Network Model for Online News Media Landscape in Twitter
<p>Research methodology</p> "> Figure 2
<p>Histogram of Twitter followers for online news media outlets in Indonesia, Malaysia, and Singapore.</p> "> Figure 3
<p>The top five online news media based on the degree value and the number of Twitter followers.</p> "> Figure 4
<p>News media networks in Indonesia (V<sub>indonesia</sub> = 162, E<sub>indonesia</sub> = 754). Nodes represent online news media outlets and edges represent shared followers between any two outlets. The size and the label of a node is proportional to the degree centrality of the node.</p> "> Figure 5
<p>News media networks in Malaysia (V<sub>malaysia</sub> = 86, E<sub>malaysia</sub> = 227). Nodes represent online news media outlets and edges represent shared followers between any two outlets. The size and the label of a node is proportional to the degree centrality of the node.</p> "> Figure 6
<p>News media networks in Singapore (V<sub>singapore</sub> = 30, E<sub>singapore</sub> = 46). Nodes represent online news media outlets and edges represent shared followers between any two outlets. The size and the label of a node is proportional to the degree centrality of the node.</p> ">
Abstract
:1. Introduction
2. Related Work
3. Proposed Methodology
3.1. Data Extraction
Algorithm 1 follower extraction |
1: Begin |
2: Input: |
3: U: list of online news outlets; |
4: fmin: minimum number of followers of a news outlet; |
5: dmax: maximum day of inactivity; |
6: d: today date; |
7: n: number of all news outlets |
8: Process: |
9: A ; |
10: for i =1 to n: |
11: dlast extract date of outlet i latest tweet; |
12: f extract number of outlet i followers; |
13: if d - dlast < dmax: |
14: if number of outlet i followers > fmin: |
15: A(i) collect all user ids that follow outlet i; |
16: else: |
17: continue; |
18: end if |
19: else: |
20: continue; |
21: end if |
22: end for |
23: Output: A: list of followers of all news outlet |
24: End |
3.2. Modeling and Simulation
3.2.1. Similarity Measurement
Algorithm 2 similarity measurement |
1: Begin |
2: Input: |
3: A: list of followers of all news outlet; |
4: n: number of news outlets; |
5: Let C be a nxn association matrix of news outlets; |
6: Process: |
7: for i=1 to n |
8: Ai retrive followers of outlet i; |
9: for j=1 to n: |
10: if i =/= j: |
11: Aj retrive followers of outlet j; |
12: phi = calculate follower similarity between outlets i and j using equation(1); |
13: C(ij) phi; |
14: else: |
15: C(ij) 0 |
16: end if |
17: end for |
18: end for |
19: Output: C: nxn association matrix of news outlets; |
20: End |
3.2.2. The Construction of News Media Networks
Algorithm 3 Construct news media networks |
1: Begin |
2: Input: |
3: C: nxn assocation matrix of news outlets; |
4: U: list of news outlets; |
5: n: number of news outlets; |
6: Process: |
7: V Ø; E Ø; W 0; |
8: V U; // all news outlets are vertices in network G; |
9: for i=1 to n-1: |
10: for j=i+1 to n: |
11: if C(i,j)>0: |
12: u = U(i);v = U(j); w(u,v)= C(i,j); |
13: E E e(u,v); |
14: W W w(u,v); |
15: else: |
16: continue; |
17: end if |
17: end for |
18: end for |
19: Output: G(V,E,W): news media network; |
20: End |
3.2.3. Edge Filtering
Algorithm 4 edge filtering |
1: Begin |
2: Input: |
3: G(V,E,W):news media networks; |
4: alpha: 0.005; |
5: n: number of news outlets; |
6: Process: |
7: G’ disparityfilter(G,alpha); // (Achananuparp,2013) |
8: V U; // all news outlets are vertices in network G; |
9: Output: G’(V,E,W): news media networks; |
10: End |
4. Results
5. Discussion
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Newman, N.; Fletcher, R.; Kalogeropoulos, A.; Levy, D.; Nielsen, R.K. Reuters institute digital news report 2017. Reuters Institute for the Study of Journalism. 2017. Available online: https://reutersinstitute.politics.ox.ac.uk/sites/default/files/Digital%20News%20Report%202017%20web_0.pdf (accessed on 27 June 2019).
- Kwak, H.; Lee, C.; Park, H.; Moon, S. What is Twitter, a social network or a news media? In Proceedings of the 19th International Conference on World Wide Web, Raleigh, NC, USA, 26–30 April 2010; pp. 591–600. [Google Scholar] [CrossRef]
- Moore, M.; Tambini, D. Digital Dominance: The power of Google, Amazon, Facebook, and Apple; Oxford University Press, Inc.: Oxford, UK, 2018. [Google Scholar]
- Nielsen, R.K.; Ganter, S.A. Dealing with digital intermediaries: A case study of the relations between publishers and platforms. New Media Soc. 2018, 20, 1600–1617. [Google Scholar] [CrossRef]
- Aral, S.; Zhao, M. Social media sharing and online news consumption. SSRN Electron. J. 2019. [Google Scholar] [CrossRef]
- Pariser, E. The filter bubble: How the New Personalized Web is Changing what we Read and How We Think; Penguin Books: London, UK, 2011. [Google Scholar]
- Sunstein, C.R. Republic.com 2.0.; Princeton University Press: Princeton, NJ, USA, 2009. [Google Scholar]
- Turow, J. Breaking up America: Advertisers and the New Media World; University of Chicago Press: Chicago, IL, USA, 1998. [Google Scholar]
- Schmidt, A.L.; Zollo, F.; Del Vicario, M.; Bessi, A.; Scala, A.; Caldarelli, G.; Stanley, H.E.; Quattrociocchi, W. Anatomy of news consumption on Facebook. Proc. Natl. Acad. Sci. USA 2017, 114, 3035–3039. [Google Scholar] [CrossRef] [Green Version]
- An, J.; Cha, M.; Gummadi, K.; Crowcroft, J. Media Landscape in Twitter: A world of new conventions and political diversity. In Proceedings of the 8th International AAAI Conference on Weblogs and Social Media (ICWSM), Barcelona, Spain, 17–21 July 2011. [Google Scholar]
- Kafeza, E.; Kanavos, A.; Makris, C.; Pispirigos, G.; Vikatos, P. T-PCCE: Twitter Personality based Communicative Communities Extraction System for Big Data. IEEE Trans. Knowl. Data Eng. 2019. [Google Scholar] [CrossRef]
- Kafeza, E.; Kanavos, A.; Makris, C.; Vikatos, P. Predicting Information Diffusion Patterns in Twitter. In Proceedings of the Artificial Intelligence Applications and Innovations (AIAI), Rhodes, Greece, 19–21 September 2014. [Google Scholar]
- Goodhardt, G.J.; Ehrenberg, A.S.C.; Collins, M.A. The Television Audience: Patterns of Viewing. An Update, 2nd ed.; Gower Publishing: Aldershot, UK, 1987. [Google Scholar]
- Ksiazek, T.B. A network analytic approach to understanding cross-platform audience behavior. J. Media Econ. 2011, 24, 237–251. [Google Scholar] [CrossRef]
- Taneja, H. Mapping an audience-centric world wide web: A departure from hyperlink analysis. New Media Soc. 2017, 9, 1331–1348. [Google Scholar] [CrossRef]
- Taneja, H.; Webster, J.G. How do global audiences take shape? The role of institutions and culture in patterns of web use. J. Commun. 2016, 66, 161–182. [Google Scholar] [CrossRef]
- Taneja, H.; Wu, A.X. Does the Great Firewall really isolate the Chinese? Integrating access blockage with cultural factors to explain web user behavior. Inf. Soc. 2014, 30, 297–309. [Google Scholar] [CrossRef]
- Webster, J.G.; Ksiazek, T.B. The dynamics of audience fragmentation: Public attention in an age of digital media. J. Commun. 2014, 62, 39–56. [Google Scholar] [CrossRef]
- Mukerjee, S.; Majó-Vázquez, S.; González-Bailón, S. Networks of audience overlap in the consumption of digital news. J. Commun. 2018, 68, 26–50. [Google Scholar] [CrossRef]
- Majó-Vázquez, S.; Cardenal, A.S.; González-Bailón, S. Digital news consumption and copyright intervention: Evidence from Spain before and after the 2015 “Link Tax”. J. Comput. Mediat. Commun. 2017, 22, 284–301. [Google Scholar] [CrossRef]
- Majó-Vázquez, S.; Nielsen, K.R.; González-Bailón, S. The backbone structure of audience networks: A new approach to comparing online news consumption across countries. Political Commun. 2018, 36, 227–240. [Google Scholar] [CrossRef]
- Majó-Vázquez, S. A network analysis of online audience behavior: Towards a better comprehension of the agenda setting process. Idp: Rev. D’internetDret I Política 2015. [Google Scholar] [CrossRef]
- Doğu, B. Turkey’s news media landscape in Twitter: Mapping interconnections among diversity. J. Theory Pract. Crit. 2017. [Google Scholar] [CrossRef]
- Hahn, K.S.; Ryu, S.; Park, S. Fragmentation in the Twitter Following of News Outlets: The Representation of South Korean Users’ Ideological and Generational Cleavage. J. Mass Commun. Q. 2015, 92, 56–76. [Google Scholar] [CrossRef]
- Serrano, M.A.; Boguñá, M.; Vespignani, A. Extracting the multiscale backbone of complex weighted networks. Proc. Natl. Acad. Sci. USA 2009, 106, 6483–6488. [Google Scholar] [CrossRef] [Green Version]
- Summers, E. Twarc. Available online: https://github.com/DocNow/twarc (accessed on 10 August 2019).
- Hagberg, A.A.; Schult, D.A.; Swart, P.J. Exploring network structure, dynamics, and function using networkx. In Proceedings of the 7th Python in Science Conference, Pasadena, CA, USA, 19–24 August 2008; pp. 11–15. [Google Scholar]
- Guimera, R.; Sales-Pardo, M. Missing and spurious interactions and the reconstruction of complex networks. Proc. Natl. Acad. Sci. USA 2010, 106, 22073–22078. [Google Scholar] [CrossRef]
- Achananuparp, P. Python-backbone-network. Available online: https://github.com/aekpalakorn/python-backbone-network (accessed on 10 August 2019).
- The Top 500 Sites on the Web. Available online: https://www.alexa.com/topsites/countries (accessed on 25 June 2019).
- 2019 World Press Freedom Index. Available online: https://rsf.org/en/ranking (accessed on 27 June 2019).
- Trilling, D.; Schoenbach, K. Patterns of News Consumption in Austria: How Fragmented Are They? Int. J. Commun. 2013, 7, 929–953. [Google Scholar]
- Anderson, C. The Long Tail. How Endless Choice is Creating Unlimited Demand; Random House: London, UK, 2006. [Google Scholar]
- Hindman, M.S. The Myth of Digital Democracy; Princeton University Press: Princeton, NJ, USA, 2009. [Google Scholar]
- Newman, M.E.J. Networks: An. Introduction; Oxford University Press: Oxford, UK, 2010. [Google Scholar]
- Bastian, M.; Heymann, S.; Jacomy, M. Gephi: An open source software for exploring and manipulating networks. In Proceedings of the International AAAI Conference on Weblogs and Social Media, San Jose, CA, USA, 17–20 May 2009. [Google Scholar]
- Pew Research Center. The evolving role of news on Twitter and Facebook. 2015. Available online: http://www.journalism.org/2015/07/14/the-evolving-role-of-news-on-twitter-and-facebook (accessed on 1 August 2019).
- Vicario, M.D.; Gaito, S.; Quattrociocchi, W.; Zignani, M.; Zollo, F. News Consumption during the Italian Referendum: A Cross-Platform Analysis on Facebook and Twitter. In Proceedings of the 2017 IEEE International Conference on Data Science and Advanced Analytics (DSAA), Tokyo, Japan, 19–21 October 2017. [Google Scholar] [CrossRef]
- Varol, O.; Ferrara, E.; Davis, C.A.; Menczer, F.; Flammini, A. Online Human-Bot Interactions: Detection, Estimation, and Characterization. In Proceedings of the International AAAI Conference on Web and Social Media (ICWSM), Montreal, QC, Canada, 15–18 May 2017. [Google Scholar]
y = 1 | y = 0 | Total | |
---|---|---|---|
x = 1 | |||
x = 0 | |||
Total | n |
Country | Number of News Media before Selection | Threshold (0.007%) | Number of News Media after Selection |
---|---|---|---|
Indonesia | 215 | 1054.963 | 166 |
Malaysia | 111 | 123.9864 | 86 |
Singapore | 58 | 70.57435 | 42 |
Indonesia | Malaysia | Singapore | ||||
---|---|---|---|---|---|---|
Before | After | Before | After | Before | After | |
Node | 165 | 162 | 94 | 86 | 42 | 30 |
Edge | 12346 | 754 | 3668 | 227 | 798 | 46 |
Density | 0.912 | 0.0578 | 0.839 | 0.0621 | 0.927 | 0.1057 |
Average Degree | 149.648 | 9.309 | 78.043 | 5.279 | 38 | 3.067 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lumban Gaol, F.; Matsuo, T.; Maulana, A. Network Model for Online News Media Landscape in Twitter. Information 2019, 10, 277. https://doi.org/10.3390/info10090277
Lumban Gaol F, Matsuo T, Maulana A. Network Model for Online News Media Landscape in Twitter. Information. 2019; 10(9):277. https://doi.org/10.3390/info10090277
Chicago/Turabian StyleLumban Gaol, Ford, Tokuro Matsuo, and Ardian Maulana. 2019. "Network Model for Online News Media Landscape in Twitter" Information 10, no. 9: 277. https://doi.org/10.3390/info10090277
APA StyleLumban Gaol, F., Matsuo, T., & Maulana, A. (2019). Network Model for Online News Media Landscape in Twitter. Information, 10(9), 277. https://doi.org/10.3390/info10090277