Investigation on Synaptic Adaptation and Fatigue in ZnO/HfZrO-Based Memristors under Continuous Electrical Pulse Stimulation
<p>Fundamental characteristics of the prepared samples for synaptic memristors based on ZnO/HfZrO. (<b>a</b>) Device structure with a top electrode (Au/Ti layers) and a bottom electrode (Al layer) interfacing with ZnO and HfZrO layers, respectively. (<b>b</b>) Biological synapses with neurotransmitters in the synaptic gap. (<b>c</b>) Surface morphology through AFM imaging. (<b>d</b>) SEM cross-section of ZnO and HfZrO.</p> "> Figure 2
<p>(<b>a</b>) Pulses applied within 1000 ms, with a pulse width of 20 ms, an interval of 100 ms, and an amplitude of 1 V. (<b>b</b>) Post-synaptic current response of the device to the pulse train. On one hand, continuous application of voltage leads to a continuous increase in device conductivity; on the other hand, the magnitude of this increase gradually diminishes. (<b>c</b>) Pulses applied within 10,000 ms, with a pulse width of 20 ms, an interval of 100 ms, and an amplitude of 1 V. The red line represents the corresponding peak line of the post-synaptic current response. It is evident that the later current is higher than the earlier current, but with a slower rate of increase. (<b>d</b>) Current decay after different numbers of pulse stimuli. For samples reaching the fatigue region, the current decay rate is almost the same. For devices that did not reach fatigue due to insufficient pulse training, the current decay curves for different pulse counts are different, with faster decay rates and lower retention values.</p> "> Figure 3
<p>The impact of various parameters on fatigue effects. (<b>a</b>) Current retention decay of the device 72 h post-stimulation with varying numbers of pulses. The “before fatigue “and “fatigue region” were separated with gray box. # denotes the number of the pulses. (<b>b</b>) The relaxation time constant (τ) varies with the number of stimulation pulses, derived from fitting the data in <a href="#electronics-13-01148-f002" class="html-fig">Figure 2</a>. Its trend highly resembles the red curve in <a href="#electronics-13-01148-f002" class="html-fig">Figure 2</a>c. (<b>c</b>) Current decay of devices that reached fatigue after sufficient pulse stimulation at different temperatures. The red solid line represents the curve fitted using Equation (1). (<b>d</b>) The Ebbinghaus forgetting curve (sourced from the Ebbinghaus forgetting curve at <a href="https://e-student.org/ebbinghaus-forgetting-curve/" target="_blank">https://e-student.org/ebbinghaus-forgetting-curve/</a>, accessed on 29 January 2024). Red and green lines are all forgetting curves with different loss rate.</p> "> Figure 4
<p>(<b>a</b>) XPS spectra of the device under various conditions. Red line represents the fitted curve, the black line represents the measured data, and the blue and green lines represent the fitted subpeaks. (<b>b</b>) Ferroelectric behavior of HfZrO layers with varying thicknesses.</p> "> Figure 5
<p>Dynamic processes within the device. For the ZnO layer: (<b>a</b>) in initial state, (<b>b</b>) during the pulse, (<b>c</b>) when the pulse ceases, and (<b>d</b>) during subsequent pulsing. “E” represents the external electric field, and “P” represents the polarization field. Similarly for the HfZrO layer: (<b>e</b>) in initial state, (<b>f</b>) during the pulse, (<b>g</b>) when the pulse ceases, and (<b>h</b>) during subsequent pulsing.</p> "> Figure 6
<p>Relationship between the Increment Ratio (IR) with the number of cycles under (<b>a</b>) increasing intervals, (<b>b</b>) increasing widths, and (<b>c</b>) increasing amplitudes. (<b>d</b>) Response current (black) of a pure ZnO device of the same thickness (without HfZrO layer) for comparison. The pulse is present in red. The current ceases during the pulse off periods.</p> ">
Abstract
:1. Introduction
2. Experimental
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Jaeger, H. Exploring the landscapes of “computing”: Digital, neuromorphic, unconventional—And beyond. arXiv Prepr. 2020, arXiv:2011.12013. [Google Scholar]
- Wan, Q.; Sharbati, M.T.; Erickson, J.R.; Du, Y.; Xiong, F. Emerging artificial synaptic devices for neuromorphic computing. Adv. Mater. Technol. 2019, 4, 1900037. [Google Scholar] [CrossRef]
- Caravelli, F.; Carbajal, J.P. Memristors for the curious outsiders. Technologies 2018, 6, 118. [Google Scholar] [CrossRef]
- Jeong, D.S.; Kim, K.M.; Kim, S.; Choi, B.J.; Hwang, C.S. Memristors for energy-efficient new computing paradigms. Adv. Electron. Mater. 2016, 2, 1600090. [Google Scholar] [CrossRef]
- Radamson, H.H.; Zhu, H.; Wu, Z.; He, X.; Lin, H.; Liu, J.; Xiang, J.; Kong, Z.; Xiong, W.; Li, J. State of the art and future perspectives in advanced CMOS technology. Nanomaterials 2020, 10, 1555. [Google Scholar] [CrossRef] [PubMed]
- Feng, P.; Xu, W.; Yang, Y.; Wan, X.; Shi, Y.; Wan, Q.; Zhao, J.; Cui, Z. Printed neuromorphic devices based on printed carbon nanotube thin-film transistors. Adv. Funct. Mater. 2017, 27, 1604447. [Google Scholar] [CrossRef]
- Schulz, P.E.; Cook, E.P.; Johnston, D. Changes in paired-pulse facilitation suggest presynaptic involvement in long-term potentiation. J. Neurosci. 1994, 14, 5325–5337. [Google Scholar] [CrossRef]
- Li, H.; Geng, S.; Liu, T.; Cao, M.; Su, J. Synaptic and Gradual Conductance Switching Behaviors in CeO2/Nb–SrTiO3 Heterojunction Memristors for Electrocardiogram Signal Recognition. ACS Appl. Mater. Interfaces 2023, 15, 5456–5465. [Google Scholar] [CrossRef]
- Niu, J.; Fang, Z.; Liu, G.; Zhao, Z.; Yan, X. Multilevel state ferroelectric La: HfO2-based memristors and their implementations in associative learning circuit and face recognition. Sci. China Mater. 2023, 66, 1148–1156. [Google Scholar] [CrossRef]
- Qi, M.; Fu, T.; Yang, H.; Tao, Y.; Li, C.; Xiu, X. Reliable analog resistive switching behaviors achieved using memristive devices in AlO x/HfO x bilayer structure for neuromorphic systems. Semicond. Sci. Technol. 2022, 37, 035018. [Google Scholar] [CrossRef]
- Ismail, M.; Rasheed, M.; Mahata, C.; Kang, M.; Kim, S. Mimicking biological synapses with a-HfSiOx-based memristor: Implications for artificial intelligence and memory applications. Nano Converg. 2023, 10, 33. [Google Scholar] [CrossRef]
- Ryu, H.; Kim, S. Self-Rectifying Resistive Switching and Short-Term Memory Characteristics in Pt/HfO2/TaOx/TiN Artificial Synaptic Device. Nanomaterials 2020, 10, 2159. [Google Scholar] [CrossRef]
- Khot, A.C.; Dongale, T.D.; Nirmal, K.A.; Deepthi, J.K.; Sutar, S.S.; Kim, T.G. 2D Ti3C2Tx MXene-derived self-assembled 3D TiO2nanoflowers for nonvolatile memory and synaptic learning applications. J. Mater. Sci. Technol. 2023, 150, 1–10. [Google Scholar] [CrossRef]
- Cao, G.; Meng, P.; Chen, J.; Liu, H.; Bian, R.; Zhu, C.; Liu, F.; Liu, Z. 2D material based synaptic devices for neuromorphic computing. Adv. Funct. Mater. 2021, 31, 2005443. [Google Scholar] [CrossRef]
- Zhao, P.; Ji, R.; Lao, J.; Jiang, C.; Tian, B.; Luo, C.; Lin, H.; Peng, H.; Duan, C.-G. Multifunctional two-terminal optoelectronic synapse based on zinc oxide/Poly (3-hexylthiophene) heterojunction for neuromorphic computing. ACS Appl. Polym. Mater. 2022, 4, 5688–5695. [Google Scholar] [CrossRef]
- Song, W.; Yu, H.; Li, X.; Fang, R.; Zhu, W.; Zhang, L. Electric-Controlled Resistive Switching and Different Synaptic Behaviors in p⁺-Si/n-ZnO Heterojunction Memristor. IEEE Trans. Electron Devices 2023, 70, 1648–1652. [Google Scholar] [CrossRef]
- Li, W.; Fan, Z.; Huang, Q.; Rao, J.; Cui, B.; Chen, Z.; Lin, Z.; Yan, X.; Tian, G.; Tao, R. Polarization-dominated internal timing mechanism in a ferroelectric second-order memristor. Phys. Rev. Appl. 2023, 19, 014054. [Google Scholar] [CrossRef]
- Xiao, C.; Xu, B.; Si, J.; Di, Z.; Zhao, L.; Liu, R.; Lv, Q.; Wang, L.; Zhang, L. Wide waveband light detection and storage device for visual memory. Phys. Status Solidi (A) 2022, 219, 2100881. [Google Scholar] [CrossRef]
- Hong, Q.; Yan, R.; Wang, C.; Sun, J. Memristive circuit implementation of biological nonassociative learning mechanism and its applications. IEEE Trans. Biomed. Circuits Syst. 2020, 14, 1036–1050. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Su, K.; Chen, H.; Zou, X.; Wang, C.; Man, H.; Liu, K.; Xi, X.; Li, T. Research progress of neural synapses based on memristors. Electronics 2023, 12, 3298. [Google Scholar] [CrossRef]
- Wang, Z.; Wang, L.; Nagai, M.; Xie, L.; Yi, M.; Huang, W. Nanoionics-enabled memristive devices: Strategies and materials for neuromorphic applications. Adv. Electron. Mater. 2017, 3, 1600510. [Google Scholar] [CrossRef]
- Cao, Z.; Sun, B.; Zhou, G.; Mao, S.S.; Zhu, S.H.; Zhang, J.; Ke, C.; Zhao, Y.; Shao, J. Memristor-based neural networks: A bridge from device to artificial intelligence. Nanoscale Horiz. 2023, 8, 716–745. [Google Scholar] [CrossRef]
- Cowan, N. Short-term memory based on activated long-term memory: A review in response to Norris (2017). Psychol. Bull. 2019, 145, 822–847. [Google Scholar] [CrossRef]
- Kim, T.; Jeon, S. Pulse switching study on the HfZrO ferroelectric films with high pressure annealing. IEEE Trans. Electron Devices 2018, 65, 1771–1773. [Google Scholar] [CrossRef]
- Yadav, M.; Kashir, A.; Oh, S.; Nikam, R.D.; Kim, H.; Jang, H.; Hwang, H. High polarization and wake-up free ferroelectric characteristics in ultrathin Hf0. 5Zr0. 5O2 devices by control of oxygen-deficient layer. Nanotechnology 2021, 33, 085206. [Google Scholar] [CrossRef] [PubMed]
- Yun, S.; Mahata, C.; Kim, M.-H.; Kim, S. Artificial synapse characteristics of a ZnO-based memristor with a short-term memory effect. Appl. Surf. Sci. 2022, 579, 152164. [Google Scholar] [CrossRef]
- Pereira, M.; Deuermeier, J.; Freitas, P.; Barquinha, P.; Zhang, W.; Martins, R.; Fortunato, E.; Kiazadeh, A.; Hiroya, I. Tailoring the synaptic properties of a-IGZO memristors for artificial deep neural networks. APL Mater. 2022, 10, 011113. [Google Scholar] [CrossRef]
- Hu, M.; Chen, Y.; Yang, J.J.; Wang, Y.; Li, H.H. A compact memristor-based dynamic synapse for spiking neural networks. IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. 2016, 36, 1353–1366. [Google Scholar] [CrossRef]
- Min, D.-H.; Ryu, T.-H.; Yoon, S.-J.; Moon, S.-E.; Yoon, S.-M. Improvements in the synaptic operations of ferroelectric field-effect transistors using Hf0.5Zr0.5O2 thin films controlled by oxygen partial pressures during the sputtering deposition process. J. Mater. Chem. C 2020, 8, 7120–7131. [Google Scholar] [CrossRef]
- Liu, C.; Shen, X.; Fan, S.; Xu, T.; Zhang, J.; Su, J. Synaptic Characteristics and Neuromorphic Computing Enabled by Oxygen Vacancy Migration Based on Porous In2O3 Electrolyte-Gated Transistors. ACS Appl. Electron. Mater. 2023, 5, 4657–4666. [Google Scholar] [CrossRef]
- Mahata, C.; So, H.; Kim, S.; Kim, S.; Cho, S. Analog Memory and Synaptic Plasticity in an InGaZnO-Based Memristor by Modifying Intrinsic Oxygen Vacancies. Materials 2023, 16, 7510. [Google Scholar] [CrossRef] [PubMed]
- Tian, H.; Mi, W.; Zhao, H.; Mohammad, M.A.; Yang, Y.; Chiu, P.-W.; Ren, T.-L. A novel artificial synapse with dual modes using bilayer graphene as the bottom electrode. Nanoscale 2017, 9, 9275–9283. [Google Scholar] [CrossRef] [PubMed]
- Nayagam, D.A.; Williams, R.A.; Allen, P.J.; Shivdasani, M.N.; Luu, C.D.; Salinas-LaRosa, C.M.; Finch, S.; Ayton, L.N.; Saunders, A.L.; McPhedran, M. Chronic electrical stimulation with a suprachoroidal retinal prosthesis: A preclinical safety and efficacy study. PLoS ONE 2014, 9, e97182. [Google Scholar] [CrossRef] [PubMed]
- Cowan, N. The magical number 4 in short-term memory: A reconsideration of mental storage capacity. Behav. Brain Sci. 2001, 24, 87–114. [Google Scholar] [CrossRef]
- Tripathy, S.P.; Öǧmen, H. Sensory memory is allocated exclusively to the current event-segment. Front. Psychol. 2018, 9, 1435. [Google Scholar] [CrossRef] [PubMed]
- Wood, R.; Baxter, P.; Belpaeme, T. A review of long-term memory in natural and synthetic systems. Adapt. Behav. 2012, 20, 81–103. [Google Scholar] [CrossRef]
- Ielmini, D.; Wang, Z.; Liu, Y. Brain-inspired computing via memory device physics. APL Mater. 2021, 9, 050702. [Google Scholar] [CrossRef]
- Ma, F.; Zhu, Y.; Xu, Z.; Liu, Y.; Zheng, X.; Ju, S.; Li, Q.; Ni, Z.; Hu, H.; Chai, Y. Optoelectronic perovskite synapses for neuromorphic computing. Adv. Funct. Mater. 2020, 30, 1908901. [Google Scholar] [CrossRef]
- Yamada, C.; Itaguchi, Y.; Fukuzawa, K. Effects of the amount of practice and time interval between practice sessions on the retention of internal models. PLoS ONE 2019, 14, e0215331. [Google Scholar] [CrossRef]
- Sokolov, A.S.; Ali, M.; Riaz, R.; Abbas, Y.; Ko, M.J.; Choi, C. Silver-adapted diffusive memristor based on organic nitrogen-doped graphene oxide quantum dots (N-GOQDs) for artificial biosynapse applications. Adv. Funct. Mater. 2019, 29, 1807504. [Google Scholar] [CrossRef]
- Kim, S.; Choi, S.; Lu, W. Comprehensive physical model of dynamic resistive switching in an oxide memristor. ACS Nano 2014, 8, 2369–2376. [Google Scholar] [CrossRef]
- Du, C.; Ma, W.; Chang, T.; Sheridan, P.; Lu, W.D. Biorealistic implementation of synaptic functions with oxide memristors through internal ionic dynamics. Adv. Funct. Mater. 2015, 25, 4290–4299. [Google Scholar] [CrossRef]
- Min, Y.; Akbulut, M.; Kristiansen, K.; Golan, Y.; Israelachvili, J. The role of interparticle and external forces in nanoparticle assembly. Nat. Mater. 2008, 7, 527–538. [Google Scholar] [CrossRef]
- Hsieh, P.-T.; Chen, Y.-C.; Kao, K.-S.; Wang, C.-M. Luminescence mechanism of ZnO thin film investigated by XPS measurement. Appl. Phys. A 2008, 90, 317–321. [Google Scholar] [CrossRef]
- Chen, M.; Wang, X.; Yu, Y.; Pei, Z.; Bai, X.; Sun, C.; Huang, R.; Wen, L. X-ray photoelectron spectroscopy and auger electron spectroscopy studies of Al-doped ZnO films. Appl. Surf. Sci. 2000, 158, 134–140. [Google Scholar] [CrossRef]
- Wang, Z.Q.; Xu, H.Y.; Li, X.H.; Yu, H.; Liu, Y.C.; Zhu, X.J. Synaptic learning and memory functions achieved using oxygen ion migration/diffusion in an amorphous InGaZnO memristor. Adv. Funct. Mater. 2012, 22, 2759–2765. [Google Scholar] [CrossRef]
- Li, Y.; Liang, R.; Wang, J.; Zhang, Y.; Tian, H.; Liu, H.; Li, S.; Mao, W.; Pang, Y.; Li, Y. A ferroelectric thin film transistor based on annealing-free HfZrO film. IEEE J. Electron Devices Soc. 2017, 5, 378–383. [Google Scholar] [CrossRef]
- Yang, Y.; Lu, W. Nanoscale resistive switching devices: Mechanisms and modeling. Nanoscale 2013, 5, 10076–10092. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Mei, Z.; Tang, A.; Azarov, A.; Kuznetsov, A.; Xue, Q.-K.; Du, X. Oxygen vacancies: The origin of n-type conductivity in ZnO. PhRvB 2016, 93, 235305. [Google Scholar] [CrossRef]
- Yang, R.; Wang, F.; Lu, J.; Lu, Y.; Lu, B.; Li, S.; Ye, Z. ZnO with p-Type Doping: Recent Approaches and Applications. ACS Appl. Electron. Mater. 2023, 5, 4014–4034. [Google Scholar] [CrossRef]
- Jiang, R.; Du, X.; Han, Z.; Sun, W. Investigation of chemical distribution in the oxide bulk layer in Ti/HfO2/Pt memory devices using X-ray photoelectron spectroscopy. Appl. Phys. Lett. 2015, 106, 173509. [Google Scholar] [CrossRef]
- Wang, Z.; Joshi, S.; Savel’ev, S.E.; Jiang, H.; Midya, R.; Lin, P.; Hu, M.; Ge, N.; Strachan, J.P.; Li, Z. Memristors with diffusive dynamics as synaptic emulators for neuromorphic computing. Nat. Mater. 2017, 16, 101–108. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xiang, Z.; Wang, K.; Lu, J.; Wang, Z.; Jin, H.; Li, R.; Shi, M.; Wu, L.; Yan, F.; Jiang, R. Investigation on Synaptic Adaptation and Fatigue in ZnO/HfZrO-Based Memristors under Continuous Electrical Pulse Stimulation. Electronics 2024, 13, 1148. https://doi.org/10.3390/electronics13061148
Xiang Z, Wang K, Lu J, Wang Z, Jin H, Li R, Shi M, Wu L, Yan F, Jiang R. Investigation on Synaptic Adaptation and Fatigue in ZnO/HfZrO-Based Memristors under Continuous Electrical Pulse Stimulation. Electronics. 2024; 13(6):1148. https://doi.org/10.3390/electronics13061148
Chicago/Turabian StyleXiang, Zeyang, Kexiang Wang, Jie Lu, Zixuan Wang, Huilin Jin, Ranping Li, Mengrui Shi, Liuxuan Wu, Fuyu Yan, and Ran Jiang. 2024. "Investigation on Synaptic Adaptation and Fatigue in ZnO/HfZrO-Based Memristors under Continuous Electrical Pulse Stimulation" Electronics 13, no. 6: 1148. https://doi.org/10.3390/electronics13061148
APA StyleXiang, Z., Wang, K., Lu, J., Wang, Z., Jin, H., Li, R., Shi, M., Wu, L., Yan, F., & Jiang, R. (2024). Investigation on Synaptic Adaptation and Fatigue in ZnO/HfZrO-Based Memristors under Continuous Electrical Pulse Stimulation. Electronics, 13(6), 1148. https://doi.org/10.3390/electronics13061148