Neutrophils-to-Lymphocyte Ratio Is Associated with Progression and Overall Survival in Amyotrophic Lateral Sclerosis
<p>Patients’ disposition flow diagram.</p> "> Figure 2
<p>Relationship between neutrophil-to-lymphocyte ratio (NLR) values evaluated at recruitment and progression rate (ΔFS) and overall survival of ALS patients. (<b>A</b>) Log-transformed NLR and ΔFS values were shown by a scatterplot with fitted regression line, along with estimated Pearson correlation coefficient (R) and <span class="html-italic">p</span>-value; (<b>B</b>) variable dependence plot of patients’ survival at 4 years on NLR values estimated by the random survival forest algorithm with 10,000 trees. Individual cases are marked with blue (alive or censored) and red circles (dead). Loess smooth curve with shaded 95% confidence band indicates decreasing survival with increasing NLR values; (<b>C</b>) conditional inference tree (CTree) on NLR to predict the overall survival of ALS patients; (<b>D</b>,<b>E</b>) Kaplan–Meier (KM) survival curves according to NLR tertiles (<b>D</b>) or CTree groups (<b>E</b>). Censored observations are evidenced on the KM curves as tick marks (“+”). CTree identifies patient subgroups at different NLR mortality rate. The tree-growing algorithm recursively splits the data into subgroups, choosing the best binary split for NLR, to identify the most homogeneous sets within each node and the most heterogeneous ones between the nodes (i.e., NLR at 2.315 represents the optimal cut-off). Condition sending patients to left or right sibling is on relative branch. Grey squares (i.e., nodes 2 and 3) represent the final CTree classes. Numbers inside CTree classes represent the median survival time (in years, top) and the number of subjects (bottom), respectively. <span class="html-italic">p</span>-value from test of the global null hypothesis of independence between NLR groups and the response (i.e., patients’ overall survival) is reported in the root note (<span class="html-italic">p</span> = 0.001).</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Patients
2.2. Data Collection and Outcomes Assessment
2.3. Validation Cohort
2.4. Statistical Methods
3. Results
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hardiman, O.; Al-Chalabi, A.; Chio, A.; Corr, E.M.; Logroscino, G.; Robberecht, W.; Shaw, P.J.; Simmons, Z.; van den Berg, L.H. Amyotrophic lateral sclerosis. Nat. Rev. Dis. Primers 2017, 3, 17071. [Google Scholar] [CrossRef] [PubMed]
- Chiò, A.; Logroscino, G.; Hardiman, O.; Swingler, R.; Mitchell, D.; Beghi, E.; Traynor, B.G.; Eurals Consortium. Prognostic factors in ALS: A critical review. Amyotroph. Lateral Scler. 2009, 10, 310–323. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Simon, N.G.; Turner, M.R.; Vucic, S.; Al-Chalabi, A.; Shefner, J.; Lomen-Hoerth, C.; Kiernan, M.C. Quantifying disease progression in amyotrophic lateral sclerosis. Ann. Neurol. 2014, 76, 643–657. [Google Scholar] [CrossRef] [PubMed]
- Lunetta, C.; Lizio, A.; Maestri, E.; Sansone, V.A.; Mora, G.; Miller, R.G.; Appel, S.H.; Chiò, A. Serum C-Reactive Protein as a Prognostic Biomarker in Amyotrophic Lateral Sclerosis. JAMA Neurol. 2017, 74, 660–667. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cheng, Y.; Chen, Y.; Shang, H. Aberrations of biochemical indicators in amyotrophic lateral sclerosis: A systematic review and meta-analysis. Transl. Neurodegener. 2021, 10, 3. [Google Scholar] [CrossRef]
- Liu, J.; Luo, X.; Chen, X.; Shang, H. Serum creatinine levels in patients with amyotrophic lateral sclerosis: A systematic review and meta-analysis. Amyotroph. Lateral Scler. Frontotemporal Degener. 2020, 21, 502–508. [Google Scholar] [CrossRef]
- Haji, S.; Sako, W.; Murakami, N.; Osaki, Y.; Furukawa, T.; Izumi, Y.; Kaji, R. The value of serum uric acid as a prognostic biomarker in amyotrophic lateral sclerosis: Evidence from a meta-analysis. Clin. Neurol. Neurosurg. 2021, 203, 106566. [Google Scholar] [CrossRef]
- Mandrioli, J.; Rosi, E.; Fini, N.; Fasano, A.; Raggi, S.; Fantuzzi, AL.; Bedogni, G. Changes in routine laboratory tests and survival in amyotrophic lateral sclerosis. Neurol Sci. 2017, 38, 2177–2182. [Google Scholar] [CrossRef]
- Sun, J.; Carrero, J.J.; Zagai, U.; Evans, M.; Ingre, C.; Pawitan, Y.; Fang, F. Blood biomarkers and prognosis of amyotrophic lateral sclerosis. Eur. J. Neurol. 2020, 27, 2125–2133. [Google Scholar] [CrossRef]
- Alkhatip, A.A.A.M.M.; Kamel, M.G.; Hamza, M.K.; Farag, E.M.; Yassin, H.M.; Elayashy, M.; Naguib, A.A.; Wagih, M.; Abd-Elhay, F.A.; Algameel, H.Z.; et al. The diagnostic and prognostic role of neutrophil-to-lymphocyte ratio in COVID-19: A systematic review and meta-analysis. Expert Rev. Mol. Diagn. 2021, 21, 505–514. [Google Scholar] [CrossRef]
- Li, J.; Chen, Q.; Luo, X.; Hong, J.; Pan, K.; Lin, X.; Liu, X.; Zhou, L.; Wang, H.; Xu, Y.; et al. Neutrophil-to-Lymphocyte Ratio Positively Correlates to Age in Healthy Population. J. Clin. Lab. Anal. 2015, 29, 437–443. [Google Scholar] [CrossRef] [PubMed]
- Choi, S.-J.; Hong, Y.-H.; Kim, S.-M.; Shin, J.-Y.; Suh, Y.J.; Sung, J.-J. High neutrophil-to-lymphocyte ratio predicts short survival duration in amyotrophic lateral sclerosis. Sci. Rep. 2020, 10, 1–6. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wei, Q.Q.; Hou, Y.B.; Zhang, L.Y.; Ou, R.W.; Cao, B.; Chen, Y.P.; Shang, H.F. Neutrophil-to-lymphocyte ratio in sporadic amyotrophic lateral sclerosis. Neural Regen. Res. 2022, 17, 875–880. [Google Scholar] [PubMed]
- Cucovici, A.; Fontana, A.; Ivashynka, A.; Russo, S.; Renna, V.; Mazzini, L.; Gagliardi, I.; Mandrioli, J.; Martinelli, I.; Lisnic, V.; et al. The Impact of Lifetime Alcohol and Cigarette Smoking Loads on Amyotrophic Lateral Sclerosis Progression: A Cross-Sectional Study. Life 2021, 11, 352. [Google Scholar] [CrossRef]
- Brooks, B.R. El Escorial World Federation of Neurology criteria for the diagnosis of amyotrophic lateral sclerosis. Subcommittee on Motor Neuron Diseases/Amyotrophic Lateral Sclerosis of the World Federation of Neurology Research Group on Neuromuscular Diseases and the El Escorial "Clinical limits of amyotrophic lateral sclerosis" workshop contributors. J. Neurol. Sci. 1994, 124, 96–107. [Google Scholar]
- Cedarbaum, J.M.; Stambler, N.; Malta, E.; Fuller, C.; Hilt, D.; Thurmond, B.; Nakanishi, A. The ALSFRS-R: A revised ALS functional rating scale that incorporates assessments of respiratory function. J. Neurol. Sci. 1999, 169, 13–21. [Google Scholar] [CrossRef]
- Kimura, F.; Fujimura, C.; Ishida, S.; Nakajima, H.; Furutama, D.; Uehara, H.; Shinoda, K.; Sugino, M.; Hanafusa, T. Progression rate of ALSFRS-R at time of diagnosis predicts survival time in ALS. Neurology 2006, 66, 265–267. [Google Scholar] [CrossRef]
- Ishwaran, H.; Kogalur, U.B.; Blackstone, E.H.; Lauer, M.S. Random survival forests. Ann. Appl. Statist. 2008, 2, 841–860. [Google Scholar] [CrossRef]
- Hothorn, T.; Hornik, K.; Zeileis, A. Unbiased Recursive Partitioning: A Conditional Inference Framework. J. Comput. Graph. Stat. 2006, 15, 651–674. [Google Scholar] [CrossRef] [Green Version]
- Lin, D.Y.; Wei, L.J.; Ying, Z. Checking the Cox Model with Cumulative Sums of Martingale-Based Residuals. Biometrika 1993, 80, 557–572. [Google Scholar] [CrossRef]
- Chiò, A.; Mora, G.; Leone, M.; Mazzini, L.; Cocito, D.; Giordana, M.T.; Bottacchi, E.; Mutani, R. Piemonte and Valle d’Aosta Register for ALS (PARALS). Early symptom progression rate is related to ALS outcome: A prospective population-based study. Neurology 2002, 59, 99–103. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Zhang, F.; Jiang, F.; Hu, L.; Chen, J.; Wang, Y. Distribution and reference interval establishment of neutral-to-lymphocyte ratio (NLR), lymphocyte-to-monocyte ratio (LMR), and platelet-to-lymphocyte ratio (PLR) in Chinese healthy adults. J. Clin. Lab. Anal. 2021, 35, e23935. [Google Scholar] [CrossRef] [PubMed]
- Franceschi, C.; Bonafè, M.; Valensin, S.; Olivieri, F.; De Luca, M.; Ottaviani, E.; De Benedictis, G. Inflammaging. An evolutionary perspective on immunosenescence. Ann. N. Y. Acad Sci. 2000, 908, 244–254. [Google Scholar] [CrossRef] [PubMed]
- Murdock, B.J.; Goutman, S.A.; Boss, J.; Kim, S.; Feldman, E.L. Amyotrophic Lateral Sclerosis Survival Associates with Neutrophils in a Sex-specific Manner. Neurol. Neuroimmunol. Neuroinflamm. 2021, 8, e953. [Google Scholar] [CrossRef] [PubMed]
- Murdock, B.J.; Bender, D.E.; Kashlan, S.R.; Figueroa-Romero, C.; Backus, C.; Callaghan, B.C.; Goutman, S.A.; Feldman, E.L. Increased ratio of circulating neutrophils to monocytes in amyotrophic lateral sclerosis. Neurol. Neuroimmunol. Neuroinflamm. 2016, 3, e242. [Google Scholar] [CrossRef] [Green Version]
- Zondler, L.; Muller, K.; Khalaji, S.; Bliederhauser, C.; Ruf, W.P.; Grozdanov, V.; Thiemann, M.; Fundel-Clemes, K.; Freischmidt, A.; Holzmann, K. Peripheral monocytes are functionally altered and invade the CNS in ALS patients. Acta Neuropathol. 2016, 132, 391–411. [Google Scholar] [CrossRef] [PubMed]
- Graves, M.C.; Fiala, M.; Dinglasan, L.A.V.; Liu, N.Q.; Sayre, J.; Chiappelli, F.; van Kooten, C.; Vinters, H.V. Inflammation in amyotrophic lateral sclerosis spinal cord and brain is mediated by activated macrophages, mast cells and T cells. Amyotroph. Lateral Scler. Other Mot. Neuron Disord. 2004, 5, 213–219. [Google Scholar] [CrossRef]
- McGill, R.; Steyn, F.; Ngo, S.; Thorpe, K.; Heggie, S.; Ruitenberg, M.J.; Henderson, R.D.; McCombe, P.; Woodruff, T.M. Monocytes and neutrophils are associated with clinical features in amyotrophic lateral sclerosis. Brain Commun. 2020, 2, fcaa013. [Google Scholar] [CrossRef] [Green Version]
- Figueroa-Romero, C.; Guo, K.; Murdock, B.J.; Paez-Colasante, X.; Bassis, C.M.; Mikhail, K.A.; Raue, K.D.; Evans, M.; Taubman, G.F.; McDermott, A.J.; et al. Temporal evolution of the microbiome, immune system, and epigenome with disease progression in ALS mice. Dis. Model. Mech. 2020, 13, dmm041947. [Google Scholar] [CrossRef] [Green Version]
- Murdock, B.J.; Goutman, S.A.; Boss, J.; Kim, S.; Feldman, E.L. Amyotrophic Lateral Sclerosis Survival Associates With Neutrophils in a Sex-specific Manner. Neurol. Neuroimmunol. Neuroinflamm. 2021, 8, e953. [Google Scholar] [CrossRef]
- Murdock, B.J.; Zhou, T.; Kashlan, S.R.; Little, R.J.; Goutman, S.A.; Feldman, E.L. Correlation of peripheral immunity with rapid amyotrophic lateral sclerosis progression. JAMA Neurol. 2017, 74, 1446–1454. [Google Scholar] [CrossRef] [PubMed]
- Chiò, A.; Calvo, A.; Bovio, G.; Canosa, A.; Bertuzzo, D.; Galmozzi, F.; Cugnasco, P.; Clerico, M.; De Mercanti, S.; Bersano, E.; et al. Piemonte and Valle d’Aosta Register for Amyotrophic Lateral Sclerosis. Amyotrophic lateral sclerosis outcome measures and the role of albumin and creatinine: A population-based study. JAMA Neurol. 2014, 71, 1134–1142. [Google Scholar] [CrossRef] [PubMed]
- Beers, D.R.; Zhao, W.; Liao, B.; Kano, O.; Wang, J.; Huang, A.; Appel, S.H.; Henkel, J.S. Neuroinflammation modulates distinct regional and temporal clinical responses in ALS mice. Brain Behav Immun. 2011, 25, 1025–1035. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tiemessen, M.M.; Jagger, A.L.; Evans, H.G.; van Herwijnen, M.J.; John, S.; Taams, L.S. CD4+CD25+Foxp3+ regulatory T cells induce alternative activation of human monocytes/macrophages. Proc. Natl. Acad. Sci. USA 2007, 104, 19446–19451. [Google Scholar] [CrossRef] [Green Version]
- Henkel, J.S.; Beers, D.R.; Wen, S.; Rivera, A.L.; Toennis, K.M.; Appel, J.E.; Zhao, W.; Moore, D.H.; Powell, S.Z.; Appel, S.H. Regulatory T-lymphocytes mediate amyotrophic lateral sclerosis progression and survival. EMBO Mol. Med. 2013, 5, 64–79. [Google Scholar] [CrossRef]
- Bowman, G.L.; Dayon, L.; Kirkland, R.; Wojcik, J.; Peyratout, G.; Severin, I.C.; Henry, H.; Oikonomidi, A.; Migliavacca, E.; Bacher, M.; et al. Blood-brain barrier breakdown, neuroinflammation, and cognitive decline in older adults. Alzheimers Dement. 2018, 14, 1640–1650, Erratum in: Alzheimers Dement. 2019, 15, 319. [Google Scholar] [CrossRef]
- Winkler, E.A.; Sengillo, J.D.; Sullivan, J.S.; Henkel, J.S.; Appel, S.H.; Zlokovic, B.V. Blood–spinal cord barrier breakdown and pericyte reductions in amyotrophic lateral sclerosis. Acta Neuropathol. 2012, 125, 111–120. [Google Scholar] [CrossRef] [Green Version]
- Garbuzova-Davis, S.; Hernandez-Ontiveros, D.G.; Rodrigues, M.C.; Haller, E.; Frisina-Deyo, A.; Mirtyl, S.; Sallot, S.; Saporta, S.; Borlongan, C.; Sanberg, P.R. Impaired blood–brain/spinal cord barrier in ALS patients. Brain Res. 2012, 1469, 114–128. [Google Scholar] [CrossRef]
- Miyazaki, K.; Ohta, Y.; Nagai, M.; Morimoto, N.; Kurata, T.; Takehisa, Y.; Ikeda, Y.; Matsuura, T.; Abe, K. Disruption of neurovascular unit prior to motor neuron degeneration in amyotrophic lateral sclerosis. J. Neurosci. Res. 2011, 89, 718–728. [Google Scholar] [CrossRef]
- Zamudio, F.; Loon, A.R.; Smeltzer, S.; Benyamine, K.; Shanmugam, N.K.N.; Stewart, N.J.F.; Lee, D.C.; Nash, K.; Selenica, M.-L.B. TDP-43 mediated blood-brain barrier permeability and leukocyte infiltration promote neurodegeneration in a low-grade systemic inflammation mouse model. J. Neuroinflamm. 2020, 17, 1–16. [Google Scholar] [CrossRef]
- Yoon, H.Y.; Kim, H.N.; Lee, S.H.; Kim, S.J.; Chang, Y.; Ryu, S.; Shin, H.; Kim, H.L.; Lee, J.H. Association between Neutrophil-to-Lymphocyte Ratio and Gut Microbiota in a Large Population: A Retrospective Cross-Sectional Study. Sci Rep. 2018, 8, 16031. [Google Scholar] [CrossRef] [PubMed]
- Blacher, E.; Bashiardes, S.; Shapiro, H.; Rothschild, D.; Mor, U.; Dori-Bachash, M.; Kleimeyer, C.; Moresi, C.; Harnik, Y.; Zur, M.; et al. Potential roles of gut microbiome and metabolites in modulating ALS in mice. Nature 2019, 572, 474–480. [Google Scholar] [CrossRef] [PubMed]
- Burberry, A.; Wells, M.F.; Limone, F.; Couto, A.; Smith, K.S.; Keaney, J.; Gillet, G.; van Gastel, N.; Wang, J.Y.; Pietilainen, O.; et al. C9orf72 suppresses systemic and neural inflammation induced by gut bacteria. Nature 2020, 582, 89–94. [Google Scholar] [CrossRef] [PubMed]
- Niccolai, E.; Di Pilato, V.; Nannini, G.; Baldi, S.; Russo, E.; Zucchi, E.; Martinelli, I.; Menicatti, M.; Bartolucci, G.; Mandrioli, J.; et al. The Gut Microbiota-Immunity Axis in ALS: A Role in Deciphering Disease Heterogeneity? Biomedicines 2021, 9, 753. [Google Scholar] [CrossRef] [PubMed]
- Su, C.; Zhao, K.; Xia, H.; Xu, Y. Peripheral inflammatory biomarkers in Alzheimer’s disease and mild cognitive impairment: A systematic review and meta-analysis. Psychogeriatrics 2019, 19, 300–309. [Google Scholar] [CrossRef] [PubMed]
Variable | Category | All (N = 146) | I: NLR < 1.51 9(N = 48) | II: NLR [1.519–2.326] (N = 49) | III: NLR > 2.326 (N = 49) | p-Value | SMD | Missing Data (%) |
---|---|---|---|---|---|---|---|---|
Country—N(%) | Italy | 116 (79.5) | 36 (75.0) | 45 (91.8) | 35 (71.4) | 0.029 | 0.364 | 0% |
Moldova/Romania | 30 (20.5) | 12 (25.0) | 4 (8.2) | 14 (28.6) | ||||
Gender—N(%) | Females | 58 (39.7) | 22 (45.8) | 20 (40.8) | 16 (32.7) | 0.407 | 0.181 | 0% |
Males | 88 (60.3) | 26 (54.2) | 29 (59.2) | 33 (67.3) | ||||
Age at recruitment (years) | Mean ± SD | 61.84 ± 10.85 | 58.38 ± 9.97 | 62.55 ± 11.01 | 64.53 ± 10.82 | 0.016 | 0.390 | 0% |
Age at diagnosis (years) | Mean ± SD | 60.99 ± 11.37 | 57.72 ± 10.06 | 61.21 ± 12.17 | 63.97 ± 11.12 | 0.024 | 0.380 | 0% |
Age at onset (years) | Mean ± SD | 59.78 ± 11.64 | 56.20 ± 10.41 | 59.99 ± 12.35 | 63.09 ± 11.25 | 0.013 | 0.410 | 0% |
Education (years) | Mean ± SD | 10.38 ± 4.36 | 11.12 ± 4.18 | 9.90 ± 4.73 | 10.12 ± 4.12 | 0.339 | 0.189 | 0% |
Disease duration (months) § | Median (IQR) | 15.00 (9.00–29.75) | 16.50 (10.00–36.25) | 21.00 (9.00–39.00) | 12.00 (9.00–23.00) | 0.256 * | 0.223 * | 0% |
Disease duration §—N(%) | ≤12 months | 61 (41.8) | 19 (39.6) | 17 (34.7) | 25 (51.0) | 0.562 # | 0.362 | 0% |
13–24 months | 40 (27.4) | 11 (22.9) | 14 (28.6) | 15 (30.6) | ||||
25–36 months | 15 (10.3) | 6 (12.5) | 5 (10.2) | 4 (8.2) | ||||
37–48 months | 7 (4.8) | 3 (6.2) | 3 (6.1) | 1 (2.0) | ||||
>48 months | 23 (15.8) | 9 (18.8) | 10 (20.4) | 4 (8.2) | ||||
Site of onset—N(%) | Bulbar | 33 (22.6) | 16 (33.3) | 8 (16.3) | 9 (18.4) | 0.092 | 0.267 | 0% |
Spinal | 113 (77.4) | 32 (66.7) | 41 (83.7) | 40 (81.6) | ||||
Escorial ALS—N(%) | Definite | 51 (34.9) | 12 (25.0) | 15 (30.6) | 24 (49.0) | 0.076 # | 0.469 | 0% |
Possible | 41 (28.1) | 17 (35.4) | 14 (28.6) | 10 (20.4) | ||||
Probable | 40 (27.4) | 12 (25.0) | 14 (28.6) | 14 (28.6) | ||||
Suspected | 14 (9.6) | 7 (14.6) | 6 (12.2) | 1 (2.0) | ||||
FVC—N(%) | <80% | 50 (43.1) | 12 (33.3) | 19 (42.2) | 19 (54.3) | 0.202 | 0.286 | 20.5% |
≥80% | 66 (56.9) | 24 (66.7) | 26 (57.8) | 16 (45.7) | ||||
Missing values | 30 | 12 | 4 | 14 | ||||
BMI (Kg/m2)—N(%) | <18.5 | 8 (5.5) | 3 (6.2) | 2 (4.1) | 3 (6.1) | 0.263 # | 0.318 | 0% |
18.5–24.9 | 70 (47.9) | 18 (37.5) | 23 (46.9) | 29 (59.2) | ||||
≥25 | 68 (46.6) | 27 (56.2) | 24 (49.0) | 17 (34.7) | ||||
Use of riluzole—N(%) | No | 90 (61.6) | 32 (66.7) | 28 (57.1) | 30 (61.2) | 0.626 | 0.131 | 0% |
Yes | 56 (38.4) | 16 (33.3) | 21 (42.9) | 19 (38.8) | ||||
ALSFRS-R | Mean ± SD | 35.77 ± 8.00 | 39.56 ± 4.99 | 35.20 ± 8.07 | 32.63 ± 8.89 | <0.001 | 0.638 | 0% |
ALS progression rate (ΔFS) | Median (IQR) | 0.66 (0.26–1.10) | 0.35 (0.18–0.93) | 0.62 (0.25–1.09) | 0.86 (0.53–1.92) | 0.001 * | 0.533 * | 0% |
Time from recruitment to last follow-up (years) § | Median (IQR) | 1.98 (1.03–2.98) | 2.65 (1.57–3.41) | 2.05 (1.16–3.04) | 1.24 (0.53–2.04) | <0.001 * | 0.648 * | 10.3% |
Mortality rate § | events/PYs (rate per 100 PYs) | 70/282 (24.8) | 19/119 (15.9) | 23/110 (20.9) | 28/53 (52.8) | <0.001 ° | --- | 10.3% |
Outcome (Fitted Model) | Model Type | Variables Included into the Model (Covariates) | Covariates Type | Regression Coefficient (Slope) | p-Value | Groups (NLR Cutoffs) Comparison | HR (95%CI) | p-Value | Test For Functional Form (p-Value) # | Test for PH (p-Value) # |
---|---|---|---|---|---|---|---|---|---|---|
ΔFS (log-values *) (linear regression) | Univariable (unadjusted) | NLR (log-values *) | Continuous | 0.602 | <0.001 | -- | -- | -- | -- | -- |
Multivariable ° (adjusted) | NLR (log-values *) | Continuous | 0.490 | 0.006 | -- | -- | -- | -- | -- | |
Age at recruitment (years) | Continuous | 0.020 | 0.019 | |||||||
Mortality rate (Cox model) | Univariable (unadjusted) | NLR | Continuous | -- | -- | -- | 1.32 (1.16–1.50) | <0.001 | 0.264 | 0.866 |
NLR (tertiles) | Categorical | -- | -- | (1.519–2.326) vs. <1.519 | 1.31 (0.71–2.41) | 0.384 | -- | 0.874 | ||
-- | -- | >2.326 vs. <1.519 | 3.13 (1.74–5.63) | <0.001 | -- | 0.433 | ||||
NLR (tree-based cut-off) | Categorical | -- | -- | ≤2.315 vs. >2.315 | 2.67 (1.65–4.31) | <0.001 | -- | 0.742 | ||
Multivariable ° (adjusted) | NLR | Continuous | -- | -- | -- | 1.24 (1.08–1.41) | 0.002 | 0.430 | 0.818 | |
Age at recruitment (years) | Continuous | -- | -- | -- | 1.06 (1.04–1.09) | <0.001 | 0.443 | 0.724 | ||
NLR (tertiles) | Categorical | -- | -- | (1.519–2.326) vs. < 1.519 | 1.03 (0.55–1.91) | 0.934 | -- | 0.787 | ||
-- | -- | >2.326 vs. <1.519 | 2.37 (1.29–4.35) | 0.005 | -- | 0.712 | ||||
Age at recruitment (years) | Continuous | -- | -- | -- | 1.06 (1.04–1.09) | <0.001 | 0.257 | 0.712 | ||
NLR (tree-based cut-off) | Categorical | -- | -- | ≤2.315 vs. >2.315 | 2.16 (1.32–3.53) | 0.002 | -- | 0.939 | ||
Age at recruitment (years) | Continuous | -- | -- | -- | 1.06 (1.04–1.09) | <0.001 | 0.471 | 0.680 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Leone, M.A.; Mandrioli, J.; Russo, S.; Cucovici, A.; Gianferrari, G.; Lisnic, V.; Muresanu, D.F.; Giuliani, F.; Copetti, M.; The Pooled Resource Open-Access ALS Clinical Trials Consortium; et al. Neutrophils-to-Lymphocyte Ratio Is Associated with Progression and Overall Survival in Amyotrophic Lateral Sclerosis. Biomedicines 2022, 10, 354. https://doi.org/10.3390/biomedicines10020354
Leone MA, Mandrioli J, Russo S, Cucovici A, Gianferrari G, Lisnic V, Muresanu DF, Giuliani F, Copetti M, The Pooled Resource Open-Access ALS Clinical Trials Consortium, et al. Neutrophils-to-Lymphocyte Ratio Is Associated with Progression and Overall Survival in Amyotrophic Lateral Sclerosis. Biomedicines. 2022; 10(2):354. https://doi.org/10.3390/biomedicines10020354
Chicago/Turabian StyleLeone, Maurizio A., Jessica Mandrioli, Sergio Russo, Aliona Cucovici, Giulia Gianferrari, Vitalie Lisnic, Dafin Fior Muresanu, Francesco Giuliani, Massimiliano Copetti, The Pooled Resource Open-Access ALS Clinical Trials Consortium, and et al. 2022. "Neutrophils-to-Lymphocyte Ratio Is Associated with Progression and Overall Survival in Amyotrophic Lateral Sclerosis" Biomedicines 10, no. 2: 354. https://doi.org/10.3390/biomedicines10020354
APA StyleLeone, M. A., Mandrioli, J., Russo, S., Cucovici, A., Gianferrari, G., Lisnic, V., Muresanu, D. F., Giuliani, F., Copetti, M., The Pooled Resource Open-Access ALS Clinical Trials Consortium, & Fontana, A. (2022). Neutrophils-to-Lymphocyte Ratio Is Associated with Progression and Overall Survival in Amyotrophic Lateral Sclerosis. Biomedicines, 10(2), 354. https://doi.org/10.3390/biomedicines10020354