High-Precision Arithmetic in Mathematical Physics
<p>Graph of <math display="inline"> <mrow> <mi>g</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mi>x</mi> <mo>+</mo> <mstyle displaystyle="true"> <msub> <mo>∑</mo> <mrow> <mn>0</mn> <mo>⩽</mo> <mi>k</mi> <mo>⩽</mo> <mn>10</mn></mrow></msub> <mrow> <msup> <mn>2</mn> <mrow> <mo>−</mo> <mi>k</mi></mrow></msup> <mi>sin</mi> <mo stretchy="false">(</mo> <msup> <mn>2</mn> <mi>k</mi></msup> <mi>x</mi> <mo stretchy="false">)</mo></mrow></mstyle></mrow></math>, over (0, <span class="html-italic">π</span>).</p> ">
<p>Left: Error vs. CPU time for the numerical solution of the unstable periodic orbit LR for the Lorenz model (in double-double arithmetic) using a Runge-Kutta code (dop853), an extrapolation code (odex) [<a href="#b50-mathematics-03-00337" class="html-bibr">50</a>,<a href="#b51-mathematics-03-00337" class="html-bibr">51</a>] and a Taylor series method (TIDES). Right: Error vs. CPU time for the numerical solution of an unstable periodic orbit for the Lorenz model (in 500-digit arithmetic) using the TIDES code. Taken from [<a href="#b52-mathematics-03-00337" class="html-bibr">52</a>].</p> ">
<p>Numerical solution of the L<sup>25</sup>R<sup>25</sup> unstable periodic orbit of the Lorenz model for 16 time periods using the TIDES code with 300 digits, compared with just one time period using 64-bit IEEE arithmetic.</p> ">
<p>Fractal property of the Lorenz attractor. The first plot shows a rectangle in the plane. All later plots zoom in on a tiny region (too small to be seen by the unaided eye) at the center of the red rectangle of the preceding plot to show that what appears to be a line is in fact not a line. (Reproduced with permission from [<a href="#b58-mathematics-03-00337" class="html-bibr">58</a>]).</p> ">
<p>Plot of log<sub>10</sub>(min |<span class="html-italic">y<sub>i</sub></span>|) versus iteration number in a typical multipair PSLQ run. Note the sudden drop, by nearly 200 orders of magnitude, at iteration 199.</p> ">
Abstract
:1. Introduction
1.1. Numerical Reproducibility
Numerical round-off error and numerical differences are greatly magnified as computational simulations are scaled up to run on highly parallel systems. As a result, it is increasingly difficult to determine whether a code has been correctly ported to a new system, because computational results quickly diverge from standard benchmark cases. And it is doubly difficult for other researchers, using independently written codes and distinct computer systems, to reproduce published results. [1,2].
1.2. Dealing with Numerical Difficulties
1.3. U.C. Berkeley’s “Precimonious” Tool
- Test the level of numerical accuracy required for an application.
- Delimit the portions of code that are inaccurate.
- Search the space of possible code modifications.
- Repair numerical difficulties, including usage of high-precision arithmetic.
- Navigate through a hierarchy of precision levels (32-bit, 64-bit or higher as needed).
1.4. Computations that Require Extra Precision
2. Techniques and Software for High-Precision Arithmetic
- ARPREC: Supports arbitrary precision real, integer and complex, with many algebraic and transcendental functions. Includes high-level interfaces for C++ and Fortran-90 [17].
- CLN: A C++ library supporting arbitrary precision integer, real and complex, with numerous algebraic and transcendental functions [18].
- GMP: Supports high-precision integer, rational and floating-point calculations. Distributed under the GNU license by the Free Software Foundation [19].
- Julia: A high-level programming environment that incorporates GMP and MPFR [20].
- MPFR: Supports multiple-precision floating-point computations with correct rounding, based on GMP [21].
- MPFR++: A high-level C++ interface to MPFR [22].
- MPFR C++: A thread-safe high-level C++ interface to MPFR [23]. See Section 9.1.
- MPFUN2015: A new thread-safe system supporting multiprecision real and complex datatypes, with transcendental functions and FFT-based arithmetic. Includes high-level Fortran interface [24]. See Section 9.1.
- mpmath: A Python library for arbitrary precision floating-point arithmetic, including numerous transcendentals [25].
- NTL: A C++ library for arbitrary precision integer and floating-point arithmetic [26].
- Pari/GP: A computer algebra system that includes facilities for high-precision arithmetic, with many transcendental functions [27].
- QD: Supports “double-double” (roughly 31 digits) and “quad-double” (roughly 62 digits) arithmetic, as well as common algebraic and transcendental functions. Includes high-level interfaces for C++ and Fortran-90 [14].
- Sage: An open-source mathematical software system that includes high-precision arithmetic facilities [28].
3. Applications of High-Precision Arithmetic
3.1. Optimization Problems
3.2. Computer-Assisted Solution of Smale’s 14th Problem
3.3. Anharmonic Oscillators
3.4. Planetary Orbit Dynamics
3.5. Coulomb n-Body Atomic Systems
3.6. Nuclear Physics Computations
3.7. Scattering Amplitudes
3.8. Zeroes of the Riemann Zeta Function
4. Dynamical Systems
4.1. Periodic orbits
5. The PSLQ Algorithm and Experimental Mathematics
5.1. The BBP Formula for π and Normality
6. High-Precision Arithmetic in Mathematical Physics
6.1. Ising Integrals
6.2. Ramble Integrals
6.3. Moments of Elliptic Integral Functions
7. Lattice Sums Arising from a Poisson Equation
8. Integrals Arising in the Study of Wigner Electron Sums
8.1. Jump Discontinuities in Wigner Limits
8.2. The Behavior of
8.3. Numerical Exploration of
8.4. Numerical Evidence for the Conjecture
9. Requirements for Future High-Precision Arithmetic Software
9.1. High-Precision and Emerging Architectures
9.2. Precision Level and Transcendental Support
- Basic transcendentals—exp, log, sin, cos, tan, hyperbolic functions—and the corresponding inverse functions [72, Sec. 4].
- Gamma, digamma, polygamma, incomplete gamma, beta and incomplete beta functions [72, Sec. 5, 8].
- Riemann zeta function, polylogarithms and Dirichlet L-functions [72, Sec. 25].
- Bessel functions (first, second and third kinds, modified, etc.) [72,73, Sec. 10].
- Hypergeometric functions [72, Sec. 15].
- Airy functions [72, Sec. 9].
- Elliptic integral functions [72, Sec. 19].
- Jacobian elliptic functions and Weierstrass elliptic/modular functions [72, Sec. 22, 23].
- Theta functions [72, Sec. 20, 21].
9.3. Reproducibility
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Stodden, V.; Borwein, J. M.; Bailey, D. H. Publishing Standards for Computational Science: ‘Setting the Default to Reproducible’. SIAM News 2013, 46, 4–6. [Google Scholar]
- Stodden, V.; Bailey, D. H.; Borwein, J. M.; LeVeque, R. J.; Rider, W.; Stein, W. Setting the default to reproducible: Reproducibility in computational and experimental mathematics. 2013. Available online: http://www.davidhbailey.com/dhbpapers/icerm-report.pdf accessed on 30 April 2015.
- He, Y.; Ding, C. Using accurate arithmetics to improve numerical reproducibility and stability in parallel applications. J. Supercomput. 2001, 18, 259–277. [Google Scholar]
- Robey, R. W.; Robey, J. M.; Aulwes, R. In search of numerical consistency in parallel programming. Parallel Comput. 2011, 37, 217–219. [Google Scholar]
- Bailey, D. H.; Barrio, R.; Borwein, J. M. High-precision computation: Mathematical physics and dynamics. Appl. Math. Computat. 2012, 218, 10106–10121. [Google Scholar]
- Computer Science Curriculum 2008: An interim revision of CS 2001. Association for Computing Machinery and IEEE Computer Society; New York, NY, USA, 2008. Available online: http://www.acm.org/education/curricula/ComputerScience2008.pdf accessed on 30 April 2015.
- Rubio-Gonzalez, C.; Nguyen, C.; Nguyen, H. D.; Demmel, J.; Kahan, W.; Sen, K.; Bailey, D. H.; Iancu, C. Precimonious: Tuning assistant for floating-point precision. Proc. of SC13; Salt Lake City, UT, November 2013. Available online: http://www.davidhbailey.com/dhbpapers/precimonious.pdf accessed on 30 April 2015.
- Press, W. H.; Eukolsky, S. A.; Vetterling, W. T.; Flannery, B. P. Numerical Recipes: The Art of Scientific Computing, 3rd ed; Cambridge University Press: Cambridge, UK, 2007. [Google Scholar]
- LINPACK. Available online: http://www.netlib.org/linpack accessed on 30 April 2015.
- LAPACK. Available online: http://www.netlib.org/lapack accessed on 30 April 2015.
- Demmel, J.; Koev, P. The accurate and efficient solution of a totally positive generalized Vandermonde linear system. SIAM J. Matrix Anal. Appl. 2005, 27, 145–152. [Google Scholar]
- Knuth, D. E. The Art of Computer Programming: Seminumerical Algorithms, 3rd ed; Addison-Wesley: New York, NY, USA, 1998. [Google Scholar]
- Shewchuk, J. R. Adaptive precision floating-point arithmetic and fast robust geometric predicates. Discr. and Comp. Geometry 1997, 18, 305–363. [Google Scholar]
- Hida, Y.; Li, X. S.; Bailey, D. H. Algorithms for Quad-Double Precision Floating Point Arithmetic. Proc. of the 15th IEEE Symposium on Computer Arithmetic IEEE Computer Society; Vail, CO, USA, June 2001. Available online: http://crd-legacy.lbl.gov/~dhbailey/mpdist accessed on 30 April 2015.
- Borwein, J. M.; Bailey, D. H. Mathematics by Experiment: Plausible Reasoning in the 21st Century, 2nd ed; Peters, A.K., Ed.; Natick, MA, USA, 2008. [Google Scholar]
- Brent, R. P.; Zimmermann, P. Modern Computer Arithmetic; Cambridge Univ. Press: Cambridge, UK, 2010. [Google Scholar]
- Bailey, D. H.; Hida, Y.; Li, Y.; Thompson, B. ARPREC: An arbitrary precision computation package. 2002. Software available online: http://crd-legacy.lbl.gov/~dhbailey/mpdist.
- CLN — Class Library for Numbers. Available online: http://www.ginac.de/CLN accessed on 30 April 2015.
- The GNU multiple precision library. Available online: https://gmplib.org accessed on 30 April 2015.
- Julia. Available online: http://julialang.org accessed on 30 April 2015.
- The GNU MPFR library. Available online: http://www.mpfr.org accessed on 30 April 2015.
- MPFR++. Available online: http://perso.ens-lyon.fr/nathalie.revol/software.html accessed on 30 April 2015.
- MPFR++. Available online: http://www.holoborodko.com/pavel/mpfr accessed on 30 April 2015.
- Bailey, D. H. MPFUN2015: A thread-safe arbitrary precision computation package. 2015. Available online: http://www.davidhbailey.com/dhbpapers/mpfun2015.pdf accessed on 30 April 2015.
- mpmath: Python library for arbitrary-precision floating-point arithmetic. Available online: https://code.google.com/p/mpmath/ accessed on 30 April 2015.
- NTL: A library for doing number theory. Available online: http://www.shoup.net/ntl/ accessed on 30 April 2015.
- PARI/GP. Available online: http://pari.math.u-bordeaux.fr accessed on 30 April 2015.
- SageMath. Available online: http://sagemath.org accessed on 30 April 2015.
- Bailey, D. H.; Borwein, J. M.; Crandall, R. E. Integrals of the Ising class. J. Physics A: Math. Gen. 2006, 39, 12271–12302. [Google Scholar]
- Ma, D.; Saunders, M. Solving multiscale linear programs using the simplex method in quadruple precision. 2014. Available online: http://stanford.edu/group/SOL/multiscale/papers/quadLP3.pdf accessed on 30 April 2015.
- Ma, D.; Saunders, M. Experiments with linear and nonlinear optimization using quad precision. 2014. Available online: http://stanford.edu/group/SOL/multiscale/talks/14informsQuadMINOS.pdf accessed on 30 April 2015.
- Tucker, W. A. rigorous ODE solver and Smale’s 14th problem. Found. Comput. Math. 2002, 2, 53–117. [Google Scholar]
- Macfarlane, M. H. A high-precision study of anharmonic-oscillator spectra. Ann. Phys. 1999, 271, 159–202. [Google Scholar]
- Lake, G.; Quinn, T.; Richardson, D. C. From Sir Isaac to the Sloan survey: Calculating the structure and chaos due to gravity in the universe, Proceedings of the 8th ACM-SIAM Symposium on Discrete Algorithms, New Orleans, LA, USA, November 1997; pp. 1–10.
- Farrés, A.; l Laskar, J.; Blanes, S.; Casas, F.; Makazaga, J.; Murua, A. High precision symplectic integrators for the Solar System. Celest. Mech. Dyn. Astron. 2013, 116, 141–174. [Google Scholar]
- Frolov, A. M.; Bailey, D. H. Highly accurate evaluation of the few-body auxiliary functions and four-body integrals. J. Phys. B 2003, 36, 1857–1867. [Google Scholar]
- Yan, Z.-C.; Drake, G. W. F. Bethe logarithm and QED shift for Lithium. Phys. Rev. Lett. 2003, 81, 774–777. [Google Scholar]
- Zhang, T.; Yan, Z.-C.; Drake, G. W. F. QED corrections of O(mc2α7 ln α) to the fine structure splittings of Helium and He-Like ions. Phys. Rev. Lett. 1994, 77, 1715–1718. [Google Scholar]
- Ellis, R. K.; Giele, W. T.; Kunszt, Z.; Melnikov, K.; Zanderighi, G. One-loop amplitudes for W+3 jet production in hadron collisions. 2008. Available online: http://arXiv.org/abs/0810.2762 accessed on 30 April 2015.
- Berger, C. F.; Bern, Z.; Dixon, L. J.; Febres Cordero, F.; Forde, D.; Ita, H.; Kosower, D.A.; Maitre, D. An automated implementation of on-shell methods for one-loop amplitudes. Phys. Rev. D 2008, 78, 036003. [Google Scholar]
- Ossola, G.; Papadopoulos, C. G.; Pittau, R. CutTools: A program implementing the OPP reduction method to compute one-loop amplitudes. J. High-Energy Phys. 2008, 0803, 042. [Google Scholar]
- Czakon, M. Tops from light quarks: Full mass dependence at two-Loops in QCD. Phys. Lett. B 2008, 664, 307. [Google Scholar]
- Beliakov, G.; Matiyasevich, Y. A parallel algorithm for calculation of large determinants with high accuracy for GPUs and MPI clusters. 2013. Available online: http://arxiv.org/abs/1308.1536 accessed on 30 April 2015.
- Simó, C. Global dynamics and fast indicators. In Global Analysis of Dynamical Systems; Krauskopf, B., Broer, H.W., Vegtr, G., Eds.; Taylor and Francis: New York, USA, 2001; pp. 373–389. [Google Scholar]
- Barrio, R. Performance of the Taylor series method for ODEs/DAEs. Appl. Math. and Comput. 2005, 163, 525–545. [Google Scholar]
- Barrio, R.; Blesa, F.; Lara, M. VSVO formulation of the Taylor method for the numerical solution of ODEs. Comput. Math. Appl. 2005, 50, 93–111. [Google Scholar]
- Corliss, G.; Chang, Y. F. Solving ordinary differential equations using Taylor series. ACM Trans. Math. Software 1982, 8, 114–144. [Google Scholar]
- Barrio, R. Sensitivity analysis of ODEs/DAEs using the Taylor series method. SIAM J. Sci. Comput. 2006, 27, 1929–1947. [Google Scholar]
- Dena, A.; Rodriguez, M.; Serrano, S.; Barrio, R. High-precision continuation of periodic orbits. Abstr. Appl. Anal. 2012, 716024. [Google Scholar]
- Hairer, E.; Nørsett, S.; Wanner, G. Solving ordinary differential equations. I. Nonstiff problems, 2nd ed; Springer-Verlag, Berlin: Germany, 1993. [Google Scholar]
- Hairerm, E.; Ostermann, A. Dense output for extrapolation methods. Numer. Math. 1990, 58, 419–439. [Google Scholar]
- Barrio, R.; Rodriguez, M.; Abad, A.; Blesa, F. Breaking the limits: The Taylor series method. Appl. Math. and Comput. 2011, 217, 7940–7954. [Google Scholar]
- Lorenz, E. Deterministic nonperiodic flow. J. Atmospheric Sci. 1963, 20, 130–141. [Google Scholar]
- Abad, A.; Barrio, R.; Blesa, F.; Rodriguez, M. TIDES: a Taylor series Integrator for Differential EquationS. ACM Trans. Math. Software 2012, 39, 1. [Google Scholar]
- Dormand, J. R.; Prince, P. J. A family of embedded Runge-Kutta formulae. J. Comput. Appl. Math. 1980, 6, 19–26. [Google Scholar]
- Viswanath, D. The Lindstedt-Poincaré technique as an algorithm for computing periodic orbits. SIAM Rev. 2001, 43, 478–495. [Google Scholar]
- Viswanath, D. The fractal property of the Lorenz attractor. J. Phys. D 2004, 190, 115–128. [Google Scholar]
- Viswanath, D. Şahutǒglu, S. Complex singularities and the Lorenz attractor. SIAM Rev. 2010, 52, 294–314. [Google Scholar]
- Abad, A.; Barrio, R.; Dena, A. Computing periodic orbits with arbitrary precision. Phys. Rev. E 2011, 84, 016701. [Google Scholar]
- Calvo, F.; Pahl, E.; Wormit, M.; Schwerdtfeger, P. Evidence for low-temperature melting of Mercury owing to relativity. Angew. Chem. Intl. Ed. Engl. 2013. doi: 0.1002/anie.201302742. [Google Scholar]
- Borwein, J. M.; Bailey, D. H.; Girgensohn, R. Experimentation in Mathematics: Computational Paths to Discovery; Peters, A.K., Ed.; Natick, MA, USA, 2004. [Google Scholar]
- Ferguson, H. R. P.; Bailey, D. H.; Arno, S. Analysis of PSLQ, an integer relation finding algorithm. Math. Comput. 1999, 68, 351–369. [Google Scholar]
- Bailey, D. H.; Broadhurst, D. Parallel integer relation detection: Techniques and applications. Math. Comput. 2000, 70, 1719–1736. [Google Scholar]
- Chen, J.; Stehle, D.; Villard, G. A new view on HJLS and PSLQ: Sums and projections of lattices, Proceedings of ISSAC’13, Boston, MA, USA, June 2013; pp. 149–156.
- Bailey, D. H. A compendium of BBP-type formulas. 2011. Available online: http://www.davidhbailey.com/dhbpapers/bbp-formulas.pdf accessed on 30 April 2015.
- Bailey, D. H.; Borwein, J. M.; Mattingly, A.; Wightwick, G. The computation of previously inaccessible digits of π2 and Catalan’s constant. Not. AMS 2013, 60, 844–854. [Google Scholar]
- Karrels, E. Computing digits of pi with CUDA. 2013. Available online: http://www.karrels.org/pi accessed on 30 April 2015.
- Becher, V.; Heiber, P. A.; Slaman, T. A. A computable absolutely normal Liouville number. 2014. Available online: http://math.berkeley.edu/~slaman/papers/liouville.pdf accessed on 30 April 2015.
- Stoneham, R. On absolute (j, ε)-normality in the rational fractions with applications to normal numbers. Acta Arithmetica 1973, 22, 277–286. [Google Scholar]
- Bailey, D. H.; Borwein, J. M. Nonnormality of Stoneham constants. Ramanujan J 2012, 29, 409–422. [Google Scholar] [CrossRef]
- Takahasi, H.; Mori, M. Double exponential formulas for numerical integration. Pub. RIMS 1974, 9, 721–741. [Google Scholar]
- NIST Digital Library of Mathematical Functions, version 1.0.6. May 2013. Available online: http://dlmf.nist.gov accessed on 30 April 2015.
- NIST Handbook of Mathematical Functions; Olver, F.W.J.; Lozier, D.W.; Boisvert, R.F.; Clark, C.W. (Eds.) Cambridge University Press: New York, NY, USA, 2010.
- The Inverse Symbolic Calculator 2.0. Available online: https:/isc.carma.newcastle.edu.au accessed on 30 April 2014.
- Panzer, E. Algorithms for the symbolic integration of hyperlogarithms with applications to Feynman integrals. 2014. Available online: http://arxiv.org/abs/1403.3385 accessed on 30 April 2015.
- Bailey, D. H.; Borwein, J. M. Hand-to-hand combat with thousand-digit integrals. J. Comput. Sci. 2012, 3, 77–86. [Google Scholar]
- Borwein, J. M.; Straub, A.; Wan, J. Three-step and four-step random walk integrals. Exp. Math. 2013, 22, 1–14. [Google Scholar]
- Lucas, S. K.; Stone, H. A. Evaluating infinite integrals involving Bessel functions of arbitrary order. J. Comp. Appl. Math. 1995, 64, 217–231. [Google Scholar]
- Sidi, A. The numerical evaluation of very oscillatory infinite integrals by extrapolation. Math. Comput. 1982, 38, 517–529. [Google Scholar]
- Sidi, A. A user-friendly extrapolation method for oscillatory infinite integrals. Math. Comput. 1988, 51, 249–266. [Google Scholar]
- Sidi, A. A user-friendly extrapolation method for computing infinite range integrals of products of oscillatory functions. IMA J. Numer. Anal. 2012, 32, 602–631. [Google Scholar]
- Bailey, D. H.; Borwein, J. M.; Broadhurst, D. M.; Glasser, L. Elliptic integral representation of Bessel moments. J. Phys. A: Math. Theor. 2008, 41, 5203–5231. [Google Scholar]
- Wan, J. Moments of products of elliptic integrals. Adv. Appl. Math. 2012, 48, 121–141. [Google Scholar]
- Rogers, M.; Wan, J. G.; Zucker, I. J. Moments of elliptic integrals and critical L-values. 2013. Available online: http://arxiv.org/abs/1303.2259 accessed on 30 April 2015.
- Bailey, D. H.; Borwein, J. M.; Crandall, R. E.; Zucker, J. Lattice sums arising from the Poisson equation. J. Physics A: Math. Theor. 2013, 46, 115201. [Google Scholar]
- Borwein, D.; Borwein, J. M.; Straub, A. On lattice sums and Wigner limits. J. Math. Anal. Appl. 2014, 414, 489–513. [Google Scholar]
- Borwein, J. M.; Glasser, L.; McPhedran, R.; Wan, J. G.; Zucker, I. J. Lattice Sums: Then Now; Cambridge University Press: Cambridge, UK, 2013. [Google Scholar]
- Borwein, D.; Borwein, J. M.; Shail, R. Analysis of certain lattice sums. J. Math. Anal. Appl. 1989, 143, 126–137. [Google Scholar]
- Lewin, M.; Lieb, E. H. Improved Lieb-Oxford exchange-correlation inequality with gradient correction. 2014. Available online: http://arxiv.org/abs/1408.3358 accessed 30 on April 2015.
- Bailey, D. H.; Borwein, J. M.; Crandall, R. E. Computation and theory of extended Mordell-Tornheim-Witten sums. Math. Comput. 2015. Available online: http://www.davidhbailey.com/dhbpapers/BBC.pdf accessed on 30 April 2015.
- Williams, S. W.; Bailey, D. H. Parallel computer architecture. In Performance Tuning of Scientific Applications; Bailey, D. H., Lucas, R. F., Williams, S. W., Eds.; CRC Press: Boca Raton, FL, USA, 2011; pp. 11–33. [Google Scholar]
- Top 500 list. Nov 2014. Available online: http://top500.org accessed on 30 April 2015.
- Khanna, G. High-precision numerical simulations on a CUDA GPU: Kerr black hole tails. J. Sci. Comput. 2013, 56, 366–380. [Google Scholar]
- Mukunoki, D.; Takahashi, D. Implementation and evaluation of quadruple precision BLAS functions on GPUs. Appl. Parallel Sci. Comput. 2012, 7133, 249–259. [Google Scholar]
- Chevillard, S.; Mezzarobba, M. Multiple precision evaluation of the Airy Ai function with reduced cancellation. In Proceedings of the 21st IEEE Symposium on Computer Arithmetic; IEEE Computer Society: Austin, TX, USA, June 2013. [Google Scholar]
- Crandall, R. E. Unified algorithms for polylogarithm, L-series and zeta variants. In Algorithmic Reflections: Selected Works; PSIPress: Portland, OR, USA, 2012. [Google Scholar]
- Johansson, F. Fast and rigorous computation of special functions to high precision. PhD thesis, RSC Institute, Linz, Austria, 2014. [Google Scholar]
- Muller, J.-M.; Brisebarre, N.; de Dinechin, F.; Jeannerod, C.-P.; Lefevre, V.; Melquiond, G.; Revol, N.; Stehle, D.; Torres, S. Handbook of Floating-Point Arithmetic; Birkhauser: Boston, MA, USA, 2010. [Google Scholar]
- Corden, M. J.; Kreitzer, D. Consistency of floating-point results using the Intel compiler, or why doesn’t my application always give the same answer. Intel Corporation. 2012. Available online: http://software.intel.com/sites/default/files/article/164389/fp-consistency-102511.pdf accessed on 30 April 2015.
k | Minimal polynomial for exp(8πφ2(1/k, 1/k)) |
---|---|
5 | 1 + 52α − 26α2 − 12α3 + α4 |
6 | 1 − 28α + 6α2 − 28α3 + α4 |
7 | −1 − 196α + 1302α2 − 14756α3 + 15673α4 +42168α5 − 111916α6 + 82264α7 − 35231α8 +19852α9 − 2954α10 − 308α11 + 7α12 |
8 | 1 − 88α + 92α2 − 872α3 + 1990α4 − 872α5 +92α6 − 88α7 + α8 |
9 | −1 − 534α + 10923α2 − 342864α3 + 2304684α4 −7820712α5 + 13729068α6 −22321584α7 + 39775986α8 − 44431044α9 +19899882α10 + 3546576α11 −8458020α12 + 4009176α13 − 273348α14 +121392α15 − 11385α16 − 342α17 + 3α18 |
10 | 1 − 216α + 860α2 − 744α3 + 454α4 − 744α5 + 860α6 − 216α7 + α8 |
n | L/R ratio | quad. level | run time |
---|---|---|---|
1 | 0.50270699 | 6 | 3.28 |
2 | 0.90761214 | 6 | 3.28 |
3 | 0.98835424 | 7 | 13.11 |
4 | 0.99877007 | 8 | 52.30 |
5 | 0.99987615 | 10 | 528.98 |
6 | 0.99998760 | 12 | 8360.91 |
© 2015 by the authors; licensee MDPI, Basel, Switzerland This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bailey, D.H.; Borwein, J.M. High-Precision Arithmetic in Mathematical Physics. Mathematics 2015, 3, 337-367. https://doi.org/10.3390/math3020337
Bailey DH, Borwein JM. High-Precision Arithmetic in Mathematical Physics. Mathematics. 2015; 3(2):337-367. https://doi.org/10.3390/math3020337
Chicago/Turabian StyleBailey, David H., and Jonathan M. Borwein. 2015. "High-Precision Arithmetic in Mathematical Physics" Mathematics 3, no. 2: 337-367. https://doi.org/10.3390/math3020337