Recent Evidence on Polycyclic Aromatic Hydrocarbon Exposure
Abstract
:1. Introduction
2. PAHs Contents in Regional Raw and Processed Foods
3. Population Exposure of PAHs from Diet in Different Regions
Location | Year | Daily Intake | Comments | ILCR | Reference | |||
---|---|---|---|---|---|---|---|---|
benzo[a]pyrene | PAH4 d | PAHs | ||||||
Europe | France | 2012 | 0.021 b | 0.104 | [41] | |||
France | 1993 | 0.066 | Only female | [42] | ||||
Catalonia, Spain | 2008 | 0.089 b | 10.140 | [43] | ||||
Catalonia, Spain | 2003 | 0.110 b | 8.400 * | [44] | ||||
Athens, Greece | 2022 | 0.044 c | 6.671 * | [45] | ||||
UK | 1983 | 0.250 | 3.700 | [46] | ||||
Croatia | 2019 | 0.014 | 0.060 | Total meat and shellfish products | [47] | |||
Latvia | 2015 | 0.023 b | 0.203 b | Only in smoked meat products | [48] | |||
Sweden | 2014 | 0.049 | 0.270 | [9] | ||||
Italy | 2017 | 0.562 b | [38] | |||||
Asia | Shandong, China | 2018 | 5.236 | Only in fried meat | 3.75 × 10−6 | [49] | ||
Beijing, China | 2015 | 0.179 b | 18.270 * | 3.37 × 10−5 b | [33] | |||
Taiyuan, China | 2014 | 0.002 | 0.007 | 0.061 | 906.95 × 10−6 (cooked food) 111.51 × 10−6 (Raw food) | [21] | ||
Taiyuan, China | 2010 | 0.572 e | 5.841 b | 4.04 × 10− 5 (Male) 3.87 × 10− 5 (Female) | [50] | |||
Korea | 2022 | 7.77 × 10−5 f | 4.14 × 10−4 f | 1.70 × 10−5 f | Only in fishery products | 2.60 × 10−6 | [51] | |
Pakistani | 2021 | 3.004 | 2.78 × 10−5 | [15] | ||||
Africa | Southern Nigeria | 2017 | 0.0523 | Only by fish | [52] | |||
Nigeria | 2021 | 81.2 b | 343 | 1330 * | Only by meat and fish | [20] |
4. Health Risk from Dietary Exposure to PAHs
4.1. Hot Processed Food
4.2. Oil and Fat
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Rengarajan, T.; Rajendran, P.; Nandakumar, N.; Lokeshkumar, B.; Rajendran, P.; Nishigaki, I. Exposure to polycyclic aromatic hydrocarbons with special focus on cancer. Asian Pac. J. Trop. Biomed. 2015, 5, 182–189. [Google Scholar] [CrossRef] [Green Version]
- Hall, M.; Grover, P.L. Polycyclic Aromatic Hydrocarbons: Metabolism, Activation and Tumour Initiation. In Chemical Carcinogenesis and Mutagenesis I; Cooper, C.S., Grover, P.L., Eds.; Springer: Berlin/Heidelberg, Germany, 1990; pp. 327–372. [Google Scholar]
- Kim, U.-J.; Lee, S.-H. Effective utilizations of liquid-phase plasma for remediation of non-degradable organic pollutants in water. J. Adv. Mar. Eng. Technol. JAMET 2022, 46, 9–14. [Google Scholar] [CrossRef]
- Zafra, G.; Moreno-Montaño, A.; Absalón, Á.E.; Cortés-Espinosa, D.V. Degradation of polycyclic aromatic hydrocarbons in soil by a tolerant strain of Trichoderma asperellum. Environ. Sci. Pollut. Res. 2015, 22, 1034–1042. [Google Scholar] [CrossRef]
- Wallin, C.; Sholts, S.B.; Österlund, N.; Luo, J.; Jarvet, J.; Roos, P.M.; Ilag, L.; Gräslund, A.; Wärmländer, S.K.T.S. Alzheimer’s disease and cigarette smoke components: Effects of nicotine, PAHs, and Cd(II), Cr(III), Pb(II), Pb(IV) ions on amyloid-β peptide aggregation. Sci. Rep. 2017, 7, 14423. [Google Scholar] [CrossRef] [Green Version]
- Mallah, M.A.; Mallah, M.A.; Liu, Y.; Xi, H.; Wang, W.; Feng, F.; Zhang, Q. Relationship Between Polycyclic Aromatic Hydrocarbons and Cardiovascular Diseases: A Systematic Review. Front. Public Health 2021, 9, 1937. [Google Scholar] [CrossRef]
- Låg, M.; Øvrevik, J.; Refsnes, M.; Holme, J.A. Potential role of polycyclic aromatic hydrocarbons in air pollution-induced non-malignant respiratory diseases. Respir. Res. 2020, 21, 299. [Google Scholar] [CrossRef]
- Wretling, S.; Eriksson, A.; Eskhult, G.A.; Larsson, B. Polycyclic aromatic hydrocarbons (PAHs) in Swedish smoked meat and fish. J. Food Compos. Anal. 2010, 23, 264–272. [Google Scholar] [CrossRef]
- Abramsson-Zetterberg, L.; Darnerud, P.O.; Wretling, S. Low intake of polycyclic aromatic hydrocarbons in Sweden: Results based on market basket data and a barbecue study. Food Chem. Toxicol. 2014, 74, 107–111. [Google Scholar] [CrossRef]
- Bukowska, B.; Mokra, K.; Michałowicz, J. Benzo[a]pyrene-Environmental Occurrence, Human Exposure, and Mechanisms of Toxicity. Int. J. Mol. Sci. 2022, 23, 6348. [Google Scholar] [CrossRef]
- Dubey, K.G. The Indian Cuisine; PHI Learning Pvt. Ltd.: Delhi, India, 2010. [Google Scholar]
- Mouritsen, O.G. Texture: Tsukemono–the Art and Science of Preparing Crunchy Vegetables. In Handbook of Molecular Gastronomy; CRC Press: Boca Raton, FL, USA, 2021; pp. 593–598. [Google Scholar]
- Zhu, Y.; Duan, X.; Qin, N.; Lv, J.; Wu, G.; Wei, F. Health risk from dietary exposure to polycyclic aromatic hydrocarbons (PAHs) in a typical high cancer incidence area in southwest China. Sci. Total Environ. 2019, 649, 731–738. [Google Scholar] [CrossRef]
- Tong, R.; Zhang, B.; Yang, X.; Cao, L. Health risk assessment of chefs intake of cooking fumes: Focusing on Sichuan cuisine in China. Hum. Ecol. Risk Assess. Int. J. 2021, 27, 162–190. [Google Scholar] [CrossRef]
- Aamir, M.; Yin, S.; Liu, Y.; Ullah, H.; Khan, S.; Liu, W. Dietary exposure and cancer risk assessment of the Pakistani population exposed to polycyclic aromatic hydrocarbons. Sci. Total Environ. 2021, 757, 143828. [Google Scholar] [CrossRef] [PubMed]
- Ingenbleek, L.; Veyrand, B.; Adegboye, A.; Hossou, S.E.; Koné, A.Z.; Oyedele, A.D.; Kisito, C.S.K.J.; Dembélé, Y.K.; Eyangoh, S.; Verger, P.; et al. Polycyclic aromatic hydrocarbons in foods from the first regional total diet study in Sub-Saharan Africa: Contamination profile and occurrence data. Food Control 2019, 103, 133–144. [Google Scholar] [CrossRef]
- Jia, J.; Bi, C.; Zhang, J.; Jin, X.; Chen, Z. Characterization of polycyclic aromatic hydrocarbons (PAHs) in vegetables near industrial areas of Shanghai, China: Sources, exposure, and cancer risk. Environ. Pollut. 2018, 241, 750–758. [Google Scholar] [CrossRef]
- Ding, C.; Ni, H.-G.; Zeng, H. Human exposure to parent and halogenated polycyclic aromatic hydrocarbons via food consumption in Shenzhen, China. Sci. Total Environ. 2013, 443, 857–863. [Google Scholar] [CrossRef]
- Martorell, I.; Perelló, G.; Martí-Cid, R.; Castell, V.; Llobet, J.M.; Domingo, J.L. Polycyclic aromatic hydrocarbons (PAH) in foods and estimated PAH intake by the population of Catalonia, Spain: Temporal trend. Environ. Int. 2010, 36, 424–432. [Google Scholar] [CrossRef]
- Okoye, E.A.; Bocca, B.; Ruggieri, F.; Ezejiofor, A.N.; Nwaogazie, I.L.; Domingo, J.L.; Rovira, J.; Frazzoli, C.; Orisakwe, O.E. Concentrations of polycyclic aromatic hydrocarbons in samples of soil, feed and food collected in the Niger Delta region, Nigeria: A probabilistic human health risk assessment. Environ. Res. 2021, 202, 111619. [Google Scholar] [CrossRef]
- Nie, J.; Shi, J.; Duan, X.; Wang, B.; Huang, N.; Zhao, X. Health risk assessment of dietary exposure to polycyclic aromatic hydrocarbons in Taiyuan, China. J. Environ. Sci. 2014, 26, 432–439. [Google Scholar] [CrossRef]
- Kolbaum, A.E.; Berg, K.; Müller, F.; Kappenstein, O.; Lindtner, O. Dietary exposure to elements from the German pilot total diet study (TDS). Food Addit. Contam. Part A 2019, 36, 1822–1836. [Google Scholar] [CrossRef]
- Koebnick, C.; Garcia, A.L.; Dagnelie, P.C.; Strassner, C.; Lindemans, J.; Katz, N.; Leitzmann, C.; Hoffmann, I. Long-Term Consumption of a Raw Food Diet Is Associated with Favorable Serum LDL Cholesterol and Triglycerides but Also with Elevated Plasma Homocysteine and Low Serum HDL Cholesterol in Humans. J. Nutr. 2005, 135, 2372–2378. [Google Scholar] [CrossRef] [Green Version]
- Chen, P.; Liang, J. Polycyclic aromatic hydrocarbons in green space soils in Shanghai: Source, distribution, and risk assessment. J. Soils Sediments 2021, 21, 967–977. [Google Scholar] [CrossRef]
- Cao, S.-P.; Ni, H.-G.; Qin, P.-H.; Zeng, H. Occurrence and human non-dietary exposure of polycyclic aromatic hydrocarbons in soils from Shenzhen, China. J. Environ. Monit. 2010, 12, 1445–1450. [Google Scholar] [CrossRef]
- Peng, C.; Chen, W.; Liao, X.; Wang, M.; Ouyang, Z.; Jiao, W.; Bai, Y. Polycyclic aromatic hydrocarbons in urban soils of Beijing: Status, sources, distribution and potential risk. Environ. Pollut. 2011, 159, 802–808. [Google Scholar] [CrossRef]
- Nadal, M.; Schuhmacher, M.; Domingo, J.L. Levels of PAHs in soil and vegetation samples from Tarragona County, Spain. Environ. Pollut. 2004, 132, 1–11. [Google Scholar] [CrossRef]
- Varela-Moreiras, G.; Ávila, J.M.; Cuadrado, C.; del Pozo, S.; Ruiz, E.; Moreiras, O. Evaluation of food consumption and dietary patterns in Spain by the Food Consumption Survey: Updated information. Eur. J. Clin. Nutr. 2010, 64, S37–S43. [Google Scholar] [CrossRef] [Green Version]
- Lu, F.; Kuhnle, G.K.; Cheng, Q. Heterocyclic amines and polycyclic aromatic hydrocarbons in commercial ready-to-eat meat products on UK market. Food Control 2017, 73, 306–315. [Google Scholar] [CrossRef]
- Mastanjević, K.; Kartalović, B.; Petrović, J.; Novakov, N.; Puljić, L.; Kovačević, D.; Jukić, M.; Lukinac, J.; Mastanjević, K. Polycyclic aromatic hydrocarbons in the traditional smoked sausage Slavonska kobasica. J. Food Compos. Anal. 2019, 83, 103282. [Google Scholar] [CrossRef]
- Lorenzo, J.M.; Purriños, L.; Bermudez, R.; Cobas, N.; Figueiredo, M.; García Fontán, M.C. Polycyclic aromatic hydrocarbons (PAHs) in two Spanish traditional smoked sausage varieties: “Chorizo gallego” and “Chorizo de cebolla”. Meat Sci. 2011, 89, 105–109. [Google Scholar] [CrossRef]
- Das, D.N.; Bhutia, S.K. Inevitable dietary exposure of Benzo[a]pyrene: Carcinogenic risk assessment an emerging issues and concerns. Curr. Opin. Food Sci. 2018, 24, 16–25. [Google Scholar] [CrossRef]
- Yu, Y.; Li, Q.; Wang, H.; Wang, B.; Wang, X.; Ren, A.; Tao, S. Risk of human exposure to polycyclic aromatic hydrocarbons: A case study in Beijing, China. Environ. Pollut. 2015, 205, 70–77. [Google Scholar] [CrossRef]
- Kenjerić, D.Č.; Sokolić, D. Chapter 7—Food, nutrition, and health in Croatia. In Nutritional and Health Aspects of Food in the Balkans; Gostin, A.-I., Bogueva, D., Kakurinov, V., Eds.; Academic Press: Cambridge, MA, USA, 2021; pp. 91–106. [Google Scholar]
- Baudry, J.; Allès, B.; Péneau, S.; Touvier, M.; Méjean, C.; Hercberg, S.; Galan, P.; Lairon, D.; Kesse-Guyot, E. Dietary intakes and diet quality according to levels of organic food consumption by French adults: Cross-sectional findings from the NutriNet-Santé Cohort Study. Public Health Nutr. 2017, 20, 638–648. [Google Scholar] [CrossRef] [Green Version]
- Rahi, B.; Ajana, S.; Tabue-Teguo, M.; Dartigues, J.-F.; Peres, K.; Feart, C. High adherence to a Mediterranean diet and lower risk of frailty among French older adults community-dwellers: Results from the Three-City-Bordeaux Study. Clin. Nutr. 2018, 37, 1293–1298. [Google Scholar] [CrossRef] [PubMed]
- Balmer, J.E.; Hung, H.; Yu, Y.; Letcher, R.J.; Muir, D.C.G. Sources and environmental fate of pyrogenic polycyclic aromatic hydrocarbons (PAHs) in the Arctic. Emerg. Contam. 2019, 5, 128–142. [Google Scholar] [CrossRef]
- Santonicola, S.; Albrizio, S.; Murru, N.; Ferrante, M.C.; Mercogliano, R. Study on the occurrence of polycyclic aromatic hydrocarbons in milk and meat/fish based baby food available in Italy. Chemosphere 2017, 184, 467–472. [Google Scholar] [CrossRef] [PubMed]
- Di Bella, C.; Traina, A.; Giosuè, C.; Carpintieri, D.; Lo Dico, G.M.; Bellante, A.; Del Core, M.; Falco, F.; Gherardi, S.; Uccello, M.M.; et al. Heavy Metals and PAHs in Meat, Milk, and Seafood From Augusta Area (Southern Italy): Contamination Levels, Dietary Intake, and Human Exposure Assessment. Front. Public Health 2020, 8, 273. [Google Scholar] [CrossRef]
- Serraino, A.; Bonilauri, P.; Kerekes, K.; Farkas, Z.; Giacometti, F.; Canever, A.; Zambrini, A.V.; Ambrus, Á. Occurrence of Aflatoxin M1 in Raw Milk Marketed in Italy: Exposure Assessment and Risk Characterization. Front. Microbiol. 2019, 10, 2516. [Google Scholar] [CrossRef]
- Domingo, J.L.; Nadal, M. Human dietary exposure to polycyclic aromatic hydrocarbons: A review of the scientific literature. Food Chem. Toxicol. 2015, 86, 144–153. [Google Scholar] [CrossRef]
- Marques, C.; Fiolet, T.; Frenoy, P.; Severi, G.; Mancini, F.R. Association between polycyclic aromatic hydrocarbons (PAH) dietary exposure and mortality risk in the E3N cohort. Sci. Total Environ. 2022, 840, 156626. [Google Scholar] [CrossRef]
- Martí-Cid, R.; Llobet, J.M.; Castell, V.; Domingo, J.L. Evolution of the dietary exposure to polycyclic aromatic hydrocarbons in Catalonia, Spain. Food Chem. Toxicol. 2008, 46, 3163–3171. [Google Scholar] [CrossRef]
- Falco, G.; Domingo, J.L.; Llobet, J.M.; Teixido, A.; Casas, C.; Müller, L. Polycyclic aromatic hydrocarbons in foods: Human exposure through the diet in Catalonia, Spain. J. Food Prot. 2003, 66, 2325–2331. [Google Scholar] [CrossRef]
- Grigoriou, C.; Costopoulou, D.; Vassiliadou, I.; Karavoltsos, S.; Sakellari, A.; Bakeas, E.; Leondiadis, L. Polycyclic aromatic hydrocarbons and trace elements dietary intake in inhabitants of Athens, Greece, based on a duplicate portion study. Food Chem. Toxicol. 2022, 165, 113087. [Google Scholar] [CrossRef]
- Dennis, M.J.; Massey, R.C.; McWeeny, D.J.; Knowles, M.E.; Watson, D. Analysis of polycyclic aromatic hydrocarbons in UK total diets. Food Chem. Toxicol. 1983, 21, 569–574. [Google Scholar] [CrossRef]
- Bogdanović, T.; Pleadin, J.; Petričević, S.; Listeš, E.; Sokolić, D.; Marković, K.; Ozogul, F.; Šimat, V. The occurrence of polycyclic aromatic hydrocarbons in fish and meat products of Croatia and dietary exposure. J. Food Compos. Anal. 2019, 75, 49–60. [Google Scholar] [CrossRef]
- Rozentāle, I.; Stumpe-Vīksna, I.; Začs, D.; Siksna, I.; Melngaile, A.; Bartkevičs, V. Assessment of dietary exposure to polycyclic aromatic hydrocarbons from smoked meat products produced in Latvia. Food Control 2015, 54, 16–22. [Google Scholar] [CrossRef]
- Jiang, D.; Wang, G.; Li, L.; Wang, X.; Li, W.; Li, X.; Shao, L.; Li, F. Occurrence, dietary exposure, and health risk estimation of polycyclic aromatic hydrocarbons in grilled and fried meats in Shandong of China. Food Sci. Nutr. 2018, 6, 2431–2439. [Google Scholar] [CrossRef] [Green Version]
- Xia, Z.; Duan, X.; Qiu, W.; Liu, D.; Wang, B.; Tao, S.; Jiang, Q.; Lu, B.; Song, Y.; Hu, X. Health risk assessment on dietary exposure to polycyclic aromatic hydrocarbons (PAHs) in Taiyuan, China. Sci. Total Environ. 2010, 408, 5331–5337. [Google Scholar] [CrossRef]
- Kim, Y.-Y.; Patra, J.-K.; Shin, H.-S. Evaluation of analytical method and risk assessment of polycyclic aromatic hydrocarbons for fishery products in Korea. Food Control 2022, 131, 108421. [Google Scholar] [CrossRef]
- Tongo, I.; Ezemonye, L.; Akpeh, K. Distribution, characterization, and human health risk assessment of polycyclic aromatic hydrocarbons (PAHs) in Ovia River, Southern Nigeria. Environ. Monit. Assess. 2017, 189, 247. [Google Scholar] [CrossRef]
- Stading, R.; Gastelum, G.; Chu, C.; Jiang, W.; Moorthy, B. Molecular mechanisms of pulmonary carcinogenesis by polycyclic aromatic hydrocarbons (PAHs): Implications for human lung cancer. Semin. Cancer Biol. 2021, 76, 3–16. [Google Scholar] [CrossRef]
- Diggs, D.L.; Huderson, A.C.; Harris, K.L.; Myers, J.N.; Banks, L.D.; Rekhadevi, P.V.; Niaz, M.S.; Ramesh, A. Polycyclic Aromatic Hydrocarbons and Digestive Tract Cancers: A Perspective. J. Environ. Sci. Health Part C 2011, 29, 324–357. [Google Scholar] [CrossRef] [Green Version]
- Gamboa-Loira, B.; López-Carrillo, L.; Mar-Sánchez, Y.; Stern, D.; Cebrián, M.E. Epidemiologic evidence of exposure to polycyclic aromatic hydrocarbons and breast cancer: A systematic review and meta-analysis. Chemosphere 2022, 290, 133237. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.; Wang, J.; Zhao, Q.; Mishra, V.; Fan, J.; Sun, Y. Polycyclic aromatic hydrocarbons (PAHs) and esophageal carcinoma in Handan-Xingtai district, North China: A preliminary study based on cancer risk assessment. Environ. Monit. Assess. 2020, 192, 596. [Google Scholar] [CrossRef] [PubMed]
- Abdel-Shafy, H.I.; Mansour, M.S.M. A review on polycyclic aromatic hydrocarbons: Source, environmental impact, effect on human health and remediation. Egypt. J. Pet. 2016, 25, 107–123. [Google Scholar] [CrossRef] [Green Version]
- Singh, L.; Varshney, J.G.; Agarwal, T. Polycyclic aromatic hydrocarbons’ formation and occurrence in processed food. Food Chem. 2016, 199, 768–781. [Google Scholar] [CrossRef]
- Schwingshackl, L.; Schwedhelm, C.; Hoffmann, G.; Knüppel, S.; Laure Preterre, A.; Iqbal, K.; Bechthold, A.; De Henauw, S.; Michels, N.; Devleesschauwer, B.; et al. Food groups and risk of colorectal cancer. Int. J. Cancer 2018, 142, 1748–1758. [Google Scholar] [CrossRef] [Green Version]
- Tfouni, S.A.V.; Serrate, C.S.; Leme, F.M.; Camargo, M.C.R.; Teles, C.R.A.; Cipolli, K.M.V.A.B.; Furlani, R.P.Z. Polycyclic aromatic hydrocarbons in coffee brew: Influence of roasting and brewing procedures in two Coffea cultivars. LWT-Food Sci. Technol. 2013, 50, 526–530. [Google Scholar] [CrossRef] [Green Version]
- Orecchio, S.; Ciotti, V.P.; Culotta, L. Polycyclic aromatic hydrocarbons (PAHs) in coffee brew samples: Analytical method by GC–MS, profile, levels and sources. Food Chem. Toxicol. 2009, 47, 819–826. [Google Scholar] [CrossRef]
- Yousefi, M.; Shemshadi, G.; Khorshidian, N.; Ghasemzadeh-Mohammadi, V.; Fakhri, Y.; Hosseini, H.; Mousavi Khaneghah, A. Polycyclic aromatic hydrocarbons (PAHs) content of edible vegetable oils in Iran: A risk assessment study. Food Chem. Toxicol. 2018, 118, 480–489. [Google Scholar] [CrossRef]
- Alhamdow, A.; Essig, Y.J.; Krais, A.M.; Gustavsson, P.; Tinnerberg, H.; Lindh, C.H.; Hagberg, J.; Graff, P.; Albin, M.; Broberg, K. Fluorene exposure among PAH-exposed workers is associated with epigenetic markers related to lung cancer. Occup. Environ. Med. 2020, 77, 488–495. [Google Scholar] [CrossRef]
- Huang, Y.; Lin, S.; Jin, L.; Wang, L.; Ren, A. Decreased global DNA hydroxymethylation in neural tube defects: Association with polycyclic aromatic hydrocarbons. Epigenetics 2019, 14, 1019–1029. [Google Scholar] [CrossRef]
- Korsh, J.; Shen, A.; Aliano, K.; Davenport, T. Polycyclic Aromatic Hydrocarbons and Breast Cancer: A Review of the Literature. Breast Care 2015, 10, 316–318. [Google Scholar] [CrossRef] [Green Version]
- White, A.J.; Bradshaw, P.T.; Herring, A.H.; Teitelbaum, S.L.; Beyea, J.; Stellman, S.D.; Steck, S.E.; Mordukhovich, I.; Eng, S.M.; Engel, L.S.; et al. Exposure to multiple sources of polycyclic aromatic hydrocarbons and breast cancer incidence. Environ. Int. 2016, 89–90, 185–192. [Google Scholar] [CrossRef] [Green Version]
- Sampaio, G.R.; Guizellini, G.M.; da Silva, S.A.; de Almeida, A.P.; Pinaffi-Langley, A.C.C.; Rogero, M.M.; de Camargo, A.C.; Torres, E.A.F.S. Polycyclic Aromatic Hydrocarbons in Foods: Biological Effects, Legislation, Occurrence, Analytical Methods, and Strategies to Reduce Their Formation. Int. J. Mol. Sci. 2021, 22, 6010. [Google Scholar] [CrossRef]
- Essumang, D.K.; Dodoo, D.K.; Adjei, J.K. Effective reduction of PAH contamination in smoke cured fish products using charcoal filters in a modified traditional kiln. Food Control 2014, 35, 85–93. [Google Scholar] [CrossRef]
Year | Area | Food Item | PAH16 (ng g−1) | Reference |
---|---|---|---|---|
2019 | China (southwest) | TDS 1 | 12.04 ± 8.52 | [13] |
2021 | Pakistan (northwestern) | Vegetables | 103.6 | [15] |
Fruits | 132.8 | |||
Fish | 242.8 | |||
Chicken | 171.5 | |||
Milk | 158.2 | |||
Egg | 121.4 | |||
Wheat | 168.64 | |||
Maize | 158.88 | |||
Rice | 52.60 | |||
2019 | Sub-Saharan Africa | Smoked fish | 310.1–310.2 | [16] |
Peanut oil | 14.4–14.8 | |||
Other vegetable oil | 25.0–25.3 | |||
Palm oil | 22.6–22.7 | |||
Other nuts/seeds | 20.8–21.0 | |||
Other fat/oil | 2.3–2.6 | |||
Palm nut | 5.7–5.8 | |||
Chili/pepper | 4.6–4.7 | |||
Cassava dry | 0.8–1.0 | |||
Broth/bouillon cube | 0.5–1 | |||
Peanuts | 0.4–0.8 | |||
Sugar | 0–0.6 | |||
Yam (dry) | 0.3–0.4 | |||
Concentrated/dehydrated milk | 0.1–0.6 | |||
Tam (fresh) | 0–0.2 | |||
Potato (fresh) | 0–0.2 | |||
2018 | Shanghai, China | Shanghai green cabbage | 238.9 | [17] |
Chinese cabbage | 260.6 | |||
Romaine | 320.6 | |||
Broad bean | 126.9 | |||
Lettuce | 204.6 | |||
Daikon | 78.9 | |||
2013 | Shenzhen, China | Vegetable | 12.8 | [18] |
Pork | 66.5 | |||
Rice | 47.1 | |||
2008 | Spain (12 cities) | Meat and meat products | 38.99 | [19] |
Fish and shellfish | 2.87 | |||
Vegetables | 1.22 | |||
Tubers | 0.73 | |||
Fruits | 0.81 | |||
Eggs | 3.62 | |||
Milk and dairy products | 8.04 | |||
Cereals | 1.27 | |||
Oil and fat | 18.75 | |||
Industrial bakery | 1.43 | |||
2021 | Khana | Beef | 16.7 | [20] |
Mutton | 8.06 | |||
Fish | 6.42 | |||
Chicken | 25.4 | |||
Choba | Beef | 8.06 | ||
Mutton | 5.78 | |||
Fish | 6.56 | |||
Chicken | 7.42 | |||
2014 | Taiyuan, China | Raw food | 93.11 | [21] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, X.; Gao, J.; Zhai, L.; Yu, X.; Xiao, Y. Recent Evidence on Polycyclic Aromatic Hydrocarbon Exposure. Healthcare 2023, 11, 1958. https://doi.org/10.3390/healthcare11131958
Zhao X, Gao J, Zhai L, Yu X, Xiao Y. Recent Evidence on Polycyclic Aromatic Hydrocarbon Exposure. Healthcare. 2023; 11(13):1958. https://doi.org/10.3390/healthcare11131958
Chicago/Turabian StyleZhao, Xiaohan, Jiuhe Gao, Lingzi Zhai, Xi Yu, and Ying Xiao. 2023. "Recent Evidence on Polycyclic Aromatic Hydrocarbon Exposure" Healthcare 11, no. 13: 1958. https://doi.org/10.3390/healthcare11131958