Bridging the Gender Gap in Climate-Resilient Sweet Potato Farming: A Case Study from Goromonzi District, Zimbabwe
<p>Goromonzi district and selected wards.</p> "> Figure 2
<p>Framework for Evaluating Sweet Potato Production Using MCDM and AHP.</p> "> Figure 3
<p>Sweet Potatoes production Criteria and Alternatives.</p> "> Figure 4
<p>Sweet Potatoes challenges ranking.</p> "> Figure 5
<p>VHI analysis of Drought dataset between 1990 to 2021.</p> "> Figure 6
<p>VHI variations in Goromonzi (Ward 1, 2, 3, 4, 7) between 1990–2020.</p> "> Figure 7
<p>The number of planting seasons for Sweet Potatoes Among Farmers in the last three years.</p> "> Figure 8
<p>Total land owned (in hectares) by male and female.</p> "> Figure 9
<p>Distance between the Farm and the Water source (in meters).</p> "> Figure 10
<p>Mapping of the location of Farm and the water source (in meters).</p> "> Figure 11
<p>Labor use during Cultivation and Harvesting in Goromonzi district (%).</p> ">
Abstract
:1. Introduction
2. Methods
2.1. Study Area
2.2. Data Sources
- Firstly, it delineated a series of criteria indices relevant to sweet potato production, setting these against alternatives within the context of available resources.
- Subsequently, through a detailed comparison of location-specific criteria using AHP, the study assigned weights (scores) to these criteria.
- Lastly, a comparative analysis was conducted between the sweet potato production criteria indices and their respective scores, utilizing a fuzzy MCDM approach.
2.3. Data Analysis
2.3.1. VHI
2.3.2. Multi Criteria Decision-Making Model
- Selection of criteria indices
- 2.
- Weighting the criteria indices
- a.
- Utilization of Triangular Fuzzy Numbers (TFNs)
- b.
- Formulating f-AHP Comparison Matrices
- c.
- Evaluating Fuzzy Synthetic Extent
- 3.
- Calculating f-AHP Weighted Values
3. Results
3.1. Multi-Criteria Decision-Making Model
3.1.1. Definition of Drought Impacts on Sweet Potato Production in Zimbabwe
3.1.2. Weightage of Sweet Potato Production Criteria
3.1.3. Determination of Scores for Sweet Potato Production Criteria
- Environmental Criteria: Cultivation and Weather/Climate Change
- Infrastructural and Operational Criteria: Land Use, Harvesting, Road Access, Vehicle Availability, and Marketability
3.2. Enhancing Gender-Inclusive Strategies for Mitigating Drought Impacts on Sweet Potato Production
3.2.1. Environmental Level
3.2.2. Infrastructure and Operational Level
3.2.3. Extension Services
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Abbas, A.; Waseem, M.; Ahmad, R.; Khan, K.A.; Zhao, C.; Zhu, J. Sensitivity analysis of greenhouse gas emissions at farm level: Case study of grain and cash crops. Environ. Sci. Pollut. Res. 2022, 29, 82559–82573. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.; Elahi, E.; You, J.; Sheng, Y.; Li, J.; Meng, A. Land use policy implications of demographic shifts: Analyzing the impact of aging rural populations on agricultural carbon emissions in China. Land Use Policy 2024, 147, 107340. [Google Scholar] [CrossRef]
- CRED. The Interplay of Drought-Flood Extreme Events in Africa over the Last Twenty Years (2002–2021); Crunch Newsletter, Issue No. 69; CRED Crunch: Bengaluru, India, 2022. [Google Scholar]
- Aldridge, C. Why was there no famine following the 1992 Southern African Drought? The Contributions and Consequences of Household Responses. IDS Bull. 2002, 33, 4. [Google Scholar]
- Tobaiwa, C. Zimbabwe Country Assessment Paper, SADC Drought Management Workshop; SADC: Gaborone, Botswana, 1993. [Google Scholar]
- World Bank. Zimbabwe Risk (Historical Hazards). 2021. Available online: https://climateknowledgeportal.worldbank.org/country/zimbabwe/vulnerability (accessed on 8 June 2024).
- Bhatasara, S. Rethinking climate change research in Zimbabwe. J. Environ. Stud. Sci. 2017, 7, 39–52. [Google Scholar] [CrossRef]
- Mafongoya, P.L.; Ajayi, O.C. (Eds.) Indigenous Knowledge Systems and Climate Change Management in Africa; CTA: Wageningen, The Netherlands, 2017; p. 316. [Google Scholar]
- Nyahunda, L.; Tirivangasi, H.M. Challenges faced by rural people in mitigating the effects of climate change in the Mazungunye communal lands, Zimbabwe. Jàmbá J. Disaster Risk Stud. 2019, 11, 1–9. [Google Scholar] [CrossRef]
- Mushore, T.D.; Mhizha, T.; Manjowe, M.; Mashawi, L.; Matandirotya, E.; Mashonjowa, E.; Mushambi, G.T. Climate change adaptation and mitigation strategies for small holder farmers: A case of Nyanga District in Zimbabwe. Front. Clim. 2021, 3, 676495. [Google Scholar] [CrossRef]
- Jaison, C.; Reid, M.; Simatele, M.D. Asset portfolios in climate change adaptation and food security: Lessons from Gokwe South District, Zimbabwe. J. Asian Afr. Stud. 2023, 59, 2522–2542. [Google Scholar] [CrossRef]
- Government of Zimbabwe (2023). National Development Strategy 1. Available online: www.zim.gov.zw (accessed on 12 October 2024).
- FAOLEX Database. National Development Strategy1 (January 2021 to December 2025); FAOLEX Database: Harare, Zimbabwe, 2020. [Google Scholar]
- Mudombi, S. Adoption of agricultural innovations: The case of improved sweet potato in Wedza community of Zimbabwe. Afr. J. Sci. Technol. Innov. Dev. 2013, 5, 459–467. [Google Scholar] [CrossRef]
- Nyamadzawo, G.; Wuta, M.; Nyamangara, J.; Nyamugafata, P.; Chirinda, N. Optimizing dambo (seasonal wetland) cultivation for climate change adaptation and sustainable crop production in the smallholder farming areas of Zimbabwe. Int. J. Agric. Sustain. 2015, 13, 23–39. [Google Scholar] [CrossRef]
- Makubhu, F.N.; Laurie, S.M.; Rauwane, M.E.; Figlan, S. Trends and gaps in sweet potato (Ipomoea batatas L.) improvement in sub-Saharan Africa: Drought tolerance breeding strategies. Food Energy Secur. 2024, 13, e545. [Google Scholar] [CrossRef]
- Andrade, M.; Barker, I.; Cole, D.; Dapaah, H.; Elliott, H.; Fuentes, S.; Grüneberg, W.; Kapinga, R.; Kroschel, J.; Labarta, R.; et al. Unleashing the Potential of Sweetpotato in Sub-Saharan Africa: Current Challenges and Way Forward; International Potato Center (CIP): Lima, Peru, 2009; 197p. [Google Scholar]
- FAOSTAT. Crops and Livestock Products. 2022. Available online: https://www.fao.org/faostat/en/#data/QCL (accessed on 25 October 2024).
- Mudombi, S.; Mano, R.T. Analyzing Incomes Outcomes of Incorporating Improved Sweet Potato into the Smallholder Farming System: Case Study of Wedza Community in Zimbabwe; Working Paper AEE; Department of Agricultural Economics and Extension, Faculty of Agriculture, University of Zimbabwe: Harare, Zimbabwe, 2007. [Google Scholar]
- Mutandwa, E. Performance of Tissue-Cultured Sweet Potatoes among Smallholder Farmers in Zimbabwe. AgBioForum 2008, 11, 48–57. [Google Scholar]
- Scott, G.; Ferguson, P.I.; Herrera, J.E. (Eds.) Product development for root and tuber crops, Volume III-Africa. In Proceedings of the Workshop on Processing and Marketing and Utilization of Root and Tuber Crops in Africa, Ibadan, Nigeria, 26 October–2 November 1991. [Google Scholar]
- Zvokuomba, K.; Batisai, K. Veracity of women’s land ownership in the aftermath of land redistribution in Zimbabwe: The limits of western feminism. Agenda 2020, 34, 151–158. [Google Scholar] [CrossRef]
- Chipuriro, R.M.; Batisal, K.; Desai, A. Land Reform and Local Economic Development: Elderly Women Farmers’ Narratives in Shamva District, Zimbabwe. Doctoral Thesis, University of Johannesburg, Johannesburg, South Africa, 2021. Available online: http://hdl.handle.net/102000/0002 (accessed on 22 October 2017).
- Batisai, K. Women’s Rights to Own Land Should Be Prioritized. 2019. Available online: https://www.iol.co.za/the-star/opinion-analysis/womens-rights-to-own-land-should-be-prirotised-30108402 (accessed on 20 October 2024).
- Tirivangasi, H.; Dzvimbo, M.; Chitongo, L.; Mawonde, L. Walking where men walk: Gendered politics of smallholder agriculture in Zimbabwe. Present Environ. Sustain. Dev. 2023, 17, 33–50. [Google Scholar] [CrossRef]
- Mpandeli, S.; Maponya, P. Constraints and challenges facing the small-scale farmers in Limpopo Province, South Africa. J. Agric. Sci. 2014, 6, 135. [Google Scholar] [CrossRef]
- Mzimela, J.H.; Moyo, I.; Tshabalala, T. Spatiotemporal analysis of agricultural drought variability in the uMkhanyakude District Municipality, KwaZulu-Natal. Environ. Monit. Assess. 2025, 197, 178. [Google Scholar] [CrossRef] [PubMed]
- Ncoyini, Z.; Savage, M.J.; Strydom, S. Limited access and use of climate information by small-scale sugarcane farmers in South Africa: A case study. Clim. Serv. 2022, 26, 100285. [Google Scholar] [CrossRef]
- Olayemi, F.F.; Adegbola, A.; Bamishaiye, E.I. Assessment of post-harvest challenges of small-scale farm holders of tomotoes, bell and hot pepper in some local government areas of Kano State, Nigeria. Bayero J. Pure Appl. Sci. 2010, 3, 39–42. [Google Scholar] [CrossRef]
- Makhura, M.N.; Wasike, W.S. Patterns of access to rural service infrastructure: The case of farming households in Limpopo Province. Agrekon 2003, 42, 129–143. [Google Scholar] [CrossRef]
- Ortmann, G.F.; King, R.P. Agricultural cooperatives II: Can they facilitate access of small-scale farmers in South Africa to input and product markets? Agrekon 2007, 46, 219–244. [Google Scholar] [CrossRef]
- Medvediev, I.; Eliseyev, P.; Lebid, I.; Sakno, O. A modelling approach to the transport support for the harvesting and transportation complex under uncertain conditions. IOP Conf. Ser. Mater. Sci. Eng. 2020, 977, 012003. [Google Scholar] [CrossRef]
- Munyaka, J.-C.B.; Gallay, O.; Hlal, M.; Mutandwa, E.; Chenal, J. Optimizing the Sweet Potato Supply Chain in Zimbabwe Using Discrete Event Simulation: A Focus on Production, Distribution, and Market Dynamics. Sustainability 2024, 16, 9166. [Google Scholar] [CrossRef]
- Tramarico, C.L.; Mizuno, D.; Salomon, V.A.P.; Marins, F.A.S. Analytic Hierarchy Process and Supply Chain Management: A bibliometric study. Information Technology and Quantitative Management (ITQM 2015). Procedia Comput. Sci. 2015, 55, 441–450. [Google Scholar] [CrossRef]
- Triantaphyllou, E.; Shu, B.; Sanchez, S.; Ray, T. Multi-criteria decision making: An operations research approach. In Encyclopedia of Electrical and Electronics Engineering; Webster, J.G., Ed.; John Wiley & Sons: New York, NY, USA, 1998; Volume 15, pp. 175–186. [Google Scholar]
- Sipahi, S.; Timor, M. The analytic hierarchy process and analytic network process: An overview of applications. Manag. Decis. 2021, 48, 775–808. [Google Scholar] [CrossRef]
- Deepa, N.; Ganesan, K.; Srinivasan, K.; Chang, C.Y. Realizing sustainable development via modified integrated weighting MCDM model for ranking agrarian dataset. Sustainability 2019, 11, 6060. [Google Scholar] [CrossRef]
- Degener, P.; Gösling, H.; Geldermann, J. Decision support for the location planning in disaster areas using multi-criteria methods. In Proceedings of the 10th International ISCRAM Conference, Baden-Baden, Germany, 12–15 May 2013; Volume 10, pp. 278–283. [Google Scholar]
- United States Geological Survey (USGS). Landsat Normalized Difference Vegetation Index. Landsat Missions. Available online: https://www.usgs.gov/landsat-missions/landsat-normalized-difference-vegetation-index (accessed on 21 September 2023).
- Munyaka, J.-C.B.; Chenal, J.; Mabaso, S.; Tfwala, S.S.; Mandal, A.K. Geospatial Tools and Remote Sensing Strategies for Timely Humanitarian Response: A Case Study on Drought Monitoring in Eswatini. Sustainability 2024, 16, 409. [Google Scholar] [CrossRef]
- Munyaka, J.C.B.; Yadavalli, V.S.S. Decision support framework for facility location and demand planning for humanitarian logistics. Int. J. Syst. Assur. Eng. Manag. 2021, 12, 9–28. [Google Scholar] [CrossRef]
- Ghaleb, F.; Mario, M.; Sandra, A.N. Regional landsat-based drought monitoring from 1982 to 2014. Climate 2015, 3, 563–577. [Google Scholar] [CrossRef]
- Bento, V.A.; Gouveia, C.M.; DaCamara, C.C.; Trigo, I. F A climatological assessment of drought impact on vegetation health index. Agric. For. Meteorol. 2018, 259, 286–295. [Google Scholar] [CrossRef]
- Guillevic, P.; Göttsche, F.; Nickeson, J.; Hulley, G.; Ghent, D.; Yu, Y.; Trigo, I.; Hook, S.; Sobrino, J.A.; Remedios, J.; et al. Land Surface Temperature Product Validation Best Practice Protocol. Version 1.1. In Good Practices for Satellite-Derived Land Product Validation; Guillevic, P., Göttsche, F., Nickeson, J., Román, M., Eds.; Land Product Validation Subgroup (WGCV/CEOS): Baltimore, MD, USA, 2018; p. 58. [Google Scholar]
- Swaminathan, M.S.; Rahmanian, M.; Bertini, C.; Egziabher, T.B.G.; Haddad, L.; Kumar, M.S.; Hendriks, S.L.; de Janvry, A.; Maluf, R.; Aly, M.M.; et al. Food Security and Climate Change; High-Level Panel of Experts on Food Security and Nutrition: Rome, Italy, 2012. [Google Scholar]
- Donovan, W.G. Agriculture and Economic Reform in Sub-Saharan Africa; Working Paper No. 18. Agricultural Policy and Production; Africa Technical Department Environmentally Sustainable Development Division (AFTES): Washington, DC, USA, 1996; Available online: http://documents.worldbank.org/curated/en/920411468029040581 (accessed on 20 October 2024).
- Moon, J.H.; Kang, C.S. Application of fuzzy decision-making method to the evaluation of spent fuel storage options. Prog. Nucl. Energy 2011, 39, 345–351. [Google Scholar] [CrossRef]
- Chang, D.Y. Applications of the extent analysis method on fuzzy AHP. Eur. J. Oper. Res. 1996, 95, 649–655. [Google Scholar] [CrossRef]
- Tang, Y.; Lin, T. Application of the fuzzy analytic hierarchy process to the lead-free equipment selection decision. Bus. Syst. Res. 2011, 5, 35–56. [Google Scholar] [CrossRef]
- Zhu, K.J.; Jing, Y.; Chang, D.Y. A discussion on extent analysis method and applications of fuzzy AHP. Eur. J. Oper. Res. 1999, 116, 450–456. [Google Scholar] [CrossRef]
- Saaty, T.L. The Analytical Hierarchy Processes; McGraw Hill: New York, NY, USA, 1980. [Google Scholar]
- Dubois, D.; Prade, H. Fuzzy Sets and Systems: Theory and Applications; Academic Press: Boston, MA, USA, 1980. [Google Scholar]
- Thokala, P. Multiple Criteria Decision Analysis for Health Technology Assessment; University of Sheffield, School of Health and Related Research: Sheffield, UK, 2011. [Google Scholar]
- Jogo, W.; Kudita, S.; Munda, E.; Chiduwa, M.; Pinkson, S.; Gwaze, T. Agronomic Performance and Farmer Preferences for Biofortified Orange-Fleshed Sweetpotato Varieties in Zimbabwe; International Potato Center: Lima, Peru, 2021. [Google Scholar]
- Low, J.W.; Ortiz, R.; Vandamme, E.; Andrade, M.; Biazin, B.; Grüneberg, W.J. Nutrient-Dense Orange-Fleshed Sweetpotato: Advances in Drought-Tolerance Breeding and Understanding of Management Practices for Sustainable Next-Generation Cropping Systems in Sub-Saharan Africa. Front. Sustain. Food Syst. 2020, 4, 1–22. [Google Scholar] [CrossRef]
- Ncube, N.; Mutetwa, M.; Mtaita, T. Effect of cutting position and vine pruning level on yield of sweet potato (Ipomoea batatas L.). J. Arid. Agric. 2019, 5, 1–5. [Google Scholar] [CrossRef]
- Rethabile, K.M.; Jing, Z.; Mofolo, T.C.; Mwandiringana, E. Adaptation to Climate Change: Status, Household Strategies and Challenges in Lesotho. Int. J. Sci. Adv. 2021, 2, 365–370. [Google Scholar] [CrossRef]
- Bocher, T.; Low, J.W.; Sindi, K.; Rajendran, S. Gender-Sensitive Value Chain Intervention Improved Profit Efficiency among Orange-Fleshed Sweetpotato Producers in Rwanda. Open Agric. 2017, 2, 386–393. [Google Scholar] [CrossRef]
- Afzal, N.; Afionis, S.; Stringer, L.C.; Favretto, N.; Sakai, M.; Sakai, P. Benefits and Trade-Offs of Smallholder Sweet Potato Cultivation as a Pathway toward Achieving the Sustainable Development Goals. Sustainability 2021, 13, 552. [Google Scholar] [CrossRef]
- Moyo, M. How smallholder farmers in Zimbabwe are succeeding with irrigation and fighting climate change impacts. PreventionWeb 2018. Available online: https://www.preventionweb.net/news/how-smallholder-farmers-zimbabwe-are-succeeding-irrigation-and-fighting-climate-change-impacts (accessed on 20 October 2024).
- Hivos. Changing Norms for Rural Women in Zimbabwe. 2023. Available online: https://hivos.org (accessed on 21 December 2024).
- Feminist Africa. Women and Land Ownership in Zimbabwe: A Review of the Land Reforms with Particular Focus on the Fast-Track Land Reform Programme (FTLRP). 2022. Available online: https://feministafrica.net (accessed on 21 December 2024).
- MFA Transport Survey. MFA Transport Survey Report: Assessing the Challenges of Agricultural Produce Transportation in Zimbabwe; Ministry of Food and Agriculture: Harare, Zimbabwe, 2022.
- AGRITEX. Agricultural Marketing in Zimbabwe; AGRITEX: Harare, Zimbabwe, 2008. [Google Scholar]
- Chivinge, O.T.; Mudhara, M.; Mudzamiri, W. Sweet potato production in Zimbabwe: Constraints and opportunities. J. Root Crops 2000, 26, 56–64. [Google Scholar]
- Chivero, N.; Chirara, S. Post-harvest handling of sweet potatoes in Zimbabwe: Village and commercial practices. Zimb. J. Agric. Res. 2003, 41, 74–85. [Google Scholar]
- Scott, G.J.; Rosegrant, M.W.; Ringler, C. Global Projections for Root and Tuber Crops to the Year 2020; International Food Policy Research Institute: Washington, DC, USA, 2000. [Google Scholar]
- Ezin, V. Sweet Potato Production and Market Potential in Sub-Saharan Africa. J. Agric. Res. 2018, 12, 210–225. [Google Scholar]
- Carey, E.E.; Motsa, M.M. Enhancing productivity and resilience of sweet potato farming systems in Southern Africa. J. Root Crops 2019, 45, 40–49. [Google Scholar]
- Ewell, P.T.; Mutuura, J. Building the Sweet Potato Subsector in East Africa: Technological Innovation, Public-Private Partnerships, and Impact Assessment; International Potato Center (CIP): Lima, Peru, 2012. [Google Scholar]
- Kapinga, R.E.; Zhang, D.; Mwanga, R.O.M.; Carey, E.E.; Ojiambo, P.S.; Yang, R.Y. Sweet potato: Breeding, physiology, and agronomy. In Crop Production Science in Horticulture; CAB International: Wallingford, UK, 2013; Volume 18, pp. 421–459. [Google Scholar]
- Low, J.; Mwanga, R. Sweet potato: An untapped food resource. CAB Rev. Perspect. Agric. Vet. Sci. Nutr. Nat. Resour. 2011, 6, 1–16. [Google Scholar]
- Mwanga, R.O.M.; Andrade, M. Sweet Potato in Sub-Saharan Africa. In Sweet Potato Post-Harvest Assessment: Towards a Research Agenda; International Potato Center (CIP): Lima, Peru, 2006; pp. 35–46. [Google Scholar]
Series No. | Criteria | Acronym | Description |
---|---|---|---|
C1 | Cultivation | C | This refers to the practice of propagating new plants from vine cuttings to develop new storage roots. |
C2 | Land Use | LU | Soil fertility and access to adequate plots for cultivation. |
C3 | Harvesting | H | Involves the optimal timing and techniques for harvesting sweet potatoes to maximize yield and quality. |
C4 | Marketability | M | Challenges in accessing fair markets and achieving competitive pricing for sweet potatoes. |
C5 | Road | R | The quality of rural roads and their impact on transportation. |
C6 | Vehicle | V | The availability and efficiency of vehicles for transporting sweet potatoes to markets or storage facilities. |
C7 | Weather and Climate Condition | WCC | The effect of local weather patterns and climate conditions on the growth and yield of sweet potatoes. |
Drought | Values |
---|---|
Extreme | <10 |
Severe | ≥10, <20 |
Moderate | ≥20, <30 |
Mild | ≥30, <40 |
No | ≥40 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Munyaka, J.-C.B.; Gallay, O.; Chenal, J.; Mutandwa, E.; Salgado, X.; Pindayi, T.; Gondo, D.; Pfuma, H.; Mhembere, R.; Tamanikwa, T.; et al. Bridging the Gender Gap in Climate-Resilient Sweet Potato Farming: A Case Study from Goromonzi District, Zimbabwe. Systems 2025, 13, 135. https://doi.org/10.3390/systems13020135
Munyaka J-CB, Gallay O, Chenal J, Mutandwa E, Salgado X, Pindayi T, Gondo D, Pfuma H, Mhembere R, Tamanikwa T, et al. Bridging the Gender Gap in Climate-Resilient Sweet Potato Farming: A Case Study from Goromonzi District, Zimbabwe. Systems. 2025; 13(2):135. https://doi.org/10.3390/systems13020135
Chicago/Turabian StyleMunyaka, Jean-Claude Baraka, Olivier Gallay, Jérôme Chenal, Edward Mutandwa, Ximena Salgado, Tariro Pindayi, Davison Gondo, Herbert Pfuma, Rumbidzai Mhembere, Tinotenda Tamanikwa, and et al. 2025. "Bridging the Gender Gap in Climate-Resilient Sweet Potato Farming: A Case Study from Goromonzi District, Zimbabwe" Systems 13, no. 2: 135. https://doi.org/10.3390/systems13020135
APA StyleMunyaka, J.-C. B., Gallay, O., Chenal, J., Mutandwa, E., Salgado, X., Pindayi, T., Gondo, D., Pfuma, H., Mhembere, R., Tamanikwa, T., & Chipise, S. (2025). Bridging the Gender Gap in Climate-Resilient Sweet Potato Farming: A Case Study from Goromonzi District, Zimbabwe. Systems, 13(2), 135. https://doi.org/10.3390/systems13020135