Sun, Y.-J.; Zhu, Y.-L.; Fang, J.-B.; Bai, B.; Li, W.-J.; Li, S.-Z.; Ma, Y.-Z.; Li, X.; et al. Antitumor effect of a dual cancer-specific oncolytic adenovirus on prostate cancer PC-3 cells. Urol. Oncol. Semin. Orig. Investig. 2019, 37, 327–334. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Gong, M.; Lei, S.; Cui, C.; Liu, Y.; Xiao, S.; Kang, X.; Sun, T.; Xu, Z.; Zhou, C.; et al. Targeting visualization of malignant tumor based on the alteration of DWI signal generated by hTERT promoter–driven AQP1 overexpression. Eur. J. Nucl. Med. Mol. Imaging 2022. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Ding, Q.; Plant, P.; Basheer, M.; Yang, C.; Tawedrous, E.; Krizova, A.; Boulos, C.; Farag, M.; Cheng, Y.; et al. Droplet digital PCR improves urinary exosomal miRNA detection compared to real-time PCR. Clin. Biochem. 2019, 67, 54–59. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Miao, P.; Sun, M.; Yan, M.; Liu, H. Progress in miRNA Detection Using Graphene Material–Based Biosensors. Small 2019, 15, 1901867. [Google Scholar] [CrossRef] [PubMed]
- Shi, L.; Sun, Y.; Mi, L.; Li, T. Target-Catalyzed Self-Growing Spherical Nucleic Acid Enzyme (SNAzyme) as a Double Amplifier for Ultrasensitive Chemiluminescence MicroRNA Detection. ACS Sens. 2019, 4, 3219–3226. [Google Scholar] [CrossRef]
- Lu, L.; Wang, J.; Miao, W.; Wang, X.; Guo, G. Electrogenerated Chemiluminescence Biosensor with a Tripod Probe for the Highly Sensitive Detection of MicroRNA. Anal. Chem. 2019, 91, 1452–1459. [Google Scholar] [CrossRef]
- Chu, Y.; Gao, Y.; Tang, W.; Qiang, L.; Han, Y.; Gao, J.; Zhang, Y.; Liu, H.; Han, L. Attomolar-Level Ultrasensitive and Multiplex microRNA Detection Enabled by a Nanomaterial Locally Assembled Microfluidic Biochip for Cancer Diagnosis. Anal. Chem. 2021, 93, 5129–5136. [Google Scholar] [CrossRef]
- Narayanan, A.; Hill-Teran, G.; Moro, A.; Ristori, E.; Kasper, D.M.; Roden, C.A.; Lu, J.; Nicoli, S. In vivo mutagenesis of miRNA gene families using a scalable multiplexed CRISPR/Cas9 nuclease system. Sci. Rep. 2016, 6, 32386. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, R.; Zhao, X.; Chen, X.; Qiu, X.; Qing, G.; Zhang, H.; Zhang, L.; Hu, X.; He, Z.; Zhong, D.; et al. Rolling Circular Amplification (RCA)-Assisted CRISPR/Cas9 Cleavage (RACE) for Highly Specific Detection of Multiple Extracellular Vesicle MicroRNAs. Anal. Chem. 2020, 92, 2176–2185. [Google Scholar] [CrossRef] [PubMed]
- Yu, T.; Zhang, S.; Matei, R.; Marx, W.; Beisel, C.L.; Wei, Q. Coupling smartphone and CRISPR–Cas12a for digital and multiplexed nucleic acid detection. AIChE J. 2021, 67, e17365. [Google Scholar] [CrossRef]
- Kim, W.H.; Lee, J.U.; Song, S.; Kim, S.; Choi, Y.J.; Sim, S.J. A label-free, ultra-highly sensitive and multiplexed SERS nanoplasmonic biosensor for miRNA detection using a head-flocked gold nanopillar. Analyst 2019, 144, 1768–1776. [Google Scholar] [CrossRef] [PubMed]
- Azzouzi, S.; Fredj, Z.; Turner, A.P.F.; Ali, M.B.; Mak, W.C. Generic Neutravidin Biosensor for Simultaneous Multiplex Detection of MicroRNAs via Electrochemically Encoded Responsive Nanolabels. ACS Sens. 2019, 4, 326–334. [Google Scholar] [CrossRef] [Green Version]
- Pan, J.; Zhou, C.; Zhao, X.; He, J.; Tian, H.; Shen, W.; Han, Y.; Chen, J.; Fang, S.; Meng, X.; et al. A two-miRNA signature (miR-33a-5p and miR-128-3p) in whole blood as potential biomarker for early diagnosis of lung cancer. Sci. Rep. 2018, 8, 16699. [Google Scholar] [CrossRef] [Green Version]
- Lin, Y.; Miao, Z.; Zhang, X.; Wei, X.; Hou, J.; Huang, Y.; Shen, B. Identification of Key MicroRNAs and Mechanisms in Prostate Cancer Evolution Based on Biomarker Prioritization Model and Carcinogenic Survey. Front. Genet. 2021, 11, 596826. [Google Scholar] [CrossRef]
- Rüegger, S.; Großhans, H. MicroRNA turnover: When, how, and why. Trends Biochem. Sci. 2012, 37, 436–446. [Google Scholar] [CrossRef]
- Kai, Z.S.; Pasquinelli, A.E. MicroRNA assassins: Factors that regulate the disappearance of miRNAs. Nat. Struct. Mol. Biol. 2010, 17, 5–10. [Google Scholar] [CrossRef]
- Bofill-De Ros, X.; Yang, A.; Gu, S. IsomiRs: Expanding the miRNA repression toolbox beyond the seed. Biochim. Biophys. Acta Gene Regul. Mech. 2020, 1863, 194373. [Google Scholar] [CrossRef]
- Wang, G.; Tam, L.-S.; Li, E.K.-M.; Kwan, B.C.-H.; Chow, K.-M.; Luk, C.C.-W.; Li, P.K.-T.; Szeto, C.-C. Serum and Urinary Cell–free MiR-146a and MiR-155 in Patients with Systemic Lupus Erythematosus. J. Rheumatol. 2010, 37, 2516. [Google Scholar] [CrossRef] [PubMed]
- Neal, C.S.; Michael, M.Z.; Pimlott, L.K.; Yong, T.Y.; Li, J.Y.Z.; Gleadle, J.M. Circulating microRNA expression is reduced in chronic kidney disease. Nephrol. Dial. Transplant. 2011, 26, 3794–3802. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zavradashvili, N.; Sarisozen, C.; Titvinidze, G.; Otinashvili, G.; Kantaria, T.; Tugushi, D.; Puiggali, J.; Torchilin, V.P.; Katsarava, R. Library of Cationic Polymers Composed of Polyamines and Arginine as Gene Transfection Agents. ACS Omega 2019, 4, 2090–2101. [Google Scholar] [CrossRef]
- Diaz Ariza, I.L.; Jérôme, V.; Pérez Pérez, L.D.; Freitag, R. Amphiphilic Graft Copolymers Capable of Mixed-Mode Interaction as Alternative Nonviral Transfection Agents. ACS Appl. Bio Mater. 2021, 4, 1268–1282. [Google Scholar] [CrossRef]
- Khan, M.M.; Filipczak, N.; Torchilin, V.P. Cell penetrating peptides: A versatile vector for co-delivery of drug and genes in cancer. J. Control. Release 2021, 330, 1220–1228. [Google Scholar] [CrossRef]
- Chisholm, E.J.; Vassaux, G.; Martin-Duque, P.; Chevre, R.; Lambert, O.; Pitard, B.; Merron, A.; Weeks, M.; Burnet, J.; Peerlinck, I.; et al. Cancer-Specific Transgene Expression Mediated by Systemic Injection of Nanoparticles. Cancer Res. 2009, 69, 2655–2662. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shueng, P.-W.; Shih, K.-C.; Gambhir, S.S.; Kuo, D.-Y.; Chuang, H.-Y. Cancer Detection Using an Artificial Secretable MicroRNA Found in Blood and Urine. Biomedicines 2022, 10, 621. https://doi.org/10.3390/biomedicines10030621
Shueng P-W, Shih K-C, Gambhir SS, Kuo D-Y, Chuang H-Y. Cancer Detection Using an Artificial Secretable MicroRNA Found in Blood and Urine. Biomedicines. 2022; 10(3):621. https://doi.org/10.3390/biomedicines10030621
Chicago/Turabian StyleShueng, Pei-Wei, Kuang-Chung Shih, Sanjiv Sam Gambhir, Deng-Yu Kuo, and Hui-Yen Chuang. 2022. "Cancer Detection Using an Artificial Secretable MicroRNA Found in Blood and Urine" Biomedicines 10, no. 3: 621. https://doi.org/10.3390/biomedicines10030621
APA StyleShueng, P.-W., Shih, K.-C., Gambhir, S. S., Kuo, D.-Y., & Chuang, H.-Y. (2022). Cancer Detection Using an Artificial Secretable MicroRNA Found in Blood and Urine. Biomedicines, 10(3), 621. https://doi.org/10.3390/biomedicines10030621