Biodegradable PLA/PBSA Multinanolayer Nanocomposites: Effect of Nanoclays Incorporation in Multinanolayered Structure on Mechanical and Water Barrier Properties
"> Figure 1
<p>TEM observations for PBSA filled with (<b>a</b>) 2% and (<b>b</b>) 5 wt% of montmorillonite C30B.</p> "> Figure 2
<p>XRD spectra of neat PBSA film and filled PBSA films (<b>a</b>) in the 15–40° range and (<b>b</b>) in the 2–14° range.</p> "> Figure 3
<p>TGA curves obtained for the neat PBSA film and the filled PBSA films.</p> "> Figure 4
<p>Reduced water permeation curves for the neat PBSA and the filled PBSA films.</p> "> Figure 5
<p>Water permeation curves for the neat PBSA and the filled PBSA films fitted using a model combining two sorption modes, the Henry-law sorption and the aggregation (clustering) sorption, as represented in Equation (9).</p> "> Figure 6
<p>Water vapor diffusion coefficients <span class="html-italic">D</span><sub>1</sub> and <span class="html-italic">D</span><sub>2</sub> for the neat PBSA and the filled PBSA films.</p> "> Figure 7
<p>TEM observations of the unfilled PLA/PBSA and filled PLA/PBSA2 and PLA/PBSA5 multilayer films (PLA in white, PBSA in dark). (AFM image of unfilled PLA/PBSA multilayer films).</p> "> Figure 8
<p>XRD spectra for the PLA/PBSA, PLA/PBSA2 and PLA/PBSA5 multilayer films in the 5–40° range (<b>a</b>) and for C30B powder in 2–14° range (<b>b</b>).</p> "> Figure 9
<p>Reduced water permeation curves for the PLA/PBSA multilayer film and the filled PLA/PBSA multilayer films.</p> "> Figure 10
<p>Comparison of the experimental and predicted permeabilities of PBSA under monolayer and multilayer films. <span style="color:blue">▲</span> IF1: calculated from neat PBSA—effect of loading <span style="color:red">♦</span> IF2: calculated from PBSA (neat of filled)—effect of multilayer <span style="color:#538135">■</span> IF3: calculated from neat PBSA—effect of loading and multilayer.</p> "> Figure 11
<p>Water vapor sorption isotherms for the PLA/PBSA, PLA/PBSA2 and PLA/PBSA5 multilayer films modelled by two consecutive sorption modes, the Henry-law sorption and the aggregation (clustering) sorption, as represented in Equation (9).</p> "> Figure 12
<p>Water vapor diffusion coefficients <span class="html-italic">D</span><sub>1</sub> and <span class="html-italic">D</span><sub>2</sub> for the PLA/PBSA, PLA/PBSA2 and PLA/PBSA5 multilayer films.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Films Preparation
2.3. Morphological Characterization
2.4. Thermal Analyses
2.5. Mechanical Tests
2.6. Barrier Properties
3. Results and Discussion
3.1. Impact of Montmorillonite C30B Fillers on the PBSA Matrix
3.1.1. Microstructure Examination by Microscopy and WAXS
3.1.2. Thermal and Mechanical Analyses
3.1.3. Water Barrier Properties
3.2. Elaboration of PLA/PBSA Multilayer Film with Montmorillonite C30B
3.2.1. Morphological Characterization and Nanofiller Dispersion
3.2.2. Thermal and Mechanical Analyses
3.2.3. Water Barrier Properties
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Inagaki, N.; Tasaka, S.; Nakajima, T. Preparation of oxygen gas barrier polypropylene films by deposition of SiOx films plasma-polymerized from mixture of tetramethoxysilane and oxygen. J. Appl. Polym. Sci. 2000, 78, 2389–2397. [Google Scholar] [CrossRef]
- Marais, S.; Hirata, Y.; Cabot, C.; Morin-Grognet, S.; Garda, M.R.; Atmani, H.; Poncin-Epaillard, F. Effect of a low-pressure plasma treatment on water vapor diffusivity and permeability of poly(ethylene-co-vinyl alcohol) and polyethylene films. Surf. Coat. Technol. 2006, 201, 868–879. [Google Scholar] [CrossRef]
- Rahnama, M.; Oromiehie, A.; Ahmadi, S.; Ghasemi, I. Oxygen barrier films based on low-density polyethylene/ethylene vinyl alcohol/polyethylene-grafted-maleic anhydride compatibilizer. Polyolefins J. 2017, 4, 137–147. [Google Scholar]
- Kit, K.M.; Schultz, J.M. Morphology and barrier properties of oriented blends of poly(ethylene terephthalate) and poly(ethylene 2, 6-naphthalate) with poly(ethylene-co-vinyl alcohol). Polym. Eng. Sci. 1995, 35, 680–692. [Google Scholar] [CrossRef]
- Aït-Kadi, A.; Bousmina, M.; Yousefi, A.A.; Mighri, F. High performance structured polymer barrier films obtained from compatibilized polypropylene/ethylene vinyl alcohol blends. Polym. Eng. Sci. 2007, 47, 1114–1121. [Google Scholar] [CrossRef]
- Mittal, V. Gas permeation and mechanical properties of polypropylene nanocomposites with thermally-stable imidazolium modified clay. Eur. Polym. J. 2007, 43, 3727–3736. [Google Scholar] [CrossRef]
- Picard, E.; Espuche, E.; Fulchiron, R. Effect of an organo-modified montmorillonite on PLA crystallization and gas barrier properties. Appl. Clay Sci. 2011, 53, 56–65. [Google Scholar] [CrossRef]
- Huang, H.D.; Ren, P.G.; Chen, J.; Zhang, W.Q.; Ji, X.; Li, Z.M. High barrier graphene oxide nanosheet/poly(vinyl alcohol) nanocomposite films. J. Memb. Sci. 2012, 409, 156–163. [Google Scholar] [CrossRef]
- Jin, J.; Rafiq, R.; Gill, Y.Q.; Song, M. Preparation and characterization of high performance of graphene/nylon nanocomposites. Eur. Polym. J. 2013, 49, 2617–2626. [Google Scholar] [CrossRef]
- Ponting, M.; Hiltner, A.; Baer, E. Polymer nanostructures by forced assembly: Process, structure, and properties. Macromol. Symp. 2010, 294, 19–32. [Google Scholar] [CrossRef]
- Wang, H.; Keum, J.K.; Hiltner, A.; Baer, E.; Freeman, B.; Rozanski, A.; Galeski, A. Confined crystallization of polyethylene oxide in nanolayers assemblies. Science 2009, 323, 757–760. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Keum, J.K.; Hiltner, A.; Baer, E. Confined crystallization of PEO in nanolayered films impacting structure and oxygen permeability. Macromolecules 2009, 42, 7055–7066. [Google Scholar] [CrossRef]
- Carr, J.M.; Langhe, D.S.; Ponting, M.T.; Hiltner, A.; Baer, E. Confined crystallization in polymer nanolayered films: A review. J. Mater. Res. 2012, 27, 1326–1350. [Google Scholar] [CrossRef] [Green Version]
- Ponting, M.; Lin, Y.; Keum, J.K.; Hiltner, A.; Baer, E. Effect of substrate on the isothermal crystallization kinetics of confined poly(ε-caprolactone) nanolayers. Macromolecules 2010, 43, 8619–8627. [Google Scholar] [CrossRef]
- Fernandes Nassar, S.; Delpouve, N.; Sollogoub, C.; Guinault, A.; Stoclet, G.; Regnier, G.; Domenek, S. Impact of nanoconfinement on polylactide crystallization and gas barrier properties. ACS Appl. Mater. Interfaces 2020, 12, 9953–9965. [Google Scholar] [CrossRef]
- Carr, J.M.; Mackey, M.; Flandin, L.; Hiltner, A.; Baer, E. Structure and transport properties of polyethylene terephthalate and poly(vinylidene fluoride-co-tetrafluoroethylene) multilayer films. Polymer 2013, 54, 1679–1690. [Google Scholar] [CrossRef]
- Messin, T.; Follain, N.; Guinault, A.; Miquelard-Garnier, G.; Sollogoub, C.; Delpouve, N.; Gaucher, V.; Marais, S. Confinement effect in PC/MXD6 multilayer films: Impact of the microlayered structure on water and gas barrier properties. J. Memb. Sci. 2017, 525, 135–145. [Google Scholar] [CrossRef]
- Messin, T.; Follain, N.; Guinault, A.; Sollogoub, C.; Gaucher, V.; Delpouve, N.; Marais, S. Structure and barrier properties of multinanolayered biodegradable PLA/PBSA: Confinement effect via forced assembly coextrusion. ACS Appl. Mater. Interfaces 2017, 9, 29101–29112. [Google Scholar] [CrossRef] [Green Version]
- Sekelik, D.; Stepanov, E.; Nazarenko, S.; Schiraldi, D.; Hiltner, A.; Baer, E. Oxygen barrier properties of crystallized and talc-filled poly(ethylene terephthalate). J. Polym. Sci. Part B Polym. Phys. 1999, 37, 847–857. [Google Scholar] [CrossRef]
- Gupta, M.; Lin, Y.; Deans, T.; Baer, E.; Hiltner, A.; Schiraldi, D.A. Structure and gas barrier properties of poly(propylene-graft-maleic anhydride)/phosphate glass composites prepared by microlayer coextrusion. Macromolecules 2010, 43, 4230–4239. [Google Scholar] [CrossRef]
- Wen, M.; Sun, X.; Su, L.; Shen, J.; Li, J.; Guo, S. The electrical conductivity of carbon nanotube/carbon black/polypropylene composites prepared through multistage stretching extrusion. Polymer 2012, 53, 1602–1610. [Google Scholar] [CrossRef]
- Decker, J.J.; Meyers, K.P.; Paul, D.R.; Schiraldi, D.A.; Hiltner, A.; Nazarenko, S. Polyethylene-based nanocomposites containing organoclay: A new approach to enhance gas barrier via multilayer coextrusion and interdiffusion. Polymer 2015, 61, 42–54. [Google Scholar] [CrossRef]
- Miquelard-Garnier, G.; Guinault, A.; Fromonteil, D.; Delalande, S.; Sollogoub, C. Dispersion of carbon nanotubes in polypropylene via multilayer coextrusion: Influence on the mechanical properties. Polymer 2013, 54, 4290–4297. [Google Scholar] [CrossRef] [Green Version]
- Li, X.; McKenna, G.B.; Miquelard-Garnier, G.; Guinault, A.; Sollogoub, C.; Renier, G.; Rozanski, A. Forced assembly by multilayer coextrusion to create oriented graphène reinforced polymer nanocomposites. Polymer 2014, 55, 248–257. [Google Scholar] [CrossRef] [Green Version]
- Gao, Y.; Picot, O.T.; Tu, W.; Bilotti, E.; Peijs, T. Multilayer coextrusion of graphene polymer nanocomposites with enehanced structural organization and properties. J. Appl. Polym. Sci. 2018, 135, 46041. [Google Scholar] [CrossRef]
- Ray, S.S.; Bandyopadhyaya, J.; Bousmina, M. Influence of degree of intercalation on the crystal growth kinetics of poly[(butylene succinate)-co-adipate] nanocomposites. Eur. Polym. J. 2008, 44, 3133–3145. [Google Scholar]
- Ahn, B.D.; Kim, S.H.; Kim, Y.H.; Yang, J.S. Synthesis and characterization of biodegradable copolymers from succinic acid and adipic acid with 1, 4-butanediol. J. Appl. Polym. Sci. 2001, 82, 2808–2826. [Google Scholar] [CrossRef]
- Bandyopadhyay, J.; Al-Thabaiti, S.A.; Ray, S.S.; Basahel, S.N.; Mokhtar, M. Unique cold-crystallization behavior and kinetics of biodegradable poly[(butylene succinate)-co adipate] nanocomposites: A high speed differential scanning calorimetry study. Macromol. Mater. Eng. 2014, 299, 939–952. [Google Scholar] [CrossRef]
- Métayer, M.; Labbé, M.; Marais, S.; Langevin, D.; Chappey, C.; Dreux, F.; Brainville, M.; Belliard, P. Diffusion of water through various polymer films: A new high performance method of characterization. Polym. Test. 1999, 18, 533–549. [Google Scholar] [CrossRef]
- Gray, D.E. (Ed.) American Institute of Physics Handbook; Mc Graw-Hill: New York, NY, USA, 1957. [Google Scholar]
- Marais, S.; Métayer, M.; Nguyen, Q.T.; Labbé, M.; Langevin, D. New methods for the determination of the parameters of a concentration-dependent diffusion law for molecular penetrants from transient permeation or sorption data. Macromol. Theor. Simul. 2000, 9, 207–214. [Google Scholar] [CrossRef]
- Lomauro, C.J.; Bakshi, A.S.; Labuza, T.P. Evaluation of Food Moisture Sorption Isotherm Equations—Part, I.; Fruit, Vegetable and Meat-Products. Lebensm. Wiss Technol. 1985, 18, 111–117. [Google Scholar]
- Bungay, P.M.; Lonsdale, H.K.; de Pinho, M.N. Synthetic membranes: Science, Engineering and Applications. ASI Ser. Ser. C Math. Phys. Sci. 1986, 181, 93–96. [Google Scholar]
- Ren, M.; Song, J.; Song, C.; Zhang, H.; Sun, X.; Chen, Q.; Zhang, H.; Mo, Z. Crystallization kinetics and morphology of poly(butylene succinate-co-adipate). J. Polym. Sci. Pol. Phys. 2005, 43, 3231–3241. [Google Scholar] [CrossRef]
- Charlon, S.; Follain, N.; Chappey, C.; Dargent, E.; Soulestin, J.; Sclavons, M.; Marais, S. Improvement of barrier properties of bio-based polyester nanocomposite membranes by water-assisted extrusion. J. Memb. Sci. 2015, 496, 185–198. [Google Scholar] [CrossRef]
- Yoon, P.J.; Hunter, D.L.; Paul, D.R. Polycarbonate nanocomposites. Part 1. Effect of Organoclays Structure on the Morphology and Properties. Polymer 2003, 44, 5323–5339. [Google Scholar] [CrossRef]
- Cervantes-Uc, J.M.; Cauich-Rodríguez, J.V.; Vásquez-Torres, H.; Garfias-Mesías, L.F.; Paul, D.R. Thermal degradation of commercially available organoclays studied by TGA-FTIR. Thermochimica Acta 2007, 457, 92–102. [Google Scholar] [CrossRef]
- Charlon, S.; Follain, N.; Dargent, E.; Soulestin, J.; Sclavons, M.; Marais, S. Poly[(butylene succinate)-co-(butylene adipate)]-montmorillonite nanocomposite prepared by water-assisted extrusion: Role of the dispersion level and of the structure-microstructure on the enhanced barrier properties. J. Phys. Chem. 2019, 120, 13234–13248. [Google Scholar] [CrossRef]
- Esposito Corcione, C.; Maffezzoli, A.; Cannoletta, D. Effect of a nanodispersed clay fillers on glass transition of thermosetting polyurethane. Macromol. Symp. 2009, 286, 180–186. [Google Scholar] [CrossRef]
- Meyers, K.P.; Decker, J.J.; Olson, B.G.; Lin, J.; Jamieson, A.M.; Nazarenko, S. Probing the confining effect on clay particles on an amorphous intercalated dendritic polyester. Polymer 2017, 112, 76–86. [Google Scholar] [CrossRef] [Green Version]
- Ray, S.S.; Bousmina, M.; Okamoto, K. Structure and properties of nanocomposites based on poly(butylene succinate-co-adipate) and organically modified montmorillonite. Macromol. Mater. Eng. 2005, 290, 759–768. [Google Scholar] [CrossRef]
- Zhang, X.; Zhang, Y. Poly(butylene succinate-co-butylene adipate)/Cellulose nanocrystal composites modifies with phthalic anhydride. Carbohydr. Polym. 2015, 134, 52–59. [Google Scholar] [CrossRef] [PubMed]
- Jordan, J.; Jacob, K.I.; Tannenbaum, R.; Sharaf, M.A.; Jasiuk, I. Experimental trends in polymer nanocomposites—A review. Mat. Sci. Eng. A 2005, 393, 1–11. [Google Scholar] [CrossRef]
- Zaidi, L.; Bruzaud, S.; Bourmaud, A.; Mérédic, P.; Kaci, M.; Grohens, Y. Relationship between structure and rheological, mechanical and thermal properties of polylactide/cloisite 30B nanocomposites. J. Appl. Polym. Sci. 2010, 116, 1357–1365. [Google Scholar] [CrossRef]
- Someya, Y.; Nakazato, T.; Teramoto, N.; Shibata, M. Thermal and mechanical properties of poly(butylene succinate) nanocomposites with various organo-modified montmorillonites. J. Appl. Polym. Sci. 2004, 91, 1463–1475. [Google Scholar] [CrossRef]
- Hwang, S.Y.; Yoo, E.S.; Im, S.S. Effect of the urethane group on treated clay surfaces for high-performance poly(butylene succinate)/montmorillonite nanocomposites. Polym. Degrad. Stab. 2009, 94, 2163–2169. [Google Scholar] [CrossRef]
- Chen, G.; Yoon, J.S. Nanocomposites of poly[(butylene succinate)-co-(butylene adipate)] (PBSA) and twice-functionalized organoclay. Polym. Int. 2005, 54, 939–945. [Google Scholar] [CrossRef]
- Finnigan, B.; Martin, D.; Halley, P.; Truss, R.; Campbell, K. Morphology and properties of thermoplastic polyurethane nanocomposites incorporating hydrophilic layered silicates. Polymer 2004, 45, 2249–2260. [Google Scholar] [CrossRef]
- Tan, B.; Thomas, N.L. A review of the water barrier properties of polymer/clay and polymer/graphene nanocomposites. J. Memb. Sci. 2016, 514, 595–612. [Google Scholar] [CrossRef] [Green Version]
- Tenn, N.; Follain, F.; Fatyeyeva, K.; Poncin-Epaillard, F.; Labrugère, C.; Marais, S. Impact of hydrophobic plasma treatments on the barrier properties of poly(lactic acid) films. RSC Adv. 2014, 4, 5626. [Google Scholar] [CrossRef]
- Follain, N.; Valleton, J.M.; Lebrun, L.; Alexandre, B.; Schaetzel, P.; Metayer, M.; Marais, S. Simulation of kinetic curves in mass transfer phenomena for a concentration-dependent diffusion coefficient in polymer membranes. J. Memb. Sci. 2010, 349, 195–207. [Google Scholar] [CrossRef]
- Follain, N.; Alexandre, B.; Chappey, C.; Colasse, L.; Médéric, P.; Marais, S. Barrier properties of polyamide 12/montmorillonite nanocomposites: Effect of clay structure and mixing conditions. Compos. Sci. Technol. 2016, 136, 18–28. [Google Scholar] [CrossRef]
- Charlon, S.; Follain, N.; Soulestin, J.; Sclavons, M.; Marais, S. Water transport properties of poly(butylene succinate) and poly[(butylene succinate)-co-(butylene adipate)] nanocomposite films: Influence of the water-assisted extrusion process. J. Phys. Chem. C 2017, 121, 918–930. [Google Scholar] [CrossRef]
- Tenn, N.; Follain, N.; Soulestin, J.; Crétois, R.; Bourbigot, S.; Marais, S. Effect of nanoclay hydration on barrier properties of PLA/Montmorillonite based nanocomposites. J. Phys. Chem. C 2013, 117, 12117–12135. [Google Scholar] [CrossRef]
- Alexandre, M.; Dubois, P. Polymer-silicate nanocomposites: Preparation, properties and use of a new class of materials. Mater. Sci. Eng. 2000, 28, 1–63. [Google Scholar] [CrossRef]
- Follain, N.; Belbekhouche, S.; Bras, J.; Siqueira, G.; Marais, S.; Dufresne, A. Water transport properties of bio-nanocomposites reinforced by luffa cylindrica cellulose nanocrystals. J. Membr. Sci. 2013, 427, 218–229. [Google Scholar] [CrossRef]
- Rouse, P.E. Diffusion of vapors in films. J. Am. Chem. Soc. 1947, 69, 1068–1073. [Google Scholar] [CrossRef]
Tg PBSA (°C) | Tc PBSA (°C) | Tm PBSA (°C) | ΔCp PBSA (J g−1 °C−1) | Xc PBSA (%) | RAF (%) | |
---|---|---|---|---|---|---|
PBSA | −46 | 67 | 90 | 0.330 | 38 ± 2 | 9 ± 3 |
PBSA2 | −43 | 66 | 91 | 0.275 * | 38 ± 2 | 17 ± 3 |
PBSA5 | −42 | 66 | 91 | 0.274 * | 37 ± 2 | 18 ± 3 |
Young’s Modulus (MPa) | Strength at Break (MPa) | Elongation at Break (%) | |
---|---|---|---|
PBSA | 241 ± 19 | 35 ± 3 | 1360 ± 148 |
PBSA2 | 276 ± 33 | 31 ± 2 | 1405 ± 67 |
PBSA5 | 362 ± 19 | 27 ± 2 | 1242 ± 97 |
P (Barrer *) | D0 (10−8 cm2·s−1) | DM (10−8 cm2·s−1) | γCeq | γ (cm3·mmol−1) | Céq (mmol·cm−3) | |
---|---|---|---|---|---|---|
PBSA | 8312 ± 177 | 1.8 ± 0.1 | 36 ± 3 | 3.0 ± 0.1 | 3.9 ± 0.4 | 0.78 ± 0.05 |
PBSA2 | 5628 ± 127 | 1.7 ± 0.1 | 25 ± 6 | 2.7 ± 0.3 | 3.9 ± 0.9 | 0.69 ± 0.09 |
PBSA5 | 4821 ± 189 | 1.5 ± 0.1 | 15 ± 1 | 2.3 ± 0.1 | 2.7 ± 0.3 | 0.85 ± 0.03 |
kDg/g | n | Ka (g/g)(1−n) | MDM (%) | |
---|---|---|---|---|
PBSA | 0.583 | 1.4 | 0.407 | 5.10 |
PBSA2 | 0.582 | 2.6 | 0.803 | 5.54 |
PBSA5 | 0.702 | 3.1 | 0.811 | 5.56 |
Tg PBSA (°C) | Tg PLA (°C) | Tc PBSA (°C) | Tm PBSA (°C) | ΔCp PBSA (J g−1 °C−1) | Xc PBSA (%) | RAF (%) | |
---|---|---|---|---|---|---|---|
PLA/PBSA (PBSA thickness ~60 nm) | −46 | 53 | 71 | 91 | 0.250 * | 40 | 21 |
PLA/PBSA2 (PBSA thickness ~100 nm) | −42 | 54 | 71 | 90 | 0.204 * | 34 | 33 |
PLA/PBSA5 (PBSA thickness ~200 nm) | −36 | 54 | 71 | 91 | 0.237 * | 38 | 23 |
Young’s Modulus (MPa) | Strength at Break (MPa) | Elongation at Break (%) | |
---|---|---|---|
PLA/PBSA | 1723 ± 79 | 38 ± 3 | 37 ± 10 |
PLA/PBSA2 | 1541 ± 61 | 34 ± 2 | 55 ± 12 |
PLA/PBSA5 | 1686 ± 66 | 38 ± 3 | 39 ± 7 |
Water Permeability (Barrer) | Calculated Permeability (Series Model) (Barrer) | Calculated P of PBSA Layers (Barrer) | D0 (10−8 cm2·s−1) | DM (10−8 cm2·s−1) | γCeq | γ (cm3·mmol−1) | Ceq (mmol·cm−3) | |
---|---|---|---|---|---|---|---|---|
PLA/PBSA | 2765 ± 123 | 2917 | 4658 | 1.48 ± 0.04 | 12.7 ± 0.4 | 2.1 ± 0.1 | 3.8 ± 0.1 | 0.56 ± 0.01 |
PLA/PBSA2 | 2717 ± 136 | 2917/2823 * | 4055 | 1.61 ± 0.06 | 16.0 ± 1.0 | 2.3 ± 0.1 | 5.1 ± 0.6 | 0.47 ± 0.05 |
PLA/PBSA5 | 2659 ± 81 | 2917/2776 * | 3487 | 1.71 ± 0.1 | 13.0 ± 1.1 | 2.0 ± 0.2 | 4.1 ± 0.6 | 0.50 ± 0.05 |
PLA monolayer | 2510 ± 177 | 0.87 ± 0.07 | 11.6 ± 0.7 | 2.6 ± 0.2 | 4.0 ± 0.1 | 0.67 ± 0.03 | ||
PBSA monolayer | 8312 ± 177 | 1.8 ± 0.1 | 36 ± 3 | 3.0 ± 0.1 | 3.9 ± 0.4 | 0.78 ± 0.05 |
kDg/g | n | Ka (g/g)(1−n) | MDM (%) | |
---|---|---|---|---|
PLA/PBSA | 0.677 | 3.83 | 0.209 | 3.25 |
PLA/PBSA2 | 0.614 | 0.64 | 0.109 | 3.65 |
PLA/PBSA5 | 0.621 | 0.06 | 0.012 | 4.87 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Messin, T.; Follain, N.; Lozay, Q.; Guinault, A.; Delpouve, N.; Soulestin, J.; Sollogoub, C.; Marais, S. Biodegradable PLA/PBSA Multinanolayer Nanocomposites: Effect of Nanoclays Incorporation in Multinanolayered Structure on Mechanical and Water Barrier Properties. Nanomaterials 2020, 10, 2561. https://doi.org/10.3390/nano10122561
Messin T, Follain N, Lozay Q, Guinault A, Delpouve N, Soulestin J, Sollogoub C, Marais S. Biodegradable PLA/PBSA Multinanolayer Nanocomposites: Effect of Nanoclays Incorporation in Multinanolayered Structure on Mechanical and Water Barrier Properties. Nanomaterials. 2020; 10(12):2561. https://doi.org/10.3390/nano10122561
Chicago/Turabian StyleMessin, Tiphaine, Nadège Follain, Quentin Lozay, Alain Guinault, Nicolas Delpouve, Jérémie Soulestin, Cyrille Sollogoub, and Stéphane Marais. 2020. "Biodegradable PLA/PBSA Multinanolayer Nanocomposites: Effect of Nanoclays Incorporation in Multinanolayered Structure on Mechanical and Water Barrier Properties" Nanomaterials 10, no. 12: 2561. https://doi.org/10.3390/nano10122561
APA StyleMessin, T., Follain, N., Lozay, Q., Guinault, A., Delpouve, N., Soulestin, J., Sollogoub, C., & Marais, S. (2020). Biodegradable PLA/PBSA Multinanolayer Nanocomposites: Effect of Nanoclays Incorporation in Multinanolayered Structure on Mechanical and Water Barrier Properties. Nanomaterials, 10(12), 2561. https://doi.org/10.3390/nano10122561