[go: up one dir, main page]

Next Issue
Volume 6, November
Previous Issue
Volume 6, September
 
 

Universe, Volume 6, Issue 10 (October 2020) – 32 articles

Cover Story (view full-size image): The observation of the neutrinoless double beta decay would help to shed light on some neutrino properties like absolute mass or its autoconjugation. Being a very rare nuclear process, experiments intended to detect this decay must be operated deep underground and in ultra-low background conditions. Long-lived radioisotopes produced by the previous exposure of materials to cosmic rays on the Earth’s surface or even underground can become problematic for the required sensitivity. Here, the studies developed to quantify and reduce the activation yields in detectors and materials used in the set-up of these experiments will be reviewed, considering target materials like germanium, tellurium, and xenon together with other ones commonly used like copper, lead, stainless steel, or argon. View this paper.
  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Reader to open them.
Order results
Result details
Section
Select all
Export citation of selected articles as:
7 pages, 227 KiB  
Communication
Gravitational Radiation as the Bremsstrahlung of Superheavy Particles in the Early Universe
by Andrey A. Grib and Yuri V. Pavlov
Universe 2020, 6(10), 188; https://doi.org/10.3390/universe6100188 - 20 Oct 2020
Cited by 2 | Viewed by 1614
Abstract
The number of superheavy particles with the mass of the Grand Unification scale with trans-Planckian energy created at the epoch of superheavy particle creation from the vacuum by the gravitation of the expanding Universe is calculated. In later collisions of these particles, gravitational [...] Read more.
The number of superheavy particles with the mass of the Grand Unification scale with trans-Planckian energy created at the epoch of superheavy particle creation from the vacuum by the gravitation of the expanding Universe is calculated. In later collisions of these particles, gravitational radiation is radiated playing the role of bremsstrahlung for gravity. The effective background radiation of the Universe is evaluated. Full article
21 pages, 499 KiB  
Review
Gravity with Higher Derivatives in D-Dimensions
by Sergey G. Rubin, Arkadiy Popov and Polina M. Petriakova
Universe 2020, 6(10), 187; https://doi.org/10.3390/universe6100187 - 20 Oct 2020
Cited by 4 | Viewed by 2141
Abstract
The aim of this review is to discuss the ways to obtain results based on gravity with higher derivatives in D-dimensional world. We considered the following ways: (1) reduction to scalar tensor gravity, (2) direct solution of the equations of motion, (3) derivation [...] Read more.
The aim of this review is to discuss the ways to obtain results based on gravity with higher derivatives in D-dimensional world. We considered the following ways: (1) reduction to scalar tensor gravity, (2) direct solution of the equations of motion, (3) derivation of approximate equations in the presence of a small parameter in the system, and (4) the method of test functions. Some applications are presented to illustrate each method. The unification of two necessary elements of a future theory is also kept in mind—the extra dimensions and the extended form of the gravity. Full article
Show Figures

Figure 1

Figure 1
<p>Numerical solution of (<a href="#FD19-universe-06-00187" class="html-disp-formula">19</a>), (<a href="#FD20-universe-06-00187" class="html-disp-formula">20</a>) and (<a href="#FD22-universe-06-00187" class="html-disp-formula">22</a>) for <math display="inline"><semantics> <mrow> <msub> <mi>d</mi> <mn>1</mn> </msub> <mo>=</mo> <msub> <mi>d</mi> <mn>2</mn> </msub> <mo>=</mo> <mn>3</mn> <mo>,</mo> <msub> <mi>β</mi> <mn>1</mn> </msub> <mrow> <mo>(</mo> <mn>0</mn> <mo>)</mo> </mrow> <mo>=</mo> <mn>0.5</mn> <mo>,</mo> <mspace width="4pt"/> <msub> <mover accent="true"> <mi>β</mi> <mo>˙</mo> </mover> <mn>1</mn> </msub> <mrow> <mo>(</mo> <mn>0</mn> <mo>)</mo> </mrow> <mo>=</mo> <mn>0</mn> <mo>,</mo> <mspace width="4pt"/> <msub> <mi>β</mi> <mn>2</mn> </msub> <mrow> <mo>(</mo> <mn>0</mn> <mo>)</mo> </mrow> <mo>=</mo> <mn>0.1</mn> <mo>,</mo> <mspace width="4pt"/> <msub> <mover accent="true"> <mi>β</mi> <mo>˙</mo> </mover> <mn>2</mn> </msub> <mrow> <mo>(</mo> <mn>0</mn> <mo>)</mo> </mrow> <mo>=</mo> <mn>0.5</mn> <mo>,</mo> <mspace width="4pt"/> <mover accent="true"> <mi>R</mi> <mo>˙</mo> </mover> <mrow> <mo>(</mo> <mn>0</mn> <mo>)</mo> </mrow> <mo>=</mo> <mn>0</mn> </mrow> </semantics></math>. <math display="inline"><semantics> <mrow> <mi>R</mi> <mo>(</mo> <mn>0</mn> <mo>)</mo> <mo>≃</mo> <mn>12.67452</mn> </mrow> </semantics></math> is found from Equation (<a href="#FD23-universe-06-00187" class="html-disp-formula">23</a>).</p>
Full article ">Figure 2
<p>The same as in <a href="#universe-06-00187-f001" class="html-fig">Figure 1</a> except <math display="inline"><semantics> <mrow> <msub> <mover accent="true"> <mi>β</mi> <mo>˙</mo> </mover> <mn>2</mn> </msub> <mrow> <mo>(</mo> <mn>0</mn> <mo>)</mo> </mrow> <mo>=</mo> <mn>0.1</mn> </mrow> </semantics></math>.</p>
Full article ">Figure 3
<p>Solution for the system (<a href="#FD50-universe-06-00187" class="html-disp-formula">50</a>) with the initial conditions (<a href="#FD53-universe-06-00187" class="html-disp-formula">53</a>) and (<a href="#FD55-universe-06-00187" class="html-disp-formula">55</a>).</p>
Full article ">Figure 4
<p>Numerical solution to the system of Equations (<a href="#FD63-universe-06-00187" class="html-disp-formula">63</a>)–(<a href="#FD65-universe-06-00187" class="html-disp-formula">65</a>) for initial conditions <math display="inline"><semantics> <mrow> <mi>α</mi> <mo>(</mo> <mn>0</mn> <mo>)</mo> <mo>=</mo> <mn>7</mn> <mo>,</mo> </mrow> </semantics></math><math display="inline"><semantics> <mrow> <mspace width="4pt"/> <mover accent="true"> <mi>α</mi> <mo>˙</mo> </mover> <mrow> <mo>(</mo> <mn>0</mn> <mo>)</mo> </mrow> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mspace width="4pt"/> <mi>β</mi> <mrow> <mo>(</mo> <mn>0</mn> <mo>)</mo> </mrow> <mo>=</mo> <mn>4</mn> <mo>,</mo> <mspace width="4pt"/> <mover accent="true"> <mi>β</mi> <mo>˙</mo> </mover> <mrow> <mo>(</mo> <mn>0</mn> <mo>)</mo> </mrow> <mo>=</mo> <mn>0</mn> <mo>,</mo> <mspace width="4pt"/> <mover accent="true"> <mi>R</mi> <mo>˙</mo> </mover> <mrow> <mo>(</mo> <mn>0</mn> <mo>)</mo> </mrow> <mo>=</mo> <mn>0</mn> </mrow> </semantics></math>. The initial condition <math display="inline"><semantics> <mrow> <mi>R</mi> <mo>(</mo> <mn>0</mn> <mo>)</mo> <mo>≃</mo> <mn>11.999</mn> </mrow> </semantics></math> is found from Equation (<a href="#FD66-universe-06-00187" class="html-disp-formula">66</a>). The Lagrangian parameters are <math display="inline"><semantics> <mrow> <mi>a</mi> <mo>=</mo> <mn>200</mn> <mo>,</mo> <mi>c</mi> <mo>=</mo> <mo>−</mo> <mn>0.001</mn> <mo>,</mo> <mi>k</mi> <mo>=</mo> <mn>500</mn> </mrow> </semantics></math>.</p>
Full article ">Figure 5
<p>Numerical solution to the system of Equations (<a href="#FD63-universe-06-00187" class="html-disp-formula">63</a>)–(<a href="#FD65-universe-06-00187" class="html-disp-formula">65</a>) for initial conditions <math display="inline"><semantics> <mrow> <mi>α</mi> <mo>(</mo> <mn>0</mn> <mo>)</mo> <mo>=</mo> <mn>15</mn> <mo>,</mo> </mrow> </semantics></math><math display="inline"><semantics> <mrow> <mspace width="4pt"/> <mi>β</mi> <mrow> <mo>(</mo> <mn>0</mn> <mo>)</mo> </mrow> <mo>=</mo> <mn>2</mn> <mo>,</mo> <mspace width="4pt"/> <mover accent="true"> <mi>α</mi> <mo>˙</mo> </mover> <mrow> <mo>(</mo> <mn>0</mn> <mo>)</mo> </mrow> <mo>≃</mo> <mn>0.404667</mn> <mo>,</mo> <mspace width="4pt"/> <mover accent="true"> <mi>β</mi> <mo>˙</mo> </mover> <mrow> <mo>(</mo> <mn>0</mn> <mo>)</mo> </mrow> <mo>=</mo> <mn>0</mn> <mo>,</mo> <mspace width="4pt"/> <mover accent="true"> <mi>R</mi> <mo>˙</mo> </mover> <mrow> <mo>(</mo> <mn>0</mn> <mo>)</mo> </mrow> <mo>=</mo> <mn>0</mn> </mrow> </semantics></math>. <math display="inline"><semantics> <mrow> <mi>R</mi> <mo>(</mo> <mn>0</mn> <mo>)</mo> <mo>≃</mo> <mn>2.09126</mn> </mrow> </semantics></math> is found from Equation (<a href="#FD66-universe-06-00187" class="html-disp-formula">66</a>). The Lagrangian parameters are <math display="inline"><semantics> <mrow> <mi>a</mi> <mo>=</mo> <mo>−</mo> <mn>2.77</mn> <mo>,</mo> <mi>c</mi> <mo>=</mo> <mo>−</mo> <mn>0.49</mn> <mo>,</mo> <mi>k</mi> <mo>=</mo> <mo>−</mo> <mn>2.98</mn> </mrow> </semantics></math>.</p>
Full article ">Figure 6
<p>Numerical solution to the system of Equations (<a href="#FD63-universe-06-00187" class="html-disp-formula">63</a>)–(<a href="#FD65-universe-06-00187" class="html-disp-formula">65</a>) for initial conditions <math display="inline"><semantics> <mrow> <mi>α</mi> <mo>(</mo> <mn>0</mn> <mo>)</mo> <mo>=</mo> <mn>15</mn> <mo>,</mo> </mrow> </semantics></math><math display="inline"><semantics> <mrow> <mspace width="4pt"/> <mover accent="true"> <mi>α</mi> <mo>˙</mo> </mover> <mrow> <mo>(</mo> <mn>0</mn> <mo>)</mo> </mrow> <mo>≃</mo> <mn>0.40467</mn> <mo>,</mo> <mspace width="4pt"/> <mi>β</mi> <mrow> <mo>(</mo> <mn>0</mn> <mo>)</mo> </mrow> <mo>=</mo> <msub> <mi>b</mi> <mi>c</mi> </msub> <mo>≃</mo> <mn>1.99303</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mover accent="true"> <mi>β</mi> <mo>˙</mo> </mover> <mrow> <mo>(</mo> <mn>0</mn> <mo>)</mo> </mrow> <mo>=</mo> <mn>0</mn> <mo>,</mo> <mspace width="4pt"/> <mover accent="true"> <mi>R</mi> <mo>˙</mo> </mover> <mrow> <mo>(</mo> <mn>0</mn> <mo>)</mo> </mrow> <mo>=</mo> <mn>0</mn> </mrow> </semantics></math>. <math display="inline"><semantics> <mrow> <mi>R</mi> <mo>(</mo> <mn>0</mn> <mo>)</mo> <mo>≃</mo> <mn>2.0765</mn> </mrow> </semantics></math> is found from Equation (<a href="#FD66-universe-06-00187" class="html-disp-formula">66</a>). For the found numerical solution, <math display="inline"><semantics> <mrow> <mi>a</mi> <mo>=</mo> <mo>−</mo> <mn>2.77</mn> <mo>,</mo> <mi>c</mi> <mo>=</mo> <mo>−</mo> <mn>0.49</mn> <mo>,</mo> <mi>k</mi> <mo>=</mo> <mo>−</mo> <mn>2.98</mn> </mrow> </semantics></math>.</p>
Full article ">Figure 7
<p>The form of the potential (left) and kinetic term (right) for the parameters <math display="inline"><semantics> <mrow> <mi>n</mi> <mo>=</mo> <mn>2</mn> <mo>,</mo> <mi>b</mi> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mi>a</mi> <mspace width="3.33333pt"/> <mo>=</mo> <mo>−</mo> <mn>2</mn> <mo>,</mo> <msub> <mi>c</mi> <mi>V</mi> </msub> <mo>=</mo> <mo>−</mo> <mn>8</mn> <mo>,</mo> <msub> <mi>c</mi> <mi>K</mi> </msub> <mo>=</mo> <mn>15000</mn> <mo>.</mo> </mrow> </semantics></math> The potential minimum is in the point <math display="inline"><semantics> <mrow> <msub> <mi>ϕ</mi> <mi>m</mi> </msub> <mo>≃</mo> <mn>0.083</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <msub> <mi>m</mi> <mi>D</mi> </msub> <mo>=</mo> <mn>1</mn> <mo>.</mo> </mrow> </semantics></math></p>
Full article ">Figure 8
<p>Auxiliary function <math display="inline"><semantics> <mi mathvariant="sans-serif">Ω</mi> </semantics></math> vs. the minimization parameter <math display="inline"><semantics> <msub> <mi>ξ</mi> <mn>1</mn> </msub> </semantics></math> for <math display="inline"><semantics> <mrow> <msubsup> <mi>ξ</mi> <mn>2</mn> <mo>*</mo> </msubsup> <mo>=</mo> <mn>9.57</mn> <mo>,</mo> <msubsup> <mi>ξ</mi> <mn>3</mn> <mo>*</mo> </msubsup> <mo>=</mo> <mn>1.85</mn> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <mi>f</mi> <mo>(</mo> <mi>R</mi> <mo>)</mo> </mrow> </semantics></math>-parameters <math display="inline"><semantics> <mrow> <mi>a</mi> <mo>=</mo> <mo>−</mo> <mn>2</mn> <mo>,</mo> <mi>b</mi> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mi>c</mi> <mo>=</mo> <mo>−</mo> <mn>0.02</mn> </mrow> </semantics></math>. The minimum of <math display="inline"><semantics> <mi mathvariant="sans-serif">Ω</mi> </semantics></math> corresponds to <math display="inline"><semantics> <mrow> <msubsup> <mi>ξ</mi> <mn>1</mn> <mo>*</mo> </msubsup> <mo>=</mo> <mn>9.96</mn> </mrow> </semantics></math>. <math display="inline"><semantics> <mrow> <mi mathvariant="sans-serif">Ω</mi> <mrow> <mo>(</mo> <msubsup> <mi>ξ</mi> <mn>1</mn> <mo>*</mo> </msubsup> <mo>=</mo> <mn>9.96</mn> <mo>,</mo> <msubsup> <mi>ξ</mi> <mn>3</mn> <mo>*</mo> </msubsup> <mo>=</mo> <mn>1.85</mn> <mo>)</mo> </mrow> <mo>=</mo> <mn>5.3</mn> <mo>×</mo> <msup> <mn>10</mn> <mn>11</mn> </msup> </mrow> </semantics></math>.</p>
Full article ">Figure 9
<p>Radii of two-dimensional subspaces vs. the Schwarzschild radial coordinate <span class="html-italic">u</span> for parameter values <math display="inline"><semantics> <mrow> <mi>a</mi> <mo>=</mo> <mo>−</mo> <mn>2</mn> <mo>,</mo> <mi>b</mi> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mi>c</mi> <mo>=</mo> <mo>−</mo> <mn>0.02</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <msub> <mi>ξ</mi> <mn>3</mn> </msub> <mo>=</mo> <mn>1.85</mn> </mrow> </semantics></math>.</p>
Full article ">
11 pages, 445 KiB  
Article
Collapsing Wormholes Sustained by Dustlike Matter
by Pavel E. Kashargin and Sergey V. Sushkov
Universe 2020, 6(10), 186; https://doi.org/10.3390/universe6100186 - 18 Oct 2020
Cited by 7 | Viewed by 2191
Abstract
It is well known that static wormhole configurations in general relativity (GR) are possible only if matter threading the wormhole throat is “exotic”—i.e., violates a number of energy conditions. For this reason, it is impossible to construct static wormholes supported only by dust-like [...] Read more.
It is well known that static wormhole configurations in general relativity (GR) are possible only if matter threading the wormhole throat is “exotic”—i.e., violates a number of energy conditions. For this reason, it is impossible to construct static wormholes supported only by dust-like matter which satisfies all usual energy conditions. However, this is not the case for non-static configurations. In 1934, Tolman found a general solution describing the evolution of a spherical dust shell in GR. In this particular case, Tolman’s solution describes the collapsing dust ball; the inner space-time structure of the ball corresponds to the Friedmann universe filled by a dust. In the present work we use the general Tolman’s solution in order to construct a dynamic spherically symmetric wormhole solution in GR with dust-like matter. The solution constructed represents the collapsing dust ball with the inner wormhole space-time structure. It is worth noting that, with the dust-like matter, the ball is made of satisfies the usual energy conditions and cannot prevent the collapse. We discuss in detail the properties of the collapsing dust wormhole. Full article
Show Figures

Figure 1

Figure 1
<p>The embedding diagram. The function <math display="inline"><semantics> <mrow> <mi>ρ</mi> <mo>(</mo> <mi>z</mi> <mo>)</mo> </mrow> </semantics></math> is shown on the left panel, and the surface obtained by rotating the curve <math display="inline"><semantics> <mrow> <mi>ρ</mi> <mo>(</mo> <mi>z</mi> <mo>)</mo> </mrow> </semantics></math> about the axis <math display="inline"><semantics> <mrow> <mi>O</mi> <mi>z</mi> </mrow> </semantics></math> is shown on the right panel.</p>
Full article ">Figure 2
<p>The figure shows the graphs of the function <math display="inline"><semantics> <mrow> <mi>r</mi> <mo>(</mo> <mi>R</mi> <mo>,</mo> <mi>τ</mi> <mo>)</mo> <mo>/</mo> <mi>b</mi> </mrow> </semantics></math> depending on <math display="inline"><semantics> <mrow> <mi>τ</mi> <mo>/</mo> <mi>b</mi> </mrow> </semantics></math> for different values of <span class="html-italic">R</span>: <math display="inline"><semantics> <mrow> <mi>R</mi> <mo>=</mo> <mi>b</mi> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>R</mi> <mo>=</mo> <mn>1.1</mn> <mi>b</mi> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <mi>R</mi> <mo>=</mo> <msub> <mi>R</mi> <mn>0</mn> </msub> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <msub> <mi>R</mi> <mn>0</mn> </msub> <mo>=</mo> <mn>1.2</mn> <mi>b</mi> </mrow> </semantics></math>. Red-blue lines are the null radial geodesics. (See the text for more details).</p>
Full article ">Figure 3
<p>The figure shows the graphs of the energy density <math display="inline"><semantics> <mrow> <mn>8</mn> <mi>π</mi> <mi>k</mi> <mi>ε</mi> <msup> <mi>b</mi> <mn>2</mn> </msup> </mrow> </semantics></math> depending on <math display="inline"><semantics> <mrow> <mi>τ</mi> <mo>/</mo> <mi>b</mi> </mrow> </semantics></math> for different values of <span class="html-italic">R</span>: <math display="inline"><semantics> <mrow> <mi>R</mi> <mo>=</mo> <mi>b</mi> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>R</mi> <mo>=</mo> <mn>1.1</mn> <mi>b</mi> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <mi>R</mi> <mo>=</mo> <msub> <mi>R</mi> <mn>0</mn> </msub> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <msub> <mi>R</mi> <mn>0</mn> </msub> <mo>=</mo> <mn>1.2</mn> <mi>b</mi> </mrow> </semantics></math>. As <math display="inline"><semantics> <mrow> <mi>τ</mi> <mo>→</mo> <msub> <mi>τ</mi> <mn>0</mn> </msub> </mrow> </semantics></math> the energy tends to infinity, the vertical asymptote is shown by dash-dot on the right in the figure.</p>
Full article ">
16 pages, 341 KiB  
Article
On the Discrete Version of the Schwarzschild Problem
by Vladimir Khatsymovsky
Universe 2020, 6(10), 185; https://doi.org/10.3390/universe6100185 - 17 Oct 2020
Cited by 5 | Viewed by 1960
Abstract
We consider a Schwarzschild type solution in the discrete Regge calculus formulation of general relativity quantized within the path integral approach. Earlier, we found a mechanism of a loose fixation of the background scale of Regge lengths. This elementary length scale is defined [...] Read more.
We consider a Schwarzschild type solution in the discrete Regge calculus formulation of general relativity quantized within the path integral approach. Earlier, we found a mechanism of a loose fixation of the background scale of Regge lengths. This elementary length scale is defined by the Planck scale and some free parameter of such a quantum extension of the theory. Besides, Regge action was reduced to an expansion over metric variations between the tetrahedra and, in the main approximation, is a finite-difference form of the Hilbert–Einstein action. Using for the Schwarzschild problem a priori general non-spherically symmetrical ansatz, we get finite-difference equations for its discrete version. This defines a solution which at large distances is close to the continuum Schwarzschild geometry, and the metric and effective curvature at the center are cut off at the elementary length scale. Slow rotation can also be taken into account (Lense–Thirring-like metric). Thus, we get a general approach to the classical background in the quantum framework in zero order: it is an optimal starting point for the perturbative expansion of the theory, finite-difference equations are classical, and the elementary length scale has quantum origin. Singularities, if any, are resolved. Full article
Show Figures

Figure 1

Figure 1
<p>A typical triangulation with the simplest periodic lattice in the Lemaitre coordinates, drawn in a section passing through the world line <math display="inline"><semantics> <mrow> <mi>r</mi> <mo>=</mo> <mn>0</mn> </mrow> </semantics></math> (however, for another such section, there are events of ending geodesics <math display="inline"><semantics> <mrow> <msub> <mi>r</mi> <mn>1</mn> </msub> <mo>=</mo> <mi>c</mi> <mi>o</mi> <mi>n</mi> <mi>s</mi> <mi>t</mi> </mrow> </semantics></math> at <math display="inline"><semantics> <mrow> <mi>r</mi> <mo>=</mo> <mn>0</mn> </mrow> </semantics></math>, say, <math display="inline"><semantics> <mrow> <msub> <mi>r</mi> <mn>1</mn> </msub> <mo>=</mo> <mi>a</mi> <msqrt> <mn>2</mn> </msqrt> </mrow> </semantics></math>, which do not belong to any of these leaves <math display="inline"><semantics> <mrow> <mi>τ</mi> <mo>=</mo> <mi>c</mi> <mi>o</mi> <mi>n</mi> <mi>s</mi> <mi>t</mi> </mrow> </semantics></math>; therefore, the structure should be distorted near <math display="inline"><semantics> <mrow> <mi>r</mi> <mo>=</mo> <mn>0</mn> </mrow> </semantics></math>, for example, a line <math display="inline"><semantics> <mrow> <msub> <mi>r</mi> <mn>1</mn> </msub> <mo>=</mo> <mi>c</mi> <mi>o</mi> <mi>n</mi> <mi>s</mi> <mi>t</mi> </mrow> </semantics></math> before <math display="inline"><semantics> <mrow> <mi>r</mi> <mo>=</mo> <mn>0</mn> </mrow> </semantics></math> can end with a non-(<math display="inline"><semantics> <mrow> <msub> <mi>r</mi> <mn>1</mn> </msub> <mo>=</mo> <mi>c</mi> <mi>o</mi> <mi>n</mi> <mi>s</mi> <mi>t</mi> </mrow> </semantics></math>) edge). <math display="inline"><semantics> <mrow> <mi>B</mi> <mi>C</mi> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>A</mi> <mi>B</mi> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <mi>A</mi> <mi>C</mi> </mrow> </semantics></math> are examples of the spatial, temporal, and diagonal edges, respectively. <math display="inline"><semantics> <mrow> <mi>C</mi> <mi>D</mi> </mrow> </semantics></math> is an edge at <math display="inline"><semantics> <mrow> <mi>r</mi> <mo>=</mo> <mn>0</mn> </mrow> </semantics></math>.</p>
Full article ">
16 pages, 350 KiB  
Article
Gravitational Interaction of Cosmic String with Spinless Particle
by Pavel Spirin
Universe 2020, 6(10), 184; https://doi.org/10.3390/universe6100184 - 16 Oct 2020
Cited by 3 | Viewed by 1922
Abstract
We consider the gravitational interaction of spinless relativistic particle and infinitely thin cosmic string within the classical linearized-theory framework. We compute the particle’s motion in the transverse (to the unperturbed string) plane. The reciprocal action of the particle on the cosmic string is [...] Read more.
We consider the gravitational interaction of spinless relativistic particle and infinitely thin cosmic string within the classical linearized-theory framework. We compute the particle’s motion in the transverse (to the unperturbed string) plane. The reciprocal action of the particle on the cosmic string is also investigated. We derive the retarded solution which includes the longitudinal (with respect to the unperturbed-particle motion) and totally-transverse string perturbations. Full article
Show Figures

Figure 1

Figure 1
<p>Integration contours in the complex <math display="inline"><semantics> <mi>ω</mi> </semantics></math>-plane.</p>
Full article ">Figure 2
<p>Transverse string perturbation (in units <math display="inline"><semantics> <msub> <mi>r</mi> <mi mathvariant="script">E</mi> </msub> </semantics></math>) versus time (normalized by <span class="html-italic">b</span>) for <math display="inline"><semantics> <mrow> <mi>x</mi> <mo>=</mo> <mn>0</mn> </mrow> </semantics></math> (blue solid line), <math display="inline"><semantics> <mrow> <mi>x</mi> <mo>=</mo> <mn>5</mn> <mi>b</mi> </mrow> </semantics></math> (green dashed line), <math display="inline"><semantics> <mrow> <mi>x</mi> <mo>=</mo> <mn>10</mn> <mi>b</mi> </mrow> </semantics></math> (black dotted line), <math display="inline"><semantics> <mrow> <mi>x</mi> <mo>=</mo> <mn>20</mn> <mi>b</mi> </mrow> </semantics></math> (red dashdotted) for <math display="inline"><semantics> <mrow> <mi>v</mi> <mo>=</mo> <mn>0.5</mn> </mrow> </semantics></math>.</p>
Full article ">Figure 3
<p>String’s <span class="html-italic">z</span>-deflection (in units <math display="inline"><semantics> <mrow> <msub> <mi>r</mi> <mi mathvariant="script">E</mi> </msub> <mo>=</mo> <mn>1</mn> </mrow> </semantics></math>) as a function of time (in units <math display="inline"><semantics> <mrow> <mi>b</mi> <mo>=</mo> <mn>1</mn> </mrow> </semantics></math>) at <math display="inline"><semantics> <mrow> <mi>x</mi> <mo>/</mo> <mi>b</mi> <mo>=</mo> <mn>0</mn> </mrow> </semantics></math> (blue solid line), <math display="inline"><semantics> <mrow> <mi>x</mi> <mo>/</mo> <mi>b</mi> <mo>=</mo> <mn>5</mn> </mrow> </semantics></math> (green dashed line), <math display="inline"><semantics> <mrow> <mi>x</mi> <mo>/</mo> <mi>b</mi> <mo>=</mo> <mn>15</mn> </mrow> </semantics></math> (black dotted line), <math display="inline"><semantics> <mrow> <mi>x</mi> <mo>/</mo> <mi>b</mi> <mo>=</mo> <mn>25</mn> </mrow> </semantics></math> (red dashdotted line) for <math display="inline"><semantics> <mrow> <mi>v</mi> <mo>=</mo> <mn>0.5</mn> </mrow> </semantics></math>. The conical angular deficit is <math display="inline"><semantics> <mrow> <mi>β</mi> <msup> <mrow> <mspace width="0.3pt"/> </mrow> <mo>′</mo> </msup> <mo>=</mo> <msup> <mn>10</mn> <mrow> <mo>−</mo> <mn>4</mn> </mrow> </msup> </mrow> </semantics></math>.</p>
Full article ">
15 pages, 677 KiB  
Article
Null and Timelike Geodesics near the Throats of Phantom Scalar Field Wormholes
by Ivan Potashov, Julia Tchemarina and Alexander Tsirulev
Universe 2020, 6(10), 183; https://doi.org/10.3390/universe6100183 - 16 Oct 2020
Cited by 8 | Viewed by 2100
Abstract
We study geodesic motion near the throats of asymptotically flat, static, spherically symmetric traversable wormholes supported by a self-gravitating minimally coupled phantom scalar field with an arbitrary self-interaction potential. We assume that any such wormhole possesses the reflection symmetry with respect to the [...] Read more.
We study geodesic motion near the throats of asymptotically flat, static, spherically symmetric traversable wormholes supported by a self-gravitating minimally coupled phantom scalar field with an arbitrary self-interaction potential. We assume that any such wormhole possesses the reflection symmetry with respect to the throat, and consider only its observable “right half”. It turns out that the main features of bound orbits and photon trajectories close to the throats of such wormholes are very different from those near the horizons of black holes. We distinguish between wormholes of two types, the first and second ones, depending on whether the redshift metric function has a minimum or maximum at the throat. First, it turns out that orbits located near the centre of a wormhole of any type exhibit retrograde precession, that is, the angle of pericentre precession is negative. Second, in the case of high accretion activity, wormholes of the first type have the innermost stable circular orbit at the throat while those of the second type have the resting-state stable circular orbit in which test particles are at rest at all times. In our study, we have in mind the possibility that the strongly gravitating objects in the centres of galaxies are wormholes, which can be regarded as an alternative to black holes, and the scalar field can be regarded as a realistic model of dark matter surrounding galactic centres. In this connection, we discuss qualitatively some observational aspects of results obtained in this article. Full article
Show Figures

Figure 1

Figure 1
<p>The effective potentials <math display="inline"><semantics> <mrow> <msub> <mi>V</mi> <mrow> <mi>e</mi> <mi>f</mi> <mi>f</mi> </mrow> </msub> <mrow> <mo>(</mo> <mi>r</mi> <mo>,</mo> <mi>J</mi> <mo>)</mo> </mrow> </mrow> </semantics></math> of massive particles and (if <math display="inline"><semantics> <mrow> <mi>J</mi> <mo>=</mo> <mn>0</mn> </mrow> </semantics></math>) the metric function <math display="inline"><semantics> <mrow> <mi>A</mi> <mrow> <mo>(</mo> <mi>r</mi> <mo>)</mo> </mrow> <mo>=</mo> <msub> <mi>V</mi> <mrow> <mi>e</mi> <mi>f</mi> <mi>f</mi> </mrow> </msub> <mrow> <mo>(</mo> <mi>r</mi> <mo>,</mo> <mn>0</mn> <mo>)</mo> </mrow> </mrow> </semantics></math> for the ansatz (<a href="#FD28-universe-06-00183" class="html-disp-formula">28</a>): <math display="inline"><semantics> <mrow> <mi>a</mi> <mo>=</mo> <mn>1</mn> </mrow> </semantics></math> (<b>left panel</b>) and <math display="inline"><semantics> <mrow> <mi>a</mi> <mo>=</mo> <mn>9</mn> </mrow> </semantics></math> (<b>right panel</b>).</p>
Full article ">Figure 2
<p>The effective potentials <math display="inline"><semantics> <mrow> <msub> <mi>V</mi> <mi>b</mi> </msub> <mrow> <mo>(</mo> <mi>r</mi> <mo>,</mo> <mi>b</mi> <mo>)</mo> </mrow> <mo>=</mo> <mn>1</mn> <mo>−</mo> <mi>b</mi> <mfenced separators="" open="(" close=")"> <mi>A</mi> <mo>/</mo> <msup> <mi>C</mi> <mn>2</mn> </msup> </mfenced> </mrow> </semantics></math> of massless particles for the ansatz (<a href="#FD28-universe-06-00183" class="html-disp-formula">28</a>): <math display="inline"><semantics> <mrow> <mi>a</mi> <mo>=</mo> <mn>1</mn> </mrow> </semantics></math> (<b>left panel</b>) and <math display="inline"><semantics> <mrow> <mi>a</mi> <mo>=</mo> <mn>9</mn> </mrow> </semantics></math> (<b>right panel</b>).</p>
Full article ">Figure 3
<p>The shapes of some precessing trajectories of massive test particles for ansatz (<a href="#FD28-universe-06-00183" class="html-disp-formula">28</a>) with <math display="inline"><semantics> <mrow> <mi>a</mi> <mo>=</mo> <mn>1</mn> </mrow> </semantics></math>. <b>Left panel</b> (<math display="inline"><semantics> <mrow> <mi>J</mi> <mo>=</mo> <mn>3</mn> </mrow> </semantics></math>): <math display="inline"><semantics> <mrow> <msup> <mi>E</mi> <mn>2</mn> </msup> <mo>=</mo> <mn>0.90</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mo>Δ</mo> <mi>φ</mi> <mo>=</mo> <mn>0.31</mn> </mrow> </semantics></math> (red line), <math display="inline"><semantics> <mrow> <msup> <mi>E</mi> <mn>2</mn> </msup> <mo>=</mo> <mn>0.95</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mo>Δ</mo> <mi>φ</mi> <mo>=</mo> <mo>−</mo> <mn>0.18</mn> </mrow> </semantics></math> (green line), <math display="inline"><semantics> <mrow> <msup> <mi>E</mi> <mn>2</mn> </msup> <mo>=</mo> <mn>0.975</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mo>Δ</mo> <mi>φ</mi> <mo>=</mo> <mo>−</mo> <mn>0.36</mn> </mrow> </semantics></math> (blue line). The dashed parts of lines represent the ’hidden’ parts of trajectories located in the region <math display="inline"><semantics> <mrow> <mi>r</mi> <mo>&lt;</mo> <mn>0</mn> </mrow> </semantics></math>. <b>Right panel</b> (<math display="inline"><semantics> <mrow> <mi>J</mi> <mo>=</mo> <mn>4.2</mn> </mrow> </semantics></math>): <math display="inline"><semantics> <mrow> <msup> <mi>E</mi> <mn>2</mn> </msup> <mo>=</mo> <mn>0.97</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mo>Δ</mo> <mi>φ</mi> <mo>=</mo> <mn>2.52</mn> </mrow> </semantics></math> (red line), <math display="inline"><semantics> <mrow> <msup> <mi>E</mi> <mn>2</mn> </msup> <mo>=</mo> <mn>0.98</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mo>Δ</mo> <mi>φ</mi> <mo>=</mo> <mn>2.70</mn> </mrow> </semantics></math> (blue line).</p>
Full article ">Figure 4
<p>The shapes of some precessing trajectories of massive test particles for ansatz (<a href="#FD28-universe-06-00183" class="html-disp-formula">28</a>) with <math display="inline"><semantics> <mrow> <mi>a</mi> <mo>=</mo> <mn>9</mn> </mrow> </semantics></math>. <b>Left panel</b> (<math display="inline"><semantics> <mrow> <mi>J</mi> <mo>=</mo> <mn>2</mn> </mrow> </semantics></math>): <math display="inline"><semantics> <mrow> <msup> <mi>E</mi> <mn>2</mn> </msup> <mo>=</mo> <mn>0.89</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mo>Δ</mo> <mi>φ</mi> <mo>=</mo> <mo>−</mo> <mn>2.44</mn> </mrow> </semantics></math> (red line), <math display="inline"><semantics> <mrow> <msup> <mi>E</mi> <mn>2</mn> </msup> <mo>=</mo> <mn>0.93</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mo>Δ</mo> <mi>φ</mi> <mo>=</mo> <mo>−</mo> <mn>2.76</mn> </mrow> </semantics></math> (green line), <math display="inline"><semantics> <mrow> <msup> <mi>E</mi> <mn>2</mn> </msup> <mo>=</mo> <mn>0.95</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mo>Δ</mo> <mi>φ</mi> <mo>=</mo> <mo>−</mo> <mn>2.89</mn> </mrow> </semantics></math> (blue line). The dashed parts of lines represent the parts of trajectories located in the region <math display="inline"><semantics> <mrow> <mi>r</mi> <mo>&lt;</mo> <mn>0</mn> </mrow> </semantics></math>. <b>Right panel</b> (<math display="inline"><semantics> <mrow> <mi>J</mi> <mo>=</mo> <mn>3</mn> </mrow> </semantics></math>): <math display="inline"><semantics> <mrow> <msup> <mi>E</mi> <mn>2</mn> </msup> <mo>=</mo> <mn>0.925</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mo>Δ</mo> <mi>φ</mi> <mo>=</mo> <mo>−</mo> <mn>0.82</mn> </mrow> </semantics></math> (red line), <math display="inline"><semantics> <mrow> <msup> <mi>E</mi> <mn>2</mn> </msup> <mo>=</mo> <mn>0.965</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mo>Δ</mo> <mi>φ</mi> <mo>=</mo> <mo>−</mo> <mn>0.64</mn> </mrow> </semantics></math> (blue line).</p>
Full article ">Figure 5
<p>Photon trajectories of massive test particles for ansatz (<a href="#FD28-universe-06-00183" class="html-disp-formula">28</a>) with <math display="inline"><semantics> <mrow> <mi>a</mi> <mo>=</mo> <mn>1</mn> </mrow> </semantics></math>. In the <b>left</b> plot: <math display="inline"><semantics> <mrow> <mi>b</mi> <mo>=</mo> <mn>10</mn> </mrow> </semantics></math> (black line), <math display="inline"><semantics> <mrow> <mi>b</mi> <mo>=</mo> <mn>8</mn> </mrow> </semantics></math> (red line), <math display="inline"><semantics> <mrow> <mi>b</mi> <mo>=</mo> <mn>5.8</mn> </mrow> </semantics></math> (green line), <math display="inline"><semantics> <mrow> <mi>b</mi> <mo>=</mo> <mn>5.7</mn> </mrow> </semantics></math> (blue line), <math display="inline"><semantics> <mrow> <mi>b</mi> <mo>=</mo> <mn>5.66</mn> </mrow> </semantics></math> (cyan line). In the <b>right</b> plot: <math display="inline"><semantics> <mrow> <mi>b</mi> <mo>=</mo> <mn>5.65</mn> </mrow> </semantics></math> (black line), <math display="inline"><semantics> <mrow> <mi>b</mi> <mo>=</mo> <mn>5</mn> </mrow> </semantics></math> (red line), <math display="inline"><semantics> <mrow> <mi>b</mi> <mo>=</mo> <mn>4.2</mn> </mrow> </semantics></math> (green line), <math display="inline"><semantics> <mrow> <mi>b</mi> <mo>=</mo> <mn>3</mn> </mrow> </semantics></math> (blue line). The dashed parts of lines represent the parts of trajectories located in the region <math display="inline"><semantics> <mrow> <mi>r</mi> <mo>&lt;</mo> <mn>0</mn> </mrow> </semantics></math>.</p>
Full article ">Figure 6
<p>Photon trajectories of massive test particles for ansatz (<a href="#FD28-universe-06-00183" class="html-disp-formula">28</a>) with <math display="inline"><semantics> <mrow> <mi>a</mi> <mo>=</mo> <mn>9</mn> </mrow> </semantics></math>. In the <b>left</b> plot: <math display="inline"><semantics> <mrow> <mi>b</mi> <mo>=</mo> <mn>10</mn> </mrow> </semantics></math> (black line), <math display="inline"><semantics> <mrow> <mi>b</mi> <mo>=</mo> <mn>8</mn> </mrow> </semantics></math> (red line), <math display="inline"><semantics> <mrow> <mi>b</mi> <mn>7</mn> </mrow> </semantics></math> (green line), <math display="inline"><semantics> <mrow> <mi>b</mi> <mo>=</mo> <mn>6.7</mn> </mrow> </semantics></math> (blue line). In the <b>right</b> plot: <math display="inline"><semantics> <mrow> <mi>b</mi> <mo>=</mo> <mn>6.65</mn> </mrow> </semantics></math> (black line), <math display="inline"><semantics> <mrow> <mi>b</mi> <mo>=</mo> <mn>6</mn> </mrow> </semantics></math> (red line), <math display="inline"><semantics> <mrow> <mi>b</mi> <mo>=</mo> <mn>5.3</mn> </mrow> </semantics></math> (green line), <math display="inline"><semantics> <mrow> <mi>b</mi> <mo>=</mo> <mn>3</mn> </mrow> </semantics></math> (blue line). The dashed parts of lines represent the parts of trajectories located in the region <math display="inline"><semantics> <mrow> <mi>r</mi> <mo>&lt;</mo> <mn>0</mn> </mrow> </semantics></math>.</p>
Full article ">
15 pages, 794 KiB  
Article
Search for Double Beta Decay of 106Cd with an Enriched 106CdWO4 Crystal Scintillator in Coincidence with CdWO4 Scintillation Counters
by Pierluigi Belli, R. Bernabei, V.B. Brudanin, F. Cappella, V. Caracciolo, R. Cerulli, F. A. Danevich, Antonella Incicchitti, D.V. Kasperovych, V.R. Klavdiienko, V.V. Kobychev, Vittorio Merlo, O.G. Polischuk, V.I. Tretyak and M.M. Zarytskyy
Universe 2020, 6(10), 182; https://doi.org/10.3390/universe6100182 - 16 Oct 2020
Cited by 15 | Viewed by 2384
Abstract
Studies on double beta decay processes in 106Cd were performed by using a cadmium tungstate scintillator enriched in 106Cd at 66% (106CdWO4) with two CdWO4 scintillation counters (with natural Cd composition). No effect was observed in [...] Read more.
Studies on double beta decay processes in 106Cd were performed by using a cadmium tungstate scintillator enriched in 106Cd at 66% (106CdWO4) with two CdWO4 scintillation counters (with natural Cd composition). No effect was observed in the data that accumulated over 26,033 h. New improved half-life limits were set on the different channels and modes of the 106Cd double beta decay at level of limT1/210201022 yr. The limit for the two neutrino electron capture with positron emission in 106Cd to the ground state of 106Pd, T1/22νECβ+2.1×1021 yr, was set by the analysis of the 106CdWO4 data in coincidence with the energy release 511 keV in both CdWO4 counters. The sensitivity approaches the theoretical predictions for the decay half-life that are in the range T1/210211022 yr. The resonant neutrinoless double-electron capture to the 2718 keV excited state of 106Pd is restricted at the level of T1/20ν2K2.9×1021 yr. Full article
(This article belongs to the Special Issue Neutrinoless Double Beta Decay)
Show Figures

Figure 1

Figure 1
<p>Simplified decay scheme of <math display="inline"><semantics> <msup> <mrow/> <mn>106</mn> </msup> </semantics></math>Cd [<a href="#B36-universe-06-00182" class="html-bibr">36</a>] (levels with energies in the energy interval (2283–2714) keV are omitted). The energies of the excited levels are in keV. Relative intensities of <math display="inline"><semantics> <mi>γ</mi> </semantics></math> quanta are given in parentheses.</p>
Full article ">Figure 2
<p>Schematic of the experimental set-up with the <math display="inline"><semantics> <msup> <mrow/> <mn>106</mn> </msup> </semantics></math>CdWO<math display="inline"><semantics> <msub> <mrow/> <mn>4</mn> </msub> </semantics></math> scintillation detector. <math display="inline"><semantics> <msup> <mrow/> <mn>106</mn> </msup> </semantics></math>CdWO<math display="inline"><semantics> <msub> <mrow/> <mn>4</mn> </msub> </semantics></math> crystal scintillator (1) is viewed through PbWO<math display="inline"><semantics> <msub> <mrow/> <mn>4</mn> </msub> </semantics></math> light-guide (2) by photo-multiplier tube (3). Two CdWO<math display="inline"><semantics> <msub> <mrow/> <mn>4</mn> </msub> </semantics></math> crystal scintillators (4) are viewed through light-guides glued from quartz (5) and polystyrene (6) by photo-multiplier tubes (7). The detector system was surrounded by passive shield made from copper, lead, polyethylene, and cadmium (not shown). Only part of the copper details (8, “internal copper”), used to reduce the direct hits of the detectors by <math display="inline"><semantics> <mi>γ</mi> </semantics></math> quanta from the PMTs, are shown.</p>
Full article ">Figure 3
<p>Left photograph: the <math display="inline"><semantics> <msup> <mrow/> <mn>106</mn> </msup> </semantics></math>CdWO<math display="inline"><semantics> <msub> <mrow/> <mn>4</mn> </msub> </semantics></math> crystal scintillator (1), Teflon support of the <math display="inline"><semantics> <msup> <mrow/> <mn>106</mn> </msup> </semantics></math>CdWO<math display="inline"><semantics> <msub> <mrow/> <mn>4</mn> </msub> </semantics></math> crystal (2), CdWO<math display="inline"><semantics> <msub> <mrow/> <mn>4</mn> </msub> </semantics></math> crystal scintillators (3), quartz light-guide (4), “internal copper” brick (5). Right photograph: the detector system installed in the passive shield: PMT of the <math display="inline"><semantics> <msup> <mrow/> <mn>106</mn> </msup> </semantics></math>CdWO<math display="inline"><semantics> <msub> <mrow/> <mn>4</mn> </msub> </semantics></math> detector (1), light-guides of the CdWO<math display="inline"><semantics> <msub> <mrow/> <mn>4</mn> </msub> </semantics></math> counters wrapped by reflecting foil (2), PMT of the CdWO<math display="inline"><semantics> <msub> <mrow/> <mn>4</mn> </msub> </semantics></math> counters (3), “internal copper” bricks (4), “external copper” bricks (5), lead bricks (6), and polyethylene shield (7). The copper, lead and polyethylene shields are not completed.</p>
Full article ">Figure 4
<p>Energy spectra of <math display="inline"><semantics> <msup> <mrow/> <mn>22</mn> </msup> </semantics></math>Na (<b>a</b>), <math display="inline"><semantics> <msup> <mrow/> <mn>60</mn> </msup> </semantics></math>Co (<b>b</b>) and <math display="inline"><semantics> <msup> <mrow/> <mn>228</mn> </msup> </semantics></math>Th (<b>c</b>) <math display="inline"><semantics> <mi>γ</mi> </semantics></math> quanta measured by one of the CdWO<math display="inline"><semantics> <msub> <mrow/> <mn>4</mn> </msub> </semantics></math> detectors. Fits of intensive <math display="inline"><semantics> <mi>γ</mi> </semantics></math> peaks by Gaussian functions are shown by solid lines. Energies of <math display="inline"><semantics> <mi>γ</mi> </semantics></math> quanta are in keV.</p>
Full article ">Figure 5
<p>Energy spectra of <math display="inline"><semantics> <msup> <mrow/> <mn>22</mn> </msup> </semantics></math>Na <math display="inline"><semantics> <mi>γ</mi> </semantics></math> quanta measured by the <math display="inline"><semantics> <msup> <mrow/> <mn>106</mn> </msup> </semantics></math>CdWO<math display="inline"><semantics> <msub> <mrow/> <mn>4</mn> </msub> </semantics></math> detector: with no coincidence cuts (blue circles) and in coincidence with energy 511 keV in at least one of the CdWO<math display="inline"><semantics> <msub> <mrow/> <mn>4</mn> </msub> </semantics></math> counters (red crosses). The data simulated by using the EGSnrc Monte Carlo code are drawn by dashed lines. (Inset) Distribution of the <math display="inline"><semantics> <msup> <mrow/> <mn>106</mn> </msup> </semantics></math>CdWO<math display="inline"><semantics> <msub> <mrow/> <mn>4</mn> </msub> </semantics></math> detector pulses start positions relative to the CdWO<math display="inline"><semantics> <msub> <mrow/> <mn>4</mn> </msub> </semantics></math> signals with the energy 511 keV.</p>
Full article ">Figure 6
<p>Energy spectra measured by the <math display="inline"><semantics> <msup> <mrow/> <mn>106</mn> </msup> </semantics></math>CdWO<math display="inline"><semantics> <msub> <mrow/> <mn>4</mn> </msub> </semantics></math> detector for 26,033 h in the low-background set-up without selection cuts (black dots), after selection of <math display="inline"><semantics> <mi>γ</mi> </semantics></math> and <math display="inline"><semantics> <mi>β</mi> </semantics></math> events by PSD using the mean time method (solid red line), the <math display="inline"><semantics> <mi>γ</mi> </semantics></math> and <math display="inline"><semantics> <mi>β</mi> </semantics></math> events in anti-coincidence with the CdWO<math display="inline"><semantics> <msub> <mrow/> <mn>4</mn> </msub> </semantics></math> counters (dashed black line), the <math display="inline"><semantics> <mi>γ</mi> </semantics></math> and <math display="inline"><semantics> <mi>β</mi> </semantics></math> events in coincidence with event(s) in at least one of the CdWO<math display="inline"><semantics> <msub> <mrow/> <mn>4</mn> </msub> </semantics></math> counters with the energy <math display="inline"><semantics> <mrow> <mi>E</mi> <mo>=</mo> <mn>511</mn> <mo>±</mo> <mn>2</mn> <mi>σ</mi> </mrow> </semantics></math> keV (green crosses), the <math display="inline"><semantics> <mi>γ</mi> </semantics></math>, and <math display="inline"><semantics> <mi>β</mi> </semantics></math> events in coincidence with events in both the CdWO<math display="inline"><semantics> <msub> <mrow/> <mn>4</mn> </msub> </semantics></math> counters with the energy <math display="inline"><semantics> <mrow> <mi>E</mi> <mo>=</mo> <mn>511</mn> <mo>±</mo> <mn>2</mn> <mi>σ</mi> </mrow> </semantics></math> keV (blue circles).</p>
Full article ">Figure 7
<p>Energy spectra of the <math display="inline"><semantics> <mi>γ</mi> </semantics></math> and <math display="inline"><semantics> <mi>β</mi> </semantics></math> events accumulated for 26,033 h by the <math display="inline"><semantics> <msup> <mrow/> <mn>106</mn> </msup> </semantics></math>CdWO<math display="inline"><semantics> <msub> <mrow/> <mn>4</mn> </msub> </semantics></math> scintillation detector in anti-coincidence with the CdWO<math display="inline"><semantics> <msub> <mrow/> <mn>4</mn> </msub> </semantics></math> counters (<b>a</b>) and in coincidence with the 511 keV annihilation <math display="inline"><semantics> <mi>γ</mi> </semantics></math> quanta in at least one of the CdWO<math display="inline"><semantics> <msub> <mrow/> <mn>4</mn> </msub> </semantics></math> counters (<b>b</b>) (points) together with the background model (red line). The main components of the background are shown: the distributions of internal contaminations (“int <math display="inline"><semantics> <msup> <mrow/> <mn>40</mn> </msup> </semantics></math>K”, “int <math display="inline"><semantics> <msup> <mrow/> <mn>232</mn> </msup> </semantics></math>Th”, and “int <math display="inline"><semantics> <msup> <mrow/> <mn>238</mn> </msup> </semantics></math>U”) and external <math display="inline"><semantics> <mi>γ</mi> </semantics></math> quanta (“ext <math display="inline"><semantics> <mi>γ</mi> </semantics></math>”), residual <math display="inline"><semantics> <mi>α</mi> </semantics></math> particles in the <math display="inline"><semantics> <msup> <mrow/> <mn>106</mn> </msup> </semantics></math>CdWO<math display="inline"><semantics> <msub> <mrow/> <mn>4</mn> </msub> </semantics></math> crystal (<math display="inline"><semantics> <mi>α</mi> </semantics></math>), cosmogenic <math display="inline"><semantics> <msup> <mrow/> <mn>56</mn> </msup> </semantics></math>Co and <math display="inline"><semantics> <msup> <mrow/> <mn>60</mn> </msup> </semantics></math>Co in the copper shield details, and the <math display="inline"><semantics> <mrow> <mn>2</mn> <mi>ν</mi> <mn>2</mn> <mi>β</mi> </mrow> </semantics></math> decay of <math display="inline"><semantics> <msup> <mrow/> <mn>116</mn> </msup> </semantics></math>Cd. The excluded distributions of the <math display="inline"><semantics> <mrow> <mn>0</mn> <mi>ν</mi> <mn>2</mn> </mrow> </semantics></math>EC decay of <math display="inline"><semantics> <msup> <mrow/> <mn>106</mn> </msup> </semantics></math>Cd to the ground state of <math display="inline"><semantics> <msup> <mrow/> <mn>106</mn> </msup> </semantics></math>Pd with the half-life <math display="inline"><semantics> <mrow> <msub> <mi>T</mi> <mrow> <mn>1</mn> <mo>/</mo> <mn>2</mn> </mrow> </msub> <mo>=</mo> <mn>6.8</mn> <mo>×</mo> <msup> <mn>10</mn> <mn>20</mn> </msup> </mrow> </semantics></math> yr are shown by red solid line.</p>
Full article ">Figure 8
<p>Energy spectrum of the <math display="inline"><semantics> <mi>γ</mi> </semantics></math> and <math display="inline"><semantics> <mi>β</mi> </semantics></math> events measured for 26,033 h by the <math display="inline"><semantics> <msup> <mrow/> <mn>106</mn> </msup> </semantics></math>CdWO<math display="inline"><semantics> <msub> <mrow/> <mn>4</mn> </msub> </semantics></math> detector in coincidence with events in at least one of the CdWO<math display="inline"><semantics> <msub> <mrow/> <mn>4</mn> </msub> </semantics></math> counters with energy <math display="inline"><semantics> <mrow> <mi>E</mi> <mo>=</mo> <mn>511</mn> <mo>±</mo> <mn>2</mn> <mi>σ</mi> </mrow> </semantics></math> keV (crosses). The solid red line shows the fit of the data by the background model (see <a href="#sec3dot1-universe-06-00182" class="html-sec">Section 3.1</a>). Excluded distributions of <math display="inline"><semantics> <mrow> <mn>0</mn> <mi>ν</mi> </mrow> </semantics></math>EC<math display="inline"><semantics> <msup> <mi>β</mi> <mo>+</mo> </msup> </semantics></math> and <math display="inline"><semantics> <mrow> <mn>0</mn> <mi>ν</mi> <mn>2</mn> <msup> <mi>β</mi> <mo>+</mo> </msup> </mrow> </semantics></math> decays of <math display="inline"><semantics> <msup> <mrow/> <mn>106</mn> </msup> </semantics></math>Cd to the ground state of <math display="inline"><semantics> <msup> <mrow/> <mn>106</mn> </msup> </semantics></math>Pd with the half-lives <math display="inline"><semantics> <mrow> <msub> <mi>T</mi> <mrow> <mn>1</mn> <mo>/</mo> <mn>2</mn> </mrow> </msub> <mo>=</mo> <mn>1.4</mn> <mo>×</mo> <msup> <mn>10</mn> <mn>22</mn> </msup> </mrow> </semantics></math> yr and <math display="inline"><semantics> <mrow> <msub> <mi>T</mi> <mrow> <mn>1</mn> <mo>/</mo> <mn>2</mn> </mrow> </msub> <mo>=</mo> <mn>5.9</mn> <mo>×</mo> <msup> <mn>10</mn> <mn>21</mn> </msup> </mrow> </semantics></math> yr, respectively, are shown.</p>
Full article ">Figure 9
<p>Energy spectrum of <math display="inline"><semantics> <mi>γ</mi> </semantics></math> and <math display="inline"><semantics> <mi>β</mi> </semantics></math> events measured by the <math display="inline"><semantics> <msup> <mrow/> <mn>106</mn> </msup> </semantics></math>CdWO<math display="inline"><semantics> <msub> <mrow/> <mn>4</mn> </msub> </semantics></math> detector for 26,033 h in coincidence with event(s) in at least one of the CdWO<math display="inline"><semantics> <msub> <mrow/> <mn>4</mn> </msub> </semantics></math> counters in the energy interval <math display="inline"><semantics> <mrow> <mo>(</mo> <mn>1046</mn> <mo>−</mo> <mn>1.5</mn> <mi>σ</mi> </mrow> </semantics></math>) − (<math display="inline"><semantics> <mrow> <mn>1160</mn> <mo>+</mo> <mn>1.7</mn> <mi>σ</mi> </mrow> </semantics></math>) keV (circles) and its fit by the model of background (red line). The excluded distribution of a possible resonant <math display="inline"><semantics> <mrow> <mn>0</mn> <mi>ν</mi> <mn>2</mn> </mrow> </semantics></math>EC decay of <math display="inline"><semantics> <msup> <mrow/> <mn>106</mn> </msup> </semantics></math>Cd to the 2718 keV excited level of <math display="inline"><semantics> <msup> <mrow/> <mn>106</mn> </msup> </semantics></math>Pd with the half-life <math display="inline"><semantics> <mrow> <msub> <mi>T</mi> <mrow> <mn>1</mn> <mo>/</mo> <mn>2</mn> </mrow> </msub> <mo>=</mo> <mn>2.9</mn> <mo>×</mo> <msup> <mn>10</mn> <mn>21</mn> </msup> </mrow> </semantics></math> yr is shown.</p>
Full article ">Figure 10
<p>Energy spectrum of <math display="inline"><semantics> <mi>γ</mi> </semantics></math> and <math display="inline"><semantics> <mi>β</mi> </semantics></math> events measured by the <math display="inline"><semantics> <msup> <mrow/> <mn>106</mn> </msup> </semantics></math>CdWO<math display="inline"><semantics> <msub> <mrow/> <mn>4</mn> </msub> </semantics></math> detector for 26,033 h in coincidence with 511 keV annihilation <math display="inline"><semantics> <mi>γ</mi> </semantics></math> quanta in both of the CdWO<math display="inline"><semantics> <msub> <mrow/> <mn>4</mn> </msub> </semantics></math> counters (circles). The expected background, which was built on the basis of the fit presented in <a href="#universe-06-00182-f007" class="html-fig">Figure 7</a>, is shown by a red solid line. The excluded distribution of the <math display="inline"><semantics> <mrow> <mn>2</mn> <mi>ν</mi> </mrow> </semantics></math>EC<math display="inline"><semantics> <msup> <mi>β</mi> <mo>+</mo> </msup> </semantics></math> decay of <math display="inline"><semantics> <msup> <mrow/> <mn>106</mn> </msup> </semantics></math>Cd to the ground state of <math display="inline"><semantics> <msup> <mrow/> <mn>106</mn> </msup> </semantics></math>Pd with the half-life <math display="inline"><semantics> <mrow> <msub> <mi>T</mi> <mrow> <mn>1</mn> <mo>/</mo> <mn>2</mn> </mrow> </msub> <mo>=</mo> <mn>2.1</mn> <mo>×</mo> <msup> <mn>10</mn> <mn>21</mn> </msup> </mrow> </semantics></math> yr is shown.</p>
Full article ">
35 pages, 716 KiB  
Review
Quantum Vacuum Effects in Braneworlds on AdS Bulk
by Aram A. Saharian
Universe 2020, 6(10), 181; https://doi.org/10.3390/universe6100181 - 15 Oct 2020
Cited by 6 | Viewed by 2087
Abstract
We review the results of investigations for brane-induced effects on the local properties of quantum vacuum in background of AdS spacetime. Two geometries are considered: a brane parallel to the AdS boundary and a brane intersecting the AdS boundary. For both cases, the [...] Read more.
We review the results of investigations for brane-induced effects on the local properties of quantum vacuum in background of AdS spacetime. Two geometries are considered: a brane parallel to the AdS boundary and a brane intersecting the AdS boundary. For both cases, the contribution in the vacuum expectation value (VEV) of the energy–momentum tensor is separated explicitly and its behavior in various asymptotic regions of the parameters is studied. It is shown that the influence of the gravitational field on the local properties of the quantum vacuum is essential at distance from the brane larger than the AdS curvature radius. In the geometry with a brane parallel to the AdS boundary, the VEV of the energy–momentum tensor is considered for scalar field with the Robin boundary condition, for Dirac field with the bag boundary condition and for the electromagnetic field. In the latter case, two types of boundary conditions are discussed. The first one is a generalization of the perfect conductor boundary condition and the second one corresponds to the confining boundary condition used in QCD for gluons. For the geometry of a brane intersecting the AdS boundary, the case of a scalar field is considered. The corresponding energy–momentum tensor, apart from the diagonal components, has nonzero off-diagonal component. As a consequence of the latter, in addition to the normal component, the Casimir force acquires a component parallel to the brane. Full article
Show Figures

Figure 1

Figure 1
<p>The brane-induced contributions in the VEVs of the energy density and the normal stress as functions: of <math display="inline"><semantics> <mrow> <mi>z</mi> <mo>/</mo> <msub> <mi>z</mi> <mn>0</mn> </msub> </mrow> </semantics></math> (<b>left</b>); and of <math display="inline"><semantics> <mrow> <mi>m</mi> <mi>a</mi> </mrow> </semantics></math> (<b>right</b>). For the left panel, we take <math display="inline"><semantics> <mrow> <mi>m</mi> <mi>a</mi> <mo>=</mo> <mn>1</mn> </mrow> </semantics></math> and for the right panel <math display="inline"><semantics> <mrow> <mi>z</mi> <mo>/</mo> <msub> <mi>z</mi> <mn>0</mn> </msub> <mo>=</mo> <mn>2</mn> </mrow> </semantics></math>. The full and dashed curves correspond to <math display="inline"><semantics> <mrow> <mi>D</mi> <mo>=</mo> <mn>3</mn> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <mi>D</mi> <mo>=</mo> <mn>4</mn> </mrow> </semantics></math>.</p>
Full article ">Figure 2
<p>The brane-induced contributions in the VEVs of the energy density and the normal stress for <math display="inline"><semantics> <mrow> <mi>D</mi> <mo>=</mo> <mn>4</mn> </mrow> </semantics></math> minimally coupled scalar field and for: (<b>left</b>) <math display="inline"><semantics> <mrow> <mi>m</mi> <mi>a</mi> <mo>=</mo> <mn>1</mn> </mrow> </semantics></math>; and (<b>right</b>) <math display="inline"><semantics> <mrow> <mi>z</mi> <mo>/</mo> <msub> <mi>z</mi> <mn>0</mn> </msub> <mo>=</mo> <mn>2</mn> </mrow> </semantics></math>. The full and dashed curves on the right panel correspond to the energy density and normal stress, respectively (for the boundary conditions chosen, see the text).</p>
Full article ">Figure 3
<p>The same as in <a href="#universe-06-00181-f002" class="html-fig">Figure 2</a> for <math display="inline"><semantics> <mrow> <mi>D</mi> <mo>=</mo> <mn>4</mn> </mrow> </semantics></math> conformally coupled scalar field: (<b>left</b>) <math display="inline"><semantics> <mrow> <mi>m</mi> <mi>a</mi> <mo>=</mo> <mn>2</mn> </mrow> </semantics></math>; and (<b>right</b>) <math display="inline"><semantics> <mrow> <mi>z</mi> <mo>/</mo> <msub> <mi>z</mi> <mn>0</mn> </msub> <mo>=</mo> <mn>2</mn> </mrow> </semantics></math>.</p>
Full article ">Figure 4
<p>The brane-induced VEVs of the energy density and the normal stress as functions of <math display="inline"><semantics> <mrow> <mi>z</mi> <mo>/</mo> <msub> <mi>z</mi> <mn>0</mn> </msub> </mrow> </semantics></math> for: <math display="inline"><semantics> <mrow> <mi>D</mi> <mo>=</mo> <mn>4</mn> </mrow> </semantics></math> electromagnetic field (<b>left</b>); and <math display="inline"><semantics> <mrow> <mi>D</mi> <mo>=</mo> <mn>5</mn> </mrow> </semantics></math> electromagnetic field (<b>right</b>). The full and dashed curves correspond to the conditions (<a href="#FD31-universe-06-00181" class="html-disp-formula">31</a>) and (<a href="#FD32-universe-06-00181" class="html-disp-formula">32</a>).</p>
Full article ">Figure 5
<p>The same as in <a href="#universe-06-00181-f001" class="html-fig">Figure 1</a> for the L-region. The left and right panels are plotted for <math display="inline"><semantics> <mrow> <mi>m</mi> <mi>a</mi> <mo>=</mo> <mn>1</mn> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <mi>z</mi> <mo>/</mo> <msub> <mi>z</mi> <mn>0</mn> </msub> <mo>=</mo> <mn>0.6</mn> </mrow> </semantics></math>, respectively.</p>
Full article ">Figure 6
<p>The same as in <a href="#universe-06-00181-f002" class="html-fig">Figure 2</a> for a minimally coupled scalar field in the L-region. The left and right panels are plotted for <math display="inline"><semantics> <mrow> <mi>m</mi> <mi>a</mi> <mo>=</mo> <mn>1</mn> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <mi>z</mi> <mo>/</mo> <msub> <mi>z</mi> <mn>0</mn> </msub> <mo>=</mo> <mn>0.6</mn> </mrow> </semantics></math>, respectively.</p>
Full article ">Figure 7
<p>The brane-induced VEVs of the energy density and the normal stress in the L-region as functions of <math display="inline"><semantics> <mrow> <mi>z</mi> <mo>/</mo> <msub> <mi>z</mi> <mn>0</mn> </msub> </mrow> </semantics></math> for: <math display="inline"><semantics> <mrow> <mi>D</mi> <mo>=</mo> <mn>4</mn> </mrow> </semantics></math> electromagnetic field (<b>left</b>); and <math display="inline"><semantics> <mrow> <mi>D</mi> <mo>=</mo> <mn>5</mn> </mrow> </semantics></math> electromagnetic field (<b>right</b>). The full and dashed curves correspond to the conditions (<a href="#FD31-universe-06-00181" class="html-disp-formula">31</a>) and (<a href="#FD32-universe-06-00181" class="html-disp-formula">32</a>).</p>
Full article ">
25 pages, 421 KiB  
Article
An Alternative to Dark Matter and Dark Energy: Scale-Dependent Gravity in Superfluid Vacuum Theory
by Konstantin G. Zloshchastiev
Universe 2020, 6(10), 180; https://doi.org/10.3390/universe6100180 - 15 Oct 2020
Cited by 16 | Viewed by 2933
Abstract
We derive an effective gravitational potential, induced by the quantum wavefunction of a physical vacuum of a self-gravitating configuration, while the vacuum itself is viewed as the superfluid described by the logarithmic quantum wave equation. We determine that gravity has a multiple-scale pattern, [...] Read more.
We derive an effective gravitational potential, induced by the quantum wavefunction of a physical vacuum of a self-gravitating configuration, while the vacuum itself is viewed as the superfluid described by the logarithmic quantum wave equation. We determine that gravity has a multiple-scale pattern, to such an extent that one can distinguish sub-Newtonian, Newtonian, galactic, extragalactic and cosmological terms. The last of these dominates at the largest length scale of the model, where superfluid vacuum induces an asymptotically Friedmann–Lemaître–Robertson–Walker-type spacetime, which provides an explanation for the accelerating expansion of the Universe. The model describes different types of expansion mechanisms, which could explain the discrepancy between measurements of the Hubble constant using different methods. On a galactic scale, our model explains the non-Keplerian behaviour of galactic rotation curves, and also why their profiles can vary depending on the galaxy. It also makes a number of predictions about the behaviour of gravity at larger galactic and extragalactic scales. We demonstrate how the behaviour of rotation curves varies with distance from a gravitating center, growing from an inner galactic scale towards a metagalactic scale: A squared orbital velocity’s profile crosses over from Keplerian to flat, and then to non-flat. The asymptotic non-flat regime is thus expected to be seen in the outer regions of large spiral galaxies. Full article
17 pages, 414 KiB  
Review
The Higgs Mechanism and Spacetime Symmetry
by Irina Dymnikova
Universe 2020, 6(10), 179; https://doi.org/10.3390/universe6100179 - 15 Oct 2020
Cited by 3 | Viewed by 1962
Abstract
In this review, we summarize the results of the analysis of the inherent relation between the Higgs mechanism and spacetime symmetry provided by generic incorporation of the de Sitter vacuum as a false vacuum with the equation of state p=ρ [...] Read more.
In this review, we summarize the results of the analysis of the inherent relation between the Higgs mechanism and spacetime symmetry provided by generic incorporation of the de Sitter vacuum as a false vacuum with the equation of state p=ρ. This relation has been verified by the application for the interpretation of the experimental results on the negative mass squares for neutrinos, and of the appearance of the minimal length in the annihilation reaction e+eγγ(γ). An additional verification is expected for the dark matter candidates with the interior de Sitter vacuum of the GUT scale, whose predicted observational signatures include the induced proton decay in the matter of an underground detector, such as IceCUBE. Full article
Show Figures

Figure 1

Figure 1
<p>A minimum in the <math display="inline"><semantics> <msup> <mi>χ</mi> <mn>2</mn> </msup> </semantics></math> fit with <math display="inline"><semantics> <mrow> <mi>P</mi> <mo>=</mo> <mn>1</mn> <mo>/</mo> <msup> <mo>Λ</mo> <mn>4</mn> </msup> </mrow> </semantics></math>.</p>
Full article ">Figure 2
<p>(<b>Left</b>) Typical behavior of a metric function <math display="inline"><semantics> <mrow> <mi>g</mi> <mo>(</mo> <mi>r</mi> <mo>)</mo> </mrow> </semantics></math> for a spherical lump. (<b>Right</b>) Radius <math display="inline"><semantics> <msub> <mi>r</mi> <mi>c</mi> </msub> </semantics></math> of the surface of zero gravity and <math display="inline"><semantics> <msub> <mi>r</mi> <mi>s</mi> </msub> </semantics></math> of the surface of zero curvature.</p>
Full article ">Figure 3
<p>Typical behavior of the metric function <math display="inline"><semantics> <mrow> <mi>g</mi> <mo>(</mo> <mi>r</mi> <mo>)</mo> </mrow> </semantics></math> for the case of two vacuum scales.</p>
Full article ">Figure 4
<p>Generic behavior of temperature (<b>left</b>) and of specific heat (<b>right</b>) of the black hole event horizon.</p>
Full article ">
17 pages, 354 KiB  
Article
Matter Accretion Versus Semiclassical Bounce in Schwarzschild Interior
by Kirill Bronnikov, Sergey Bolokhov and Milena Skvortsova
Universe 2020, 6(10), 178; https://doi.org/10.3390/universe6100178 - 14 Oct 2020
Cited by 7 | Viewed by 1869
Abstract
We discuss the properties of the previously constructed model of a Schwarzschild black hole interior where the singularity is replaced by a regular bounce, ultimately leading to a white hole. We assume that the black hole is young enough so that the Hawking [...] Read more.
We discuss the properties of the previously constructed model of a Schwarzschild black hole interior where the singularity is replaced by a regular bounce, ultimately leading to a white hole. We assume that the black hole is young enough so that the Hawking radiation may be neglected. The model is semiclassical in nature and uses as a source of gravity the effective stress-energy tensor (SET) corresponding to vacuum polarization of quantum fields, and the minimum spherical radius is a few orders of magnitude larger than the Planck length, so that the effects of quantum gravity should still be negligible. We estimate the other quantum contributions to the effective SET, caused by a nontrivial topology of spatial sections and particle production from vacuum due to a nonstationary gravitational field and show that these contributions are negligibly small as compared to the SET due to vacuum polarization. The same is shown for such classical phenomena as accretion of different kinds of matter to the black hole and its further motion to the would-be singularity. Thus, in a clear sense, our model of a semiclassical bounce instead of a Schwarzschild singularity is stable under both quantum and classical perturbations. Full article
17 pages, 864 KiB  
Article
Relativistic Effects in Orbital Motion of the S-Stars at the Galactic Center
by Rustam Gainutdinov and Yurij Baryshev
Universe 2020, 6(10), 177; https://doi.org/10.3390/universe6100177 - 14 Oct 2020
Cited by 8 | Viewed by 2362
Abstract
The Galactic Center star cluster, known as S-stars, is a perfect source of relativistic phenomena observations. The stars are located in the strong field of relativistic compact object Sgr A* and are moving with very high velocities at pericenters of their orbits. In [...] Read more.
The Galactic Center star cluster, known as S-stars, is a perfect source of relativistic phenomena observations. The stars are located in the strong field of relativistic compact object Sgr A* and are moving with very high velocities at pericenters of their orbits. In this work we consider motion of several S-stars by using the Parameterized Post-Newtonian (PPN) formalism of General Relativity (GR) and Post-Newtonian (PN) equations of motion of the Feynman’s quantum-field gravity theory, where the positive energy density of the gravity field can be measured via the relativistic pericenter shift. The PPN parameters β and γ are constrained using the S-stars data. The positive value of the Tg00 component of the gravity energy–momentum tensor is confirmed for condition of S-stars motion. Full article
Show Figures

Figure 1

Figure 1
<p>The posterior distribution of <math display="inline"><semantics> <msub> <mi>β</mi> <mi>PPN</mi> </msub> </semantics></math> and <math display="inline"><semantics> <msub> <mi>γ</mi> <mi>PPN</mi> </msub> </semantics></math>.</p>
Full article ">Figure 2
<p>The posterior distribution of <math display="inline"><semantics> <msub> <mi>β</mi> <mi>PPN</mi> </msub> </semantics></math> and <math display="inline"><semantics> <msub> <mi>γ</mi> <mi>PPN</mi> </msub> </semantics></math>.</p>
Full article ">Figure 3
<p>The best-fit Parameterized Post-Newtonian (PPN) orbits of S2 (<b>blue</b>), S38 (<b>orange</b>), and S55 (<b>green</b>).</p>
Full article ">Figure 4
<p>The RV plot of best-fit PPN orbit of S2.</p>
Full article ">Figure 5
<p>The RV plot of best-fit PPN orbit of S38.</p>
Full article ">Figure 6
<p>The RV plot of best-fit PPN orbit of S55.</p>
Full article ">Figure A1
<p>The posterior distribution of the orbital parameters of the S2 star. The initial position vector components <math display="inline"><semantics> <mrow> <mo>(</mo> <msub> <mi>x</mi> <mn>0</mn> </msub> <mo>,</mo> <msub> <mi>y</mi> <mn>0</mn> </msub> <mo>)</mo> </mrow> </semantics></math> are given in the units of the gravitational radius corresponding to the mass of <math display="inline"><semantics> <mrow> <msup> <mn>10</mn> <mn>6</mn> </msup> <mspace width="0.166667em"/> <msub> <mi>M</mi> <mo>⊙</mo> </msub> </mrow> </semantics></math> (which is 1,476,625 km). The initial velocity components <math display="inline"><semantics> <mrow> <mo>(</mo> <msub> <mover accent="true"> <mi>x</mi> <mo>˙</mo> </mover> <mn>0</mn> </msub> <mo>,</mo> <msub> <mover accent="true"> <mi>y</mi> <mo>˙</mo> </mover> <mn>0</mn> </msub> <mo>)</mo> </mrow> </semantics></math> are given in <math display="inline"><semantics> <mrow> <mi>km</mi> <mspace width="0.166667em"/> <msup> <mi mathvariant="normal">s</mi> <mrow> <mo>−</mo> <mn>1</mn> </mrow> </msup> </mrow> </semantics></math>. The inclination <span class="html-italic">i</span> and the longitude of the ascending node <math display="inline"><semantics> <mi mathvariant="sans-serif">Ω</mi> </semantics></math> are given in degrees.</p>
Full article ">Figure A2
<p>The posterior distribution of the orbital parameters of the S38 star. The units are the same as in <a href="#universe-06-00177-f0A1" class="html-fig">Figure A1</a>.</p>
Full article ">Figure A3
<p>The posterior distribution of the orbital parameters of the S55 star. The units are the same as in <a href="#universe-06-00177-f0A1" class="html-fig">Figure A1</a>.</p>
Full article ">Figure A4
<p>The posterior distribution of the position of Sgr A* and reference frames offsets. All values are given in the units of mass.</p>
Full article ">
8 pages, 249 KiB  
Article
The Functional Schrödinger Equation in the Semiclassical Limit of Quantum Gravity with a Gaussian Clock Field
by Marcello Rotondo
Universe 2020, 6(10), 176; https://doi.org/10.3390/universe6100176 - 13 Oct 2020
Cited by 5 | Viewed by 1882
Abstract
We derive the functional Schrödinger equation for quantum fields in curved spacetime in the semiclassical limit of quantum geometrodynamics with a Gaussian incoherent dust acting as a clock field. We perform the semiclassical limit using a WKB-type expansion of the wave functional in [...] Read more.
We derive the functional Schrödinger equation for quantum fields in curved spacetime in the semiclassical limit of quantum geometrodynamics with a Gaussian incoherent dust acting as a clock field. We perform the semiclassical limit using a WKB-type expansion of the wave functional in powers of the squared Planck mass. The functional Schrödinger equation that we obtain exhibits a functional time derivative that completes the usual definition of WKB time for curved spacetime, and the usual Schrödinger-type evolution is recovered in Minkowski spacetime. Full article
(This article belongs to the Special Issue Universe: 5th Anniversary)
18 pages, 398 KiB  
Article
A Test of Gravitational Theories Including Torsion with the BepiColombo Radio Science Experiment
by Giulia Schettino, Daniele Serra, Giacomo Tommei and Vincenzo Di Pierri
Universe 2020, 6(10), 175; https://doi.org/10.3390/universe6100175 - 12 Oct 2020
Cited by 4 | Viewed by 1893
Abstract
Within the framework of the relativity experiment of the ESA/JAXA BepiColombo mission to Mercury, which was launched at the end of 2018, we describe how a test of alternative theories of gravity, including torsion can be set up. Following March et al. (2011), [...] Read more.
Within the framework of the relativity experiment of the ESA/JAXA BepiColombo mission to Mercury, which was launched at the end of 2018, we describe how a test of alternative theories of gravity, including torsion can be set up. Following March et al. (2011), the effects of a non-vanishing spacetime torsion have been parameterized by three torsion parameters, t1, t2, and t3. These parameters can be estimated within a global least squares fit, together with a number of parameters of interest, such as post-Newtonian parameters γ and β, and the orbits of Mercury and the Earth. The simulations have been performed by means of the ORBIT14 orbit determination software, which was developed by the Celestial Mechanics Group of the University of Pisa for the analysis of the BepiColombo radio science experiment. We claim that the torsion parameters can be determined by means of the relativity experiment of BepiColombo at the level of some parts in 104, which is a significant result for constraining gravitational theories that allow spacetime torsion. Full article
(This article belongs to the Special Issue Universe: 5th Anniversary)
Show Figures

Figure 1

Figure 1
<p>Absolute value of the correlations between the estimated parameters in the case of the reference simulation. The parameters are labeled as in <a href="#universe-06-00175-t003" class="html-table">Table 3</a> and <a href="#universe-06-00175-t004" class="html-table">Table 4</a>.</p>
Full article ">Figure 2
<p>Absolute value of the correlations between the estimated parameters in the case of simulation (a). The parameters are labeled as in <a href="#universe-06-00175-t003" class="html-table">Table 3</a> and <a href="#universe-06-00175-t004" class="html-table">Table 4</a>.</p>
Full article ">Figure 3
<p>Absolute value of the correlations between the estimated parameters in the case of simulation (b). The parameters are labeled as in <a href="#universe-06-00175-t003" class="html-table">Table 3</a> and <a href="#universe-06-00175-t004" class="html-table">Table 4</a>.</p>
Full article ">
5 pages, 262 KiB  
Communication
Energy Conservation Law in the Closed Universe and a Concept of the Proper Time
by Natalia Gorobey, Alexander Lukyanenko and Pavel Drozdov
Universe 2020, 6(10), 174; https://doi.org/10.3390/universe6100174 - 12 Oct 2020
Cited by 2 | Viewed by 2019
Abstract
To define time in the homogeneous anisotropic Bianchi-IX model of the universe, we propose a classical equation of motion of the proper time of the universe as an additional gauge condition. This equation is the law of conservation of energy. As a result, [...] Read more.
To define time in the homogeneous anisotropic Bianchi-IX model of the universe, we propose a classical equation of motion of the proper time of the universe as an additional gauge condition. This equation is the law of conservation of energy. As a result, a new parameter, called a “mass” of the universe, appears. This parameter is added to the anisotropy energy and regarded as an observed quantity. The “mass” of the universe is decisive when it comes to the dynamics of its origin. Full article
Show Figures

Figure 1

Figure 1
<p>The graph of the solutions determined.</p>
Full article ">
18 pages, 358 KiB  
Article
Energy–Momentum Pseudotensor and Superpotential for Generally Covariant Theories of Gravity of General Form
by Roman Ilin and Sergey Paston
Universe 2020, 6(10), 173; https://doi.org/10.3390/universe6100173 - 11 Oct 2020
Cited by 3 | Viewed by 2004
Abstract
The current paper is devoted to the investigation of the general form of the energy–momentum pseudotensor (pEMT) and the corresponding superpotential for the wide class of theories. The only requirement for such a theory is the general covariance of the action without any [...] Read more.
The current paper is devoted to the investigation of the general form of the energy–momentum pseudotensor (pEMT) and the corresponding superpotential for the wide class of theories. The only requirement for such a theory is the general covariance of the action without any restrictions on the order of derivatives of the independent variables in it or their transformation laws. As a result of the generalized Noether procedure, we obtain a recurrent chain of the equations, which allows one to express canonical pEMT as a divergence of the superpotential. The explicit expression for this superpotential is also given. We discuss the structure of the obtained expressions and the conditions for the derived pEMT conservation laws to be satisfied independently (fully or partially) by the equations of motion. Deformations of the superpotential form for theories with a change in the independent variables in action are also considered. We apply these results to some interesting particular cases: general relativity and its modifications, particularly mimetic gravity and Regge–Teitelboim embedding gravity. Full article
19 pages, 508 KiB  
Article
Hybrid Metric-Palatini Gravity: Regular Stringlike Configurations
by Kirill Bronnikov, Sergey Bolokhov and Milena Skvortsova
Universe 2020, 6(10), 172; https://doi.org/10.3390/universe6100172 - 11 Oct 2020
Cited by 9 | Viewed by 2473
Abstract
We discuss static, cylindrically symmetric vacuum solutions of hybrid metric-Palatini gravity (HMPG), a recently proposed theory that has been shown to successfully pass the local observational tests and produce a certain progress in cosmology. We use HMPG in its well-known scalar-tensor representation. The [...] Read more.
We discuss static, cylindrically symmetric vacuum solutions of hybrid metric-Palatini gravity (HMPG), a recently proposed theory that has been shown to successfully pass the local observational tests and produce a certain progress in cosmology. We use HMPG in its well-known scalar-tensor representation. The latter coincides with general relativity containing, as a source of gravity, a conformally coupled scalar field ϕ and a self-interaction potential V(ϕ). The ϕ field can be canonical or phantom, and, accordingly, the theory splits into canonical and phantom sectors. We seek solitonic (stringlike) vacuum solutions of HMPG, that is, completely regular solutions with Minkowski metric far from the symmetry axis, with a possible angular deficit. A transition of the theory to the Einstein conformal frame is used as a tool, and many of the results apply to the general Bergmann-Wagoner-Nordtvedt class of scalar-tensor theories as well as f(R) theories of gravity. One of these results is a one-to-one correspondence between stringlike solutions in the Einstein and Jordan frames if the conformal factor that connects them is everywhere regular. An algorithm for the construction of stringlike solutions in HMPG and scalar-tensor theories is suggested, and some examples of such solutions are obtained and discussed. Full article
Show Figures

Figure 1

Figure 1
<p>Plots of <math display="inline"><semantics> <mrow> <mi>ψ</mi> <mo>(</mo> <mi>x</mi> <mo>)</mo> </mrow> </semantics></math> for <math display="inline"><semantics> <mrow> <mi>H</mi> <mo>=</mo> <mn>1</mn> <mo>/</mo> <mn>2</mn> </mrow> </semantics></math> (the canonical sector) and <span class="html-italic">N</span> = 1, 0.9, 0.8.</p>
Full article ">Figure 2
<p>The potential <math display="inline"><semantics> <mrow> <mi>U</mi> <mo>(</mo> <mi>r</mi> <mo>)</mo> </mrow> </semantics></math> in the Einstein frame for <math display="inline"><semantics> <mrow> <mi>H</mi> <mo>=</mo> <mn>1</mn> <mo>/</mo> <mn>2</mn> </mrow> </semantics></math> and <span class="html-italic">N</span> = 1, 0.9, 0.8.</p>
Full article ">Figure 3
<p>The potential <math display="inline"><semantics> <mrow> <mi>V</mi> <mo>(</mo> <msub> <mi>r</mi> <msub> <mrow/> <mi mathvariant="normal">J</mi> </msub> </msub> <mo>)</mo> </mrow> </semantics></math> in the Jordan frame for <math display="inline"><semantics> <mrow> <mi>H</mi> <mo>=</mo> <mn>1</mn> <mo>/</mo> <mn>2</mn> </mrow> </semantics></math> and <span class="html-italic">N</span> = 1, 0.9, 0.8.</p>
Full article ">Figure 4
<p>The scalar field <math display="inline"><semantics> <mrow> <mi>ψ</mi> <mo>(</mo> <mi>x</mi> <mo>)</mo> </mrow> </semantics></math> for <math display="inline"><semantics> <mrow> <mi>H</mi> <mo>=</mo> <mo>−</mo> <mn>1</mn> <mo>/</mo> <mn>2</mn> </mrow> </semantics></math> (the phantom sector) and <span class="html-italic">N</span> = 1, 0.9, 0.8.</p>
Full article ">Figure 5
<p>The potential <math display="inline"><semantics> <mrow> <mi>U</mi> <mo>(</mo> <mi>r</mi> <mo>)</mo> </mrow> </semantics></math> in the Einstein frame for <math display="inline"><semantics> <mrow> <mi>H</mi> <mo>=</mo> <mo>−</mo> <mn>1</mn> <mo>/</mo> <mn>2</mn> </mrow> </semantics></math> (phantom sector) and <span class="html-italic">N</span> = 1, 0.9, 0.8.</p>
Full article ">Figure 6
<p>The potential <math display="inline"><semantics> <mrow> <mi>V</mi> <mo>(</mo> <msub> <mi>r</mi> <mi mathvariant="normal">J</mi> </msub> <mo>)</mo> </mrow> </semantics></math> in the Jordan frame for <math display="inline"><semantics> <mrow> <mi>H</mi> <mo>=</mo> <mo>−</mo> <mn>1</mn> <mo>/</mo> <mn>2</mn> </mrow> </semantics></math> (phantom sector) and <span class="html-italic">N</span> = 1, 0.9, 0.8.</p>
Full article ">
17 pages, 329 KiB  
Article
Singularity Theorems in the Effective Field Theory for Quantum Gravity at Second Order in Curvature
by Folkert Kuipers and Xavier Calmet
Universe 2020, 6(10), 171; https://doi.org/10.3390/universe6100171 - 10 Oct 2020
Cited by 8 | Viewed by 1913
Abstract
In this paper, we discuss singularity theorems in quantum gravity using effective field theory methods. To second order in curvature, the effective field theory contains two new degrees of freedom which have important implications for the derivation of these theorems: a massive spin-2 [...] Read more.
In this paper, we discuss singularity theorems in quantum gravity using effective field theory methods. To second order in curvature, the effective field theory contains two new degrees of freedom which have important implications for the derivation of these theorems: a massive spin-2 field and a massive spin-0 field. Using an explicit mapping of this theory from the Jordan frame to the Einstein frame, we show that the massive spin-2 field violates the null energy condition, while the massive spin-0 field satisfies the null energy condition, but may violate the strong energy condition. Due to this violation, classical singularity theorems are no longer applicable, indicating that singularities can be avoided, if the leading quantum corrections are taken into account. Full article
(This article belongs to the Special Issue Quantum Effects in General Relativity)
6 pages, 250 KiB  
Communication
How Extra Symmetries Affect Solutions in General Relativity
by Aroonkumar Beesham and Fisokuhle Makhanya
Universe 2020, 6(10), 170; https://doi.org/10.3390/universe6100170 - 9 Oct 2020
Cited by 4 | Viewed by 1916
Abstract
To get exact solutions to Einstein’s field equations in general relativity, one has to impose some symmetry requirements. Otherwise, the equations are too difficult to solve. However, sometimes, the imposition of too much extra symmetry can cause the problem to become somewhat trivial. [...] Read more.
To get exact solutions to Einstein’s field equations in general relativity, one has to impose some symmetry requirements. Otherwise, the equations are too difficult to solve. However, sometimes, the imposition of too much extra symmetry can cause the problem to become somewhat trivial. As a typical example to illustrate this, the effects of conharmonic flatness are studied and applied to Friedmann–Lemaitre–Robertson–Walker spacetime. Hence, we need to impose some symmetry to make the problem tractable, but not too much so as to make it too simple. Full article
Show Figures

Graphical abstract

Graphical abstract
Full article ">
13 pages, 814 KiB  
Communication
On the Energy of a Non-Singular Black Hole Solution Satisfying the Weak Energy Condition
by Irina Radinschi, Theophanes Grammenos, Farook Rahaman, Marius-Mihai Cazacu, Andromahi Spanou and Joydeep Chakraborty
Universe 2020, 6(10), 169; https://doi.org/10.3390/universe6100169 - 7 Oct 2020
Cited by 5 | Viewed by 1911
Abstract
The energy-momentum localization for a new four-dimensional and spherically symmetric, charged black hole solution that through a coupling of general relativity with non-linear electrodynamics is everywhere non-singular while it satisfies the weak energy condition, is investigated. The Einstein and Møller energy-momentum complexes have [...] Read more.
The energy-momentum localization for a new four-dimensional and spherically symmetric, charged black hole solution that through a coupling of general relativity with non-linear electrodynamics is everywhere non-singular while it satisfies the weak energy condition, is investigated. The Einstein and Møller energy-momentum complexes have been employed in order to calculate the energy distribution and the momenta for the aforesaid solution. It is found that the energy distribution depends explicitly on the mass and the charge of the black hole, on two parameters arising from the space-time geometry considered, and on the radial coordinate. Further, in both prescriptions all the momenta vanish. In addition, a comparison of the results obtained by the two energy-momentum complexes is made, whereby some limiting and particular cases are pointed out. Full article
Show Figures

Figure 1

Figure 1
<p>Einstein energy vs. <span class="html-italic">r</span> for various values of the parameter <span class="html-italic">a</span> and <math display="inline"><semantics> <mrow> <mi>γ</mi> <mo>=</mo> <mn>1</mn> </mrow> </semantics></math>.</p>
Full article ">Figure 2
<p>Einstein energy vs. <span class="html-italic">r</span> near the origin for various values of the parameter <span class="html-italic">a</span> and <math display="inline"><semantics> <mrow> <mi>γ</mi> <mo>=</mo> <mn>1</mn> </mrow> </semantics></math>.</p>
Full article ">Figure 3
<p>Møller energy vs. <span class="html-italic">r</span> for various values of the parameter <span class="html-italic">a</span> and <math display="inline"><semantics> <mrow> <mi>γ</mi> <mo>=</mo> <mn>1</mn> </mrow> </semantics></math>.</p>
Full article ">Figure 4
<p>Møller energy vs. <span class="html-italic">r</span> near the origin for various values of the parameter <span class="html-italic">a</span> and <math display="inline"><semantics> <mrow> <mi>γ</mi> <mo>=</mo> <mn>1</mn> </mrow> </semantics></math>.</p>
Full article ">Figure 5
<p>Energy distributions in the Einstein and Møller prescriptions for <math display="inline"><semantics> <mrow> <mi>γ</mi> <mo>=</mo> <mn>1</mn> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <mi>a</mi> <mo>=</mo> <mn>0.5</mn> </mrow> </semantics></math>.</p>
Full article ">Figure 6
<p>Energy distributions in the Einstein and Møller prescriptions for <math display="inline"><semantics> <mrow> <mi>γ</mi> <mo>=</mo> <mn>1</mn> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <mi>a</mi> <mo>=</mo> <mn>0.5</mn> </mrow> </semantics></math> near origin.</p>
Full article ">Figure 7
<p>Energy distributions in the Einstein and Møller prescriptions for <math display="inline"><semantics> <mrow> <mi>a</mi> <mo>=</mo> <mn>1</mn> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <mi>γ</mi> <mo>=</mo> <mfrac> <mn>1</mn> <mn>6</mn> </mfrac> </mrow> </semantics></math>.</p>
Full article ">Figure 8
<p>Energy distributions in the Einstein and Møller prescriptions near the origin for <math display="inline"><semantics> <mrow> <mi>a</mi> <mo>=</mo> <mn>1</mn> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <mi>γ</mi> <mo>=</mo> <mfrac> <mn>1</mn> <mn>6</mn> </mfrac> </mrow> </semantics></math>.</p>
Full article ">Figure 9
<p>Energy distributions in the Einstein and Møller prescriptions near the origin for <math display="inline"><semantics> <mrow> <mi>a</mi> <mo>=</mo> <mn>0.7</mn> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <mi>γ</mi> <mo>=</mo> <mn>1</mn> </mrow> </semantics></math>.</p>
Full article ">
16 pages, 21099 KiB  
Article
Using Unreal Engine to Visualize a Cosmological Volume
by Christopher Marsden and Francesco Shankar
Universe 2020, 6(10), 168; https://doi.org/10.3390/universe6100168 - 6 Oct 2020
Cited by 7 | Viewed by 4749
Abstract
In this work we present “Astera’’, a cosmological visualization tool that renders a mock universe in real time using Unreal Engine 4. The large scale structure of the cosmic web is hard to visualize in two dimensions, and a 3D real time projection [...] Read more.
In this work we present “Astera’’, a cosmological visualization tool that renders a mock universe in real time using Unreal Engine 4. The large scale structure of the cosmic web is hard to visualize in two dimensions, and a 3D real time projection of this distribution allows for an unprecedented view of the large scale universe, with visually accurate galaxies placed in a dynamic 3D world. The underlying data are based on empirical relations assigned using results from N-Body dark matter simulations, and are matched to galaxies with similar morphologies and sizes, images of which are extracted from the Sloan Digital Sky Survey. Within Unreal Engine 4, galaxy images are transformed into textures and dynamic materials (with appropriate transparency) that are applied to static mesh objects with appropriate sizes and locations. To ensure excellent performance, these static meshes are “instanced’’ to utilize the full capabilities of a graphics processing unit. Additional components include a dynamic system for representing accelerated-time active galactic nuclei. The end result is a visually realistic large scale universe that can be explored by a user in real time, with accurate large scale structure. Astera is not yet ready for public release, but we are exploring options to make different versions of the code available for both research and outreach applications. Full article
(This article belongs to the Section Galaxies and Clusters)
Show Figures

Figure 1

Figure 1
<p>Comparison of Halo Mass to Stellar Mass relations from [<a href="#B19-universe-06-00168" class="html-bibr">19</a>] compared to [<a href="#B21-universe-06-00168" class="html-bibr">21</a>].</p>
Full article ">Figure 2
<p>(<b>a</b>) Morphological type (TType) and (<b>b</b>) Size vs. Stellar Mass relations within the SDSS, used to assign the respective parameters to the catalogue. The shaded regions show the 1s uncertainty in these parameters.</p>
Full article ">Figure 3
<p>Predicted (average) 3D density profile haloes hosting elliptical galaxies of mass <math display="inline"><semantics> <mrow> <mn>11.3</mn> <mo>&lt;</mo> <msub> <mo form="prefix">log</mo> <mn>10</mn> </msub> <msub> <mi>M</mi> <mo>*</mo> </msub> <mo>/</mo> <msub> <mi>M</mi> <mo>⊙</mo> </msub> <mo>&lt;</mo> <mn>11.7</mn> </mrow> </semantics></math> for the sample catalogue. The solid black line represents the combined density, whilst the blue (dot-dashed) and red (dashed) lines represents the average stellar (Sérsic) and dark matter (NFW) components, respectively. The pink shaded region represents the empirical fit from [<a href="#B26-universe-06-00168" class="html-bibr">26</a>]. The grey shaded region shows the <math display="inline"><semantics> <mrow> <mn>1</mn> <mi>σ</mi> </mrow> </semantics></math> dispersion of the total density. The vertical blue dotted line shows the average half light radius, and the solid short black line shows (for comparison) the established slope of <math display="inline"><semantics> <mrow> <mi>γ</mi> <mo>=</mo> <mn>2.2</mn> </mrow> </semantics></math> at this radius.</p>
Full article ">Figure 4
<p>Example depiction of the importance of the alpha channel. When projected onto each other, the alpha channel allows the galaxies to appear as diffuse objects, hiding the sharp edges.</p>
Full article ">Figure 5
<p>Composite images of 45 spiral galaxies extracted from the SDSS, processed to be visually pleasing.</p>
Full article ">Figure 6
<p>A wireframe view of a small area with Astera. The instanced static mesh objects used in Astera to represent galaxies can be seen.</p>
Full article ">Figure 7
<p>A screenshot from Astera, showing some nearby galaxies in the foreground and a dense cluster/filament in the background.</p>
Full article ">Figure 8
<p>A screenshot of Astera showing a relatively dense region. The structure of the cosmic web is just visible.</p>
Full article ">Figure 9
<p>A screenshot showing a distant view of four clusters joined by a filament.</p>
Full article ">Figure 10
<p>A large scale screenshot showing many millions of galaxies within Astera.</p>
Full article ">Figure 11
<p>A colour-inverted view of the full simulation volume. The large scale cosmic web is clearly visible</p>
Full article ">Figure 12
<p>A cluster of galaxies within Astera, where the large elliptical galaxies have been circled. The elliptical galaxies preferentially occupy the centre of the cluster, in line with observations.</p>
Full article ">
23 pages, 598 KiB  
Article
Study on Anisotropic Strange Stars in f ( T , T ) Gravity
by Ines G. Salako, M. Khlopov, Saibal Ray, M. Z. Arouko, Pameli Saha and Ujjal Debnath
Universe 2020, 6(10), 167; https://doi.org/10.3390/universe6100167 - 3 Oct 2020
Cited by 40 | Viewed by 3124
Abstract
In this work, we study the existence of strange stars in the background of f(T,T) gravity in the Einstein spacetime geometry, where T is the torsion tensor and T is the trace of the energy-momentum tensor. The equations [...] Read more.
In this work, we study the existence of strange stars in the background of f(T,T) gravity in the Einstein spacetime geometry, where T is the torsion tensor and T is the trace of the energy-momentum tensor. The equations of motion are derived for anisotropic pressure within the spherically symmetric strange star. We explore the physical features like energy conditions, mass-radius relations, modified Tolman–Oppenheimer–Volkoff (TOV) equations, principal of causality, adiabatic index, redshift and stability analysis of our model. These features are realistic and appealing to further investigation of properties of compact objects in f(T,T) gravity as well as their observational signatures. Full article
(This article belongs to the Special Issue Universe: Feature Papers − Compact Objects)
Show Figures

Figure 1

Figure 1
<p>Plot of <math display="inline"><semantics> <msup> <mrow> <mi>e</mi> </mrow> <mrow> <mi>ν</mi> <mo>(</mo> <mi>r</mi> <mo>)</mo> </mrow> </msup> </semantics></math> and <math display="inline"><semantics> <msup> <mrow> <mi>e</mi> </mrow> <mrow> <mi>λ</mi> <mo>(</mo> <mi>r</mi> <mo>)</mo> </mrow> </msup> </semantics></math> versus <span class="html-italic">r</span> for the strange star candidate <math display="inline"><semantics> <mrow> <mi>L</mi> <mi>M</mi> <mi>C</mi> <mspace width="3.33333pt"/> <mi>X</mi> <mo>−</mo> <mn>4</mn> </mrow> </semantics></math>. The red, purple, magenta, blue and black colors represent respectively cases <math display="inline"><semantics> <mrow> <mi>ϖ</mi> <mo>=</mo> <mn>0</mn> <mo>,</mo> <mspace width="0.166667em"/> <mi>ϖ</mi> <mo>=</mo> <mn>0.5</mn> <mo>,</mo> <mspace width="0.166667em"/> <mi>ϖ</mi> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mspace width="0.166667em"/> <mi>ϖ</mi> <mo>=</mo> <mn>1.5</mn> <mspace width="3.33333pt"/> <mi>and</mi> <mspace width="3.33333pt"/> <mi>ϖ</mi> <mo>=</mo> <mn>2</mn> </mrow> </semantics></math>.</p>
Full article ">Figure 2
<p>Plot of <math display="inline"><semantics> <msup> <mrow> <mi>ρ</mi> </mrow> <mi mathvariant="italic">eff</mi> </msup> </semantics></math>, <math display="inline"><semantics> <msubsup> <mi>p</mi> <mi>r</mi> <mi mathvariant="italic">eff</mi> </msubsup> </semantics></math> and <math display="inline"><semantics> <msubsup> <mi>p</mi> <mi>t</mi> <mi mathvariant="italic">eff</mi> </msubsup> </semantics></math> versus <span class="html-italic">r</span> for the strange star candidate <math display="inline"><semantics> <mrow> <mi>L</mi> <mi>M</mi> <mi>C</mi> <mspace width="3.33333pt"/> <mi>X</mi> <mo>−</mo> <mn>4</mn> </mrow> </semantics></math>. The red, purple, magenta, blue and black colors represent, respectively, cases <math display="inline"><semantics> <mrow> <mi>ϖ</mi> <mo>=</mo> <mn>0</mn> <mo>,</mo> <mspace width="0.166667em"/> <mi>ϖ</mi> <mo>=</mo> <mn>0.5</mn> <mo>,</mo> <mspace width="0.166667em"/> <mi>ϖ</mi> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mspace width="0.166667em"/> <mi>ϖ</mi> <mo>=</mo> <mn>1.5</mn> <mspace width="3.33333pt"/> <mi>and</mi> <mspace width="3.33333pt"/> <mi>ϖ</mi> <mo>=</mo> <mn>2</mn> </mrow> </semantics></math>.</p>
Full article ">Figure 3
<p>Plot of anisotropy versus <span class="html-italic">r</span> for the strange star candidate <math display="inline"><semantics> <mrow> <mi>L</mi> <mi>M</mi> <mi>C</mi> <mspace width="3.33333pt"/> <mi>X</mi> <mo>−</mo> <mn>4</mn> </mrow> </semantics></math>. The red, purple, magenta, blue and black colors represent respectively cases <math display="inline"><semantics> <mrow> <mi>ϖ</mi> <mo>=</mo> <mn>0</mn> <mo>,</mo> <mspace width="0.166667em"/> <mi>ϖ</mi> <mo>=</mo> <mn>0.5</mn> <mo>,</mo> <mspace width="0.166667em"/> <mi>ϖ</mi> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mspace width="0.166667em"/> <mi>ϖ</mi> <mo>=</mo> <mn>1.5</mn> <mspace width="3.33333pt"/> <mi>and</mi> <mspace width="3.33333pt"/> <mi>ϖ</mi> <mo>=</mo> <mn>2</mn> </mrow> </semantics></math>.</p>
Full article ">Figure 4
<p>Plot of Null Energy Condition (NEC), Weak Energy Condition (WEC), Dominant Energy Condition (DEC) and Strong Energy Condition (SEC) versus <span class="html-italic">r</span> for the strange star candidate <math display="inline"><semantics> <mrow> <mi>L</mi> <mi>M</mi> <mi>C</mi> <mspace width="0.166667em"/> <mi>X</mi> <mo>−</mo> <mn>4</mn> </mrow> </semantics></math> due to different chosen values of <math display="inline"><semantics> <mi>ϖ</mi> </semantics></math>. The red, purple, magenta, blue and black colors represent respectively <math display="inline"><semantics> <mrow> <msub> <mi>ρ</mi> <mrow> <mi>e</mi> <mi>f</mi> <mi>f</mi> </mrow> </msub> <mo>−</mo> <msub> <mi>p</mi> <mrow> <mi>e</mi> <mi>f</mi> <mi>f</mi> <mi>r</mi> </mrow> </msub> <mo>,</mo> <mspace width="0.166667em"/> <msub> <mi>ρ</mi> <mrow> <mi>e</mi> <mi>f</mi> <mi>f</mi> </mrow> </msub> <mo>−</mo> <msub> <mi>p</mi> <mrow> <mi>e</mi> <mi>f</mi> <mi>f</mi> <mi>t</mi> </mrow> </msub> <mo>,</mo> <mspace width="0.166667em"/> <msub> <mi>ρ</mi> <mrow> <mi>e</mi> <mi>f</mi> <mi>f</mi> </mrow> </msub> <mo>+</mo> <msub> <mi>p</mi> <mrow> <mi>e</mi> <mi>f</mi> <mi>f</mi> <mi>r</mi> </mrow> </msub> <mo>,</mo> <mspace width="0.166667em"/> <msub> <mi>ρ</mi> <mrow> <mi>e</mi> <mi>f</mi> <mi>f</mi> </mrow> </msub> <mo>+</mo> <msub> <mi>p</mi> <mrow> <mi>e</mi> <mi>f</mi> <mi>f</mi> <mi>t</mi> </mrow> </msub> <mo>,</mo> <mspace width="0.166667em"/> <msub> <mi>ρ</mi> <mrow> <mi>e</mi> <mi>f</mi> <mi>f</mi> </mrow> </msub> <mo>+</mo> <msub> <mi>p</mi> <mrow> <mi>e</mi> <mi>f</mi> <mi>f</mi> <mi>r</mi> </mrow> </msub> <mo>+</mo> <mn>2</mn> <msub> <mi>p</mi> <mrow> <mi>e</mi> <mi>f</mi> <mi>f</mi> <mi>t</mi> </mrow> </msub> </mrow> </semantics></math> with <math display="inline"><semantics> <mrow> <mi>ϖ</mi> <mo>=</mo> <mn>0</mn> <mo>,</mo> <mspace width="0.166667em"/> <mi>ϖ</mi> <mo>=</mo> <mn>0.5</mn> <mo>,</mo> <mspace width="0.166667em"/> <mi>ϖ</mi> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mspace width="0.166667em"/> <mi>ϖ</mi> <mo>=</mo> <mn>1.5</mn> <mspace width="3.33333pt"/> <mi>and</mi> <mspace width="3.33333pt"/> <mi>ϖ</mi> <mo>=</mo> <mn>2</mn> </mrow> </semantics></math> respectively.</p>
Full article ">Figure 5
<p>Plot of Mass <math display="inline"><semantics> <mrow> <mo>(</mo> <mi>M</mi> <mo>/</mo> <msub> <mi>M</mi> <mo>⊙</mo> </msub> <mo>)</mo> </mrow> </semantics></math> versus Radius (<span class="html-italic">R</span> in km) curve for the strange star candidate <math display="inline"><semantics> <mrow> <mi>L</mi> <mi>M</mi> <mi>C</mi> <mspace width="0.166667em"/> <mi>X</mi> <mo>−</mo> <mn>4</mn> </mrow> </semantics></math> due to different values of <math display="inline"><semantics> <mi>ϖ</mi> </semantics></math>. The red, purple, magenta, blue and black colors represent respectively cases <math display="inline"><semantics> <mrow> <mi>ϖ</mi> <mo>=</mo> <mn>0</mn> <mo>,</mo> <mspace width="0.166667em"/> <mi>ϖ</mi> <mo>=</mo> <mn>0.5</mn> <mo>,</mo> <mspace width="0.166667em"/> <mi>ϖ</mi> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mspace width="0.166667em"/> <mi>ϖ</mi> <mo>=</mo> <mn>1.5</mn> <mspace width="3.33333pt"/> <mi>and</mi> <mspace width="3.33333pt"/> <mi>ϖ</mi> <mo>=</mo> <mn>2</mn> </mrow> </semantics></math>.</p>
Full article ">Figure 6
<p>Plot of the different forces versus <span class="html-italic">r</span> for the strange star candidate <math display="inline"><semantics> <mrow> <mi>L</mi> <mi>M</mi> <mi>C</mi> <mspace width="0.166667em"/> <mi>X</mi> <mo>−</mo> <mn>4</mn> </mrow> </semantics></math> due to different chosen values of <math display="inline"><semantics> <mi>ϖ</mi> </semantics></math>. The red, purple, magenta, blue and black colors represent respectively <b><math display="inline"><semantics> <mrow> <msub> <mi>F</mi> <mi>g</mi> </msub> <mo>,</mo> <mspace width="0.166667em"/> <msub> <mi>F</mi> <mi>h</mi> </msub> <mo>,</mo> <mspace width="0.166667em"/> <msub> <mi>F</mi> <mi>a</mi> </msub> <mo>,</mo> <mspace width="0.166667em"/> <msub> <mi>F</mi> <mi>e</mi> </msub> </mrow> </semantics></math></b> with <math display="inline"><semantics> <mrow> <mi>ϖ</mi> <mo>=</mo> <mn>0</mn> <mo>,</mo> <mspace width="0.166667em"/> <mi>ϖ</mi> <mo>=</mo> <mn>0.5</mn> <mo>,</mo> <mspace width="0.166667em"/> <mi>ϖ</mi> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mspace width="0.166667em"/> <mi>ϖ</mi> <mo>=</mo> <mn>1.5</mn> <mspace width="3.33333pt"/> <mi>and</mi> <mspace width="3.33333pt"/> <mi>ϖ</mi> <mo>=</mo> <mn>2</mn> </mrow> </semantics></math> respectively.</p>
Full article ">Figure 7
<p>Plot of <math display="inline"><semantics> <msubsup> <mi>v</mi> <mrow> <mi>s</mi> <mi>t</mi> </mrow> <mn>2</mn> </msubsup> </semantics></math> and <math display="inline"><semantics> <msubsup> <mi>v</mi> <mrow> <mi>s</mi> <mi>r</mi> </mrow> <mn>2</mn> </msubsup> </semantics></math> versus <span class="html-italic">r</span> for the strange star candidate <math display="inline"><semantics> <mrow> <mi>L</mi> <mi>M</mi> <mi>C</mi> <mspace width="0.166667em"/> <mi>X</mi> <mo>−</mo> <mn>4</mn> </mrow> </semantics></math>. The red, purple, magenta, blue and black colors represent respectively cases <math display="inline"><semantics> <mrow> <mi>ϖ</mi> <mo>=</mo> <mn>0</mn> <mo>,</mo> <mspace width="0.166667em"/> <mi>ϖ</mi> <mo>=</mo> <mn>0.5</mn> <mo>,</mo> <mspace width="0.166667em"/> <mi>ϖ</mi> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mspace width="0.166667em"/> <mi>ϖ</mi> <mo>=</mo> <mn>1.5</mn> <mspace width="3.33333pt"/> <mi>and</mi> <mspace width="3.33333pt"/> <mi>ϖ</mi> <mo>=</mo> <mn>2</mn> </mrow> </semantics></math>.</p>
Full article ">Figure 8
<p>Plot of <math display="inline"><semantics> <mrow> <mrow> <mo>|</mo> </mrow> <msubsup> <mi>v</mi> <mrow> <mi>s</mi> <mi>t</mi> </mrow> <mn>2</mn> </msubsup> <mo>−</mo> <msubsup> <mi>v</mi> <mrow> <mi>s</mi> <mi>r</mi> </mrow> <mn>2</mn> </msubsup> <mrow> <mo>|</mo> </mrow> </mrow> </semantics></math> versus <span class="html-italic">r</span> for the strange star candidate <math display="inline"><semantics> <mrow> <mi>L</mi> <mi>M</mi> <mi>C</mi> <mspace width="0.166667em"/> <mi>X</mi> <mo>−</mo> <mn>4</mn> </mrow> </semantics></math>. The red, purple, magenta, blue and black colors represent respectively cases <math display="inline"><semantics> <mrow> <mi>ϖ</mi> <mo>=</mo> <mn>0</mn> <mo>,</mo> <mspace width="0.166667em"/> <mi>ϖ</mi> <mo>=</mo> <mn>0.5</mn> <mo>,</mo> <mspace width="0.166667em"/> <mi>ϖ</mi> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mspace width="0.166667em"/> <mi>ϖ</mi> <mo>=</mo> <mn>1.5</mn> <mspace width="3.33333pt"/> <mi>and</mi> <mspace width="3.33333pt"/> <mi>ϖ</mi> <mo>=</mo> <mn>2</mn> </mrow> </semantics></math>.</p>
Full article ">Figure 9
<p>Plot of <math display="inline"><semantics> <msub> <mo>Γ</mo> <mi>r</mi> </msub> </semantics></math> and <math display="inline"><semantics> <msub> <mo>Γ</mo> <mi>t</mi> </msub> </semantics></math> versus <span class="html-italic">r</span> for the strange star candidate <math display="inline"><semantics> <mrow> <mi>L</mi> <mi>M</mi> <mi>C</mi> <mspace width="0.166667em"/> <mi>X</mi> <mo>−</mo> <mn>4</mn> </mrow> </semantics></math>. The red, purple, magenta, blue and black colors represent, respectively, cases <math display="inline"><semantics> <mrow> <mi>ϖ</mi> <mo>=</mo> <mn>0</mn> <mo>,</mo> <mspace width="0.166667em"/> <mi>ϖ</mi> <mo>=</mo> <mn>0.5</mn> <mo>,</mo> <mspace width="0.166667em"/> <mi>ϖ</mi> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mspace width="0.166667em"/> <mi>ϖ</mi> <mo>=</mo> <mn>1.5</mn> <mspace width="3.33333pt"/> <mi>and</mi> <mspace width="3.33333pt"/> <mi>ϖ</mi> <mo>=</mo> <mn>2</mn> </mrow> </semantics></math>.</p>
Full article ">Figure 10
<p>Plot of the compactification factor and redshift versus <span class="html-italic">r</span> for the strange star candidate <math display="inline"><semantics> <mrow> <mi>L</mi> <mi>M</mi> <mi>C</mi> <mspace width="0.166667em"/> <mi>X</mi> <mo>−</mo> <mn>4</mn> </mrow> </semantics></math>. The red, purple, magenta, blue and black colors represent respectively cases <math display="inline"><semantics> <mrow> <mi>ϖ</mi> <mo>=</mo> <mn>0</mn> <mo>,</mo> <mspace width="0.166667em"/> <mi>ϖ</mi> <mo>=</mo> <mn>0.5</mn> <mo>,</mo> <mspace width="0.166667em"/> <mi>ϖ</mi> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mspace width="0.166667em"/> <mi>ϖ</mi> <mo>=</mo> <mn>1.5</mn> <mspace width="3.33333pt"/> <mi>and</mi> <mspace width="3.33333pt"/> <mi>ϖ</mi> <mo>=</mo> <mn>2</mn> </mrow> </semantics></math>.</p>
Full article ">
10 pages, 275 KiB  
Communication
Universal Constants and Natural Systems of Units in a Spacetime of Arbitrary Dimension
by Anton Sheykin and Sergey Manida
Universe 2020, 6(10), 166; https://doi.org/10.3390/universe6100166 - 1 Oct 2020
Cited by 4 | Viewed by 2154
Abstract
We study the properties of fundamental physical constants using the threefold classification of dimensional constants proposed by J.-M. Lévy-Leblond: constants of objects (masses, etc.), constants of phenomena (coupling constants), and “universal constants” (such as c and ). We show that all of [...] Read more.
We study the properties of fundamental physical constants using the threefold classification of dimensional constants proposed by J.-M. Lévy-Leblond: constants of objects (masses, etc.), constants of phenomena (coupling constants), and “universal constants” (such as c and ). We show that all of the known “natural” systems of units contain at least one non-universal constant. We discuss the possible consequences of such non-universality, e.g., the dependence of some of these systems on the number of spatial dimensions. In the search for a “fully universal” system of units, we propose a set of constants that consists of c, , and a length parameter and discuss its origins and the connection to the possible kinematic groups discovered by Lévy-Leblond and Bacry. Finally, we give some comments about the interpretation of these constants. Full article
28 pages, 438 KiB  
Review
Soft Anomalous Dimensions and Resummation in QCD
by Nikolaos Kidonakis
Universe 2020, 6(10), 165; https://doi.org/10.3390/universe6100165 - 1 Oct 2020
Cited by 12 | Viewed by 1565
Abstract
I discuss and review soft anomalous dimensions in QCD that describe soft-gluon threshold resummation for a wide range of hard-scattering processes. The factorization properties of the cross section in moment space and renormalization-group evolution are implemented to derive a general form for differential [...] Read more.
I discuss and review soft anomalous dimensions in QCD that describe soft-gluon threshold resummation for a wide range of hard-scattering processes. The factorization properties of the cross section in moment space and renormalization-group evolution are implemented to derive a general form for differential resummed cross sections. Detailed expressions are given for the soft anomalous dimensions at one, two, and three loops, including some new results, for a large number of partonic processes involving top quarks, electroweak bosons, Higgs bosons, and other particles in the standard model and beyond. Full article
(This article belongs to the Section High Energy Nuclear and Particle Physics)
12 pages, 549 KiB  
Communication
Resonant Production of an Ultrarelativistic Electron–Positron Pair at the Gamma Quantum Scattering by a Field of the X-ray Pulsar
by Vadim A. Yelatontsev, Sergei P. Roshchupkin and Viktor V. Dubov
Universe 2020, 6(10), 164; https://doi.org/10.3390/universe6100164 - 1 Oct 2020
Cited by 3 | Viewed by 2169
Abstract
The process of a resonant production of an ultrarelativistic electron–positron pair in the process of gamma-quantum scattering in the X-ray field of a pulsar is theoretically studied. This process has two reaction channels. Under resonant conditions, an intermediate electron (for a channel A) [...] Read more.
The process of a resonant production of an ultrarelativistic electron–positron pair in the process of gamma-quantum scattering in the X-ray field of a pulsar is theoretically studied. This process has two reaction channels. Under resonant conditions, an intermediate electron (for a channel A) or a positron (for a channel B) enters the mass shell. As a result, the initial second-order process of the fine-structure constant in the X-ray field effectively splits into two first-order processes: the X-ray field-stimulated Breit–Wheeler process and the the X-ray field-stimulated Compton effect on an intermediate electron or a positron. The resonant kinematics of the process is studied in detail. It is shown that for the initial gamma quantum there is a threshold energy, which for the X-ray photon energy (1–102) keV has the order of magnitude (103–10) MeV. In this case, all the final particles (electron, positron, and final gamma quantum) fly in a narrow cone along the direction of the initial gamma quantum momentum. It is important to note that the energies of the electron–positron pair and the final gamma quantum depend significantly on their outgoing angles. The obtained resonant probability significantly exceeds the non-resonant one. The obtained results can be used to explain the spectrum of positrons near pulsars. Full article
Show Figures

Figure 1

Figure 1
<p>Feynman diagrams of the electron–positron pair production when a gamma quantum collides with an electromagnetic wave. The solid lines correspond to the (<b>b</b>) electron and (<b>a</b>) positron Volkov’s functions, the inner lines of the electron (positron) Green’s function in the wave field, dashed lines stand for initial and final gamma quanta.</p>
Full article ">Figure 2
<p>Feynman diagrams of the process of the (<b>b</b>) electron–(<b>a</b>) positron pair resonant production when a gamma quantum collides with an electromagnetic wave.</p>
Full article ">Figure 3
<p>Dependence of the positron energy (in units of the initial gamma-quantum energy) on its outgoing angle at different energies of the initial gamma-quantum. Curve 1 corresponds to energy <math display="inline"><semantics> <mrow> <msub> <mi>ω</mi> <mi>i</mi> </msub> <mo>=</mo> <mn>300</mn> <mspace width="4pt"/> <mi>MeV</mi> </mrow> </semantics></math> <math display="inline"><semantics> <mfenced separators="" open="(" close=")"> <msub> <mi>ε</mi> <mi>i</mi> </msub> <mo>=</mo> <mn>3</mn> <mo>,</mo> <mspace width="4pt"/> <msub> <mi>ω</mi> <mrow> <mi>t</mi> <mi>h</mi> <mi>r</mi> </mrow> </msub> <mo>=</mo> <mn>100</mn> <mspace width="4pt"/> <mi>MeV</mi> </mfenced> </semantics></math>, curve 2 is <math display="inline"><semantics> <mrow> <msub> <mi>ω</mi> <mi>i</mi> </msub> <mo>=</mo> <mn>500</mn> <mspace width="4pt"/> <mi>MeV</mi> </mrow> </semantics></math> <math display="inline"><semantics> <mfenced separators="" open="(" close=")"> <msub> <mi>ε</mi> <mi>i</mi> </msub> <mo>=</mo> <mn>5</mn> <mo>,</mo> <mspace width="4pt"/> <msub> <mi>ω</mi> <mrow> <mi>t</mi> <mi>h</mi> <mi>r</mi> </mrow> </msub> <mo>=</mo> <mn>100</mn> <mspace width="4pt"/> <mi>MeV</mi> </mfenced> </semantics></math>.</p>
Full article ">Figure 4
<p>Dependence of the electron energy (in units of initial gamma quantum energy) on the <math display="inline"><semantics> <msubsup> <mi>δ</mi> <mrow> <mi>f</mi> <mo>−</mo> </mrow> <mn>2</mn> </msubsup> </semantics></math> parameter for the energy of the initial gamma quantum <math display="inline"><semantics> <mrow> <msub> <mi>E</mi> <mi>i</mi> </msub> <mo>=</mo> <mn>150</mn> <mspace width="4pt"/> <mi>MeV</mi> </mrow> </semantics></math> <math display="inline"><semantics> <mfenced separators="" open="(" close=")"> <msub> <mi>ε</mi> <mi>i</mi> </msub> <mo>=</mo> <mn>1.5</mn> </mfenced> </semantics></math>. Curve 1 corresponds to the energy of the positron <math display="inline"><semantics> <mrow> <msub> <mi>E</mi> <mo>+</mo> </msub> <mo>=</mo> <mn>37.5</mn> <mspace width="4pt"/> <mi>MeV</mi> </mrow> </semantics></math> <math display="inline"><semantics> <mfenced separators="" open="(" close=")"> <msub> <mi>x</mi> <mo>+</mo> </msub> <mo>=</mo> <mn>0.25</mn> </mfenced> </semantics></math>, curve 2 is <math display="inline"><semantics> <mrow> <msub> <mi>E</mi> <mo>+</mo> </msub> <mo>=</mo> <mn>75</mn> <mspace width="4pt"/> <mi>MeV</mi> </mrow> </semantics></math> <math display="inline"><semantics> <mfenced separators="" open="(" close=")"> <msub> <mi>x</mi> <mo>+</mo> </msub> <mo>=</mo> <mn>0.5</mn> </mfenced> </semantics></math> with the positron outgoing angle <math display="inline"><semantics> <mrow> <msubsup> <mi>δ</mi> <mrow> <mo>+</mo> <mi>i</mi> </mrow> <mn>2</mn> </msubsup> <mo>=</mo> <mn>2</mn> </mrow> </semantics></math>.</p>
Full article ">Figure 5
<p>Dependence of the electron energy (in units of the initial gamma quantum energy) on the <math display="inline"><semantics> <msubsup> <mi>δ</mi> <mrow> <mi>f</mi> <mo>−</mo> </mrow> <msup> <mrow/> <mn>2</mn> </msup> </msubsup> </semantics></math> parameter for the energy of the initial gamma quantum <math display="inline"><semantics> <mrow> <msub> <mi>E</mi> <mi>i</mi> </msub> <mo>=</mo> <mn>500</mn> <mspace width="4pt"/> <mi>MeV</mi> </mrow> </semantics></math> <math display="inline"><semantics> <mfenced separators="" open="(" close=")"> <msub> <mi>ε</mi> <mi>i</mi> </msub> <mo>=</mo> <mn>5</mn> <mo>,</mo> <mspace width="4pt"/> <msub> <mi>ω</mi> <mrow> <mi>t</mi> <mi>h</mi> <mi>r</mi> </mrow> </msub> <mo>=</mo> <mn>100</mn> <mspace width="4pt"/> <mi>MeV</mi> </mfenced> </semantics></math>. Line 1 corresponds to the positron energy, line 2 corresponds to <math display="inline"><semantics> <mrow> <msub> <mi>E</mi> <mo>+</mo> </msub> <mo>=</mo> <mn>25</mn> <mspace width="4pt"/> <mi>MeV</mi> </mrow> </semantics></math> <math display="inline"><semantics> <mfenced separators="" open="(" close=")"> <msub> <mi>x</mi> <mo>+</mo> </msub> <mo>=</mo> <mn>0.05</mn> </mfenced> </semantics></math> for the positron outgoing at an angle <math display="inline"><semantics> <mrow> <msubsup> <mi>δ</mi> <mrow> <mo>+</mo> <mi>i</mi> </mrow> <mn>2</mn> </msubsup> <mo>=</mo> <mn>20</mn> </mrow> </semantics></math>.</p>
Full article ">
18 pages, 357 KiB  
Article
Non-Relativistic Limit of Embedding Gravity as General Relativity with Dark Matter
by Sergey Paston
Universe 2020, 6(10), 163; https://doi.org/10.3390/universe6100163 - 29 Sep 2020
Cited by 16 | Viewed by 2084
Abstract
Regge-Teitelboim embedding gravity is the modified gravity based on a simple string-inspired geometrical principle—our spacetime is considered here as a 4-dimensional surface in a flat bulk. This theory is similar to the recently popular theory of mimetic gravity—the modification of gravity appears in [...] Read more.
Regge-Teitelboim embedding gravity is the modified gravity based on a simple string-inspired geometrical principle—our spacetime is considered here as a 4-dimensional surface in a flat bulk. This theory is similar to the recently popular theory of mimetic gravity—the modification of gravity appears in both theories as a result of the change of variables in the action of General Relativity. Embedding gravity, as well as mimetic gravity, can be used in explaining the dark matter mystery since, in both cases, the modified theory can be presented as General Relativity with additional fictitious matter (embedding matter or mimetic matter). For the general case, we obtain the equations of motion of embedding matter in terms of embedding function as a set of first-order dynamical equations and constraints consistent with them. Then, we construct a non-relativistic limit of these equations, in which the motion of embedding matter turns out to be slow enough so that it can play the role of cold dark matter. The non-relativistic embedding matter turns out to have a certain self-interaction, which could be useful in the context of solving the core-cusp problem that appears in the Λ-Cold Dark Matter (ΛCDM) model. Full article
Show Figures

Graphical abstract

Graphical abstract
Full article ">
38 pages, 1202 KiB  
Review
Cosmogenic Activation in Double Beta Decay Experiments
by Susana Cebrián
Universe 2020, 6(10), 162; https://doi.org/10.3390/universe6100162 - 29 Sep 2020
Cited by 13 | Viewed by 3652
Abstract
Double beta decay is a very rare nuclear process and, therefore, experiments intended to detect it must be operated deep underground and in ultra-low background conditions. Long-lived radioisotopes produced by the previous exposure of materials to cosmic rays on the Earth’s surface or [...] Read more.
Double beta decay is a very rare nuclear process and, therefore, experiments intended to detect it must be operated deep underground and in ultra-low background conditions. Long-lived radioisotopes produced by the previous exposure of materials to cosmic rays on the Earth’s surface or even underground can become problematic for the required sensitivity. Here, the studies developed to quantify and reduce the activation yields in detectors and materials used in the set-up of these experiments will be reviewed, considering target materials like germanium, tellurium and xenon together with other ones commonly used like copper, lead, stainless steel or argon. Calculations following very different approaches and measurements from irradiation experiments using beams or directly cosmic rays will be considered for relevant radioisotopes. The effect of cosmogenic activation in present and future double beta decay projects based on different types of detectors will be analyzed too. Full article
(This article belongs to the Special Issue Neutrinoless Double Beta Decay)
Show Figures

Figure 1

Figure 1
<p>Compilation of excitation functions for the production of <sup>60</sup>Co by protons and neutrons in natural germanium (<b>a</b>) and in copper (<b>b</b>). Experimental data obtained from the EXFOR database are shown together with calculations using semiempirical formulae and MC simulations.</p>
Full article ">Figure 1 Cont.
<p>Compilation of excitation functions for the production of <sup>60</sup>Co by protons and neutrons in natural germanium (<b>a</b>) and in copper (<b>b</b>). Experimental data obtained from the EXFOR database are shown together with calculations using semiempirical formulae and MC simulations.</p>
Full article ">Figure 2
<p>Differential neutron flux as derived from parameterizations at sea level by Armstrong and Gehrels [<a href="#B48-universe-06-00162" class="html-bibr">48</a>,<a href="#B49-universe-06-00162" class="html-bibr">49</a>], Ziegler [<a href="#B50-universe-06-00162" class="html-bibr">50</a>], and Gordon et al. [<a href="#B51-universe-06-00162" class="html-bibr">51</a>].</p>
Full article ">
Article
Predicting >10 MeV SEP Events from Solar Flare and Radio Burst Data
by Marlon Núñez and Daniel Paul-Pena
Universe 2020, 6(10), 161; https://doi.org/10.3390/universe6100161 - 28 Sep 2020
Cited by 19 | Viewed by 2972
Abstract
The prediction of solar energetic particle (SEP) events or solar radiation storms is one of the most important problems in the space weather field. These events may have adverse effects on technology infrastructures and humans in space; they may also irradiate passengers and [...] Read more.
The prediction of solar energetic particle (SEP) events or solar radiation storms is one of the most important problems in the space weather field. These events may have adverse effects on technology infrastructures and humans in space; they may also irradiate passengers and flight crews in commercial aircraft flying at polar latitudes. This paper explores the use of ≥ M2 solar flares and radio burst observations as proxies for predicting >10 MeV SEP events on Earth. These observations are manifestations of the parent event at the sun associated with the SEP event. As a consequence of processing data at the beginning of the physical process that leads to the radiation storm, the model may provide its predictions with large anticipation. The main advantage of the present approach is that the model analyzes solar data that are updated every 30 min and, as such, it may be operational; however, a disadvantage is that those SEP events associated with strong well-connected flares cannot be predicted. For the period from November 1997 to February 2014, we obtained a probability of detection of 70.2%, a false alarm ratio of 40.2%, and an average anticipation time of 9 h 52 min. In this study, the prediction model was built using decision trees, an interpretable machine learning technique. This approach leads to outputs and results comparable to those derived by the Empirical model for Solar Proton Event Real Time Alert (ESPERTA) model. The obtained decision tree shows that the best criteria to differentiate pre-SEP scenarios and non-pre-SEP scenarios are the peak and integrated flux for soft X-ray flares and the radio type III bursts. Full article
(This article belongs to the Section Solar and Stellar Physics)
Show Figures

Graphical abstract

Graphical abstract
Full article ">Figure 1
<p>Number of sunspots over the years.</p>
Full article ">Figure 2
<p>Area under receiver operating characteristic (ROC) curve as a function of the minimum number of instances per leaf.</p>
Full article ">Figure 3
<p>Critical success index (CSI) in function of the minimum number of instances per leaf.</p>
Full article ">Figure 4
<p>Obtained decision tree.</p>
Full article ">
19 pages, 345 KiB  
Article
Gravity-Induced Geometric Phases and Entanglement in Spinors and Neutrinos: Gravitational Zeeman Effect
by Banibrata Mukhopadhyay and Soumya Kanti Ganguly
Universe 2020, 6(10), 160; https://doi.org/10.3390/universe6100160 - 27 Sep 2020
Cited by 7 | Viewed by 2127
Abstract
We show Zeeman-like splitting in the energy of spinors propagating in a background gravitational field, analogous to the spinors in an electromagnetic field, otherwise termed the Gravitational Zeeman Effect. These spinors are also found to acquire a geometric phase, in a similar way [...] Read more.
We show Zeeman-like splitting in the energy of spinors propagating in a background gravitational field, analogous to the spinors in an electromagnetic field, otherwise termed the Gravitational Zeeman Effect. These spinors are also found to acquire a geometric phase, in a similar way as they do in the presence of magnetic fields. However, in a gravitational background, the Aharonov-Bohm type effect, in addition to Berry-like phase, arises. Based on this result, we investigate geometric phases acquired by neutrinos propagating in a strong gravitational field. We also explore entanglement of neutrino states due to gravity, which could induce neutrino-antineutrino oscillation in the first place. We show that entangled states also acquire geometric phases which are determined by the relative strength between gravitational field and neutrino masses. Full article
(This article belongs to the Section Gravitation)
Show Figures

Figure 1

Figure 1
<p>Zeeman-splitting in the electromagnetic case.</p>
Full article ">Figure 2
<p>Gravitational “Zeeman-splitting”.</p>
Full article ">Figure 3
<p>Variation of mixing angle in radian of basic neutrino–antineutrino mixing as a function of gravitational coupling in units of eV with <math display="inline"><semantics> <mrow> <mi>m</mi> <mo>=</mo> <mn>0.05</mn> </mrow> </semantics></math> eV.</p>
Full article ">Figure 4
<p>Variation of flavor mixing angles in radian as functions of gravitational coupling in units of eV with <math display="inline"><semantics> <mrow> <msub> <mi>m</mi> <mi>e</mi> </msub> <mo>=</mo> <mn>0.01</mn> </mrow> </semantics></math> eV, <math display="inline"><semantics> <mrow> <msub> <mi>m</mi> <mi>μ</mi> </msub> <mo>=</mo> <mn>0.1</mn> </mrow> </semantics></math> eV and <math display="inline"><semantics> <mrow> <msub> <mi>m</mi> <mrow> <mi>μ</mi> <mi>e</mi> </mrow> </msub> <mo>=</mo> <mn>0.05</mn> </mrow> </semantics></math> eV.</p>
Full article ">Figure 5
<p>Variation of <math display="inline"><semantics> <mi>τ</mi> </semantics></math>-independent part of <math display="inline"><semantics> <msub> <mi mathvariant="sans-serif">Φ</mi> <mrow> <mi>d</mi> <mn>1</mn> </mrow> </msub> </semantics></math> for entangled states as a function of gravitational coupling in units of eV with <math display="inline"><semantics> <mrow> <msub> <mi>m</mi> <mi>e</mi> </msub> <mo>=</mo> <mn>0.01</mn> </mrow> </semantics></math> eV, <math display="inline"><semantics> <mrow> <msub> <mi>m</mi> <mi>μ</mi> </msub> <mo>=</mo> <mn>0.1</mn> </mrow> </semantics></math> eV and <math display="inline"><semantics> <mrow> <msub> <mi>m</mi> <mrow> <mi>μ</mi> <mi>e</mi> </mrow> </msub> <mo>=</mo> <mn>0.05</mn> </mrow> </semantics></math> eV, and <math display="inline"><semantics> <mrow> <msub> <mi>ϕ</mi> <mn>1</mn> </msub> <mo>=</mo> <msub> <mi>ϕ</mi> <mn>2</mn> </msub> <mo>=</mo> <mi>β</mi> </mrow> </semantics></math>. From top to bottom, lines are for <math display="inline"><semantics> <mrow> <mi>α</mi> <mo>=</mo> <mn>0</mn> <mo>,</mo> <mi>π</mi> <mo>/</mo> <mn>6</mn> <mo>,</mo> <mi>π</mi> <mo>/</mo> <mn>4</mn> <mo>,</mo> <mi>π</mi> <mo>/</mo> <mn>3</mn> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <mi>π</mi> <mo>/</mo> <mn>2</mn> </mrow> </semantics></math>.</p>
Full article ">
16 pages, 365 KiB  
Review
Precise Half-Life Values for Two-Neutrino Double-β Decay: 2020 Review
by Alexander Barabash
Universe 2020, 6(10), 159; https://doi.org/10.3390/universe6100159 - 27 Sep 2020
Cited by 98 | Viewed by 4282
Abstract
All existing positive results on two-neutrino double beta decay and two-neutrino double electron capture in different nuclei have been analyzed. Weighted average and recommended half-life values for 48Ca, 76Ge, 82Se, 96Zr, 100Mo, 100Mo - 100Ru (0 [...] Read more.
All existing positive results on two-neutrino double beta decay and two-neutrino double electron capture in different nuclei have been analyzed. Weighted average and recommended half-life values for 48Ca, 76Ge, 82Se, 96Zr, 100Mo, 100Mo - 100Ru (01+), 116Cd, 128Te, 130Te, 136Xe, 150Nd, 150Nd - 150Sm (01+), 238U, 78Kr, 124Xe and 130Ba have been obtained. Given the measured half-life values, effective nuclear matrix elements for all these transitions were calculated. Full article
(This article belongs to the Special Issue Neutrinoless Double Beta Decay)
Previous Issue
Next Issue
Back to TopTop