Spatial Variability Analysis of Renewal Time in Harbour Environments Using a Lagrangian Model
<p>Location (<b>A</b>) and bathymetric maps of the ports of Barcelona (<b>B</b>), Tarragona (<b>C</b>), and Gijón (<b>D</b>). The red crosses indicate the locations of the ADCP Doppler devices during the measurement campaigns referenced earlier, used for validation and calculations in previous studies.</p> "> Figure 2
<p>Time series and scatter plots of current intensity in the direction perpendicular to the harbour entrance, at the surface and at the bottom. Positive values indicate currents flowing inward, while negative values represent currents flowing outward. Observations are represented by blue lines, and SAMOA predictions are shown in black.</p> "> Figure 3
<p>Example of the location of the particle launching nodes in the port of Barcelona (<b>A</b>). Simulation of trajectories for 10 particles within the port of Barcelona during one week. Initial locations are represented by points, trajectories are represented by solid lines, and the dashed white line marks the point from where it is considered to be outside the port (<b>B</b>).</p> "> Figure 4
<p>Recorded trajectory (white line) and simulated trajectories with different horizontal diffusion coefficients (K<sub>h</sub>) in the port of Barcelona.</p> "> Figure 5
<p>Delimitation of the areas considered in the ports of Barcelona (<b>A</b>), Tarragona (<b>B</b>), and Gijón (<b>C</b>). The red dots represent the reference points used later for the current profile analysis.</p> "> Figure 6
<p>A flowchart detailing the key stages of analysis and methodology used in this study, aimed at providing clarity for reproducibility and understanding of the processes involved.</p> "> Figure 7
<p>Spatial distribution of the mean renewal time in the port of Barcelona for the period 4 June 2019–1 September 2019, calculated from the surface (<b>left</b>) and bottom (<b>right</b>) simulated particle trajectories. The red dot indicates the location of the profile analysed in the discussion.</p> "> Figure 8
<p>Spatial distribution of the mean renewal time in the port of Tarragona for the period 12 April 2019–15 September 2019, calculated from the surface (<b>left</b>) and bottom (<b>right</b>) simulated particle trajectories. The red dot indicates the location of the profile analysed in the discussion, while the arrow represents the orientation of the positive direction of the vector.</p> "> Figure 9
<p>Spatial distribution of the mean renewal time in the port of Gijón for the period 20 November 2021–1 February 2022, calculated from the surface (<b>left</b>) and bottom (<b>right</b>) simulated particle trajectories. The red dot indicates the location of the profile analysed in the discussion, while the arrow represents the orientation of the positive direction of the vector.</p> "> Figure 10
<p>Current profile at the mouth for each port during the simulated period.</p> "> Figure 11
<p>Maps of horizontal mean flow at the surface and bottom from June to September in Barcelona harbour. The surface currents flow out of the harbour, while the bottom currents flow inward. This pattern aligns with the current profiles shown in <a href="#jmse-13-00341-f009" class="html-fig">Figure 9</a> and <a href="#jmse-13-00341-f011" class="html-fig">Figure 11</a>, as well as with the renewal time results described.</p> "> Figure 12
<p>Maps of horizontal mean flow at the surface and bottom from April to September in Tarragona harbour. The surface currents flow out of the harbour, while the bottom currents flow inward. This pattern aligns with the current profiles shown in <a href="#jmse-13-00341-f009" class="html-fig">Figure 9</a> and <a href="#jmse-13-00341-f011" class="html-fig">Figure 11</a>, as well as with the renewal time results described.</p> "> Figure 13
<p>Maps of horizontal mean flow at the surface and bottom from November to February in Gijón harbour. The surface currents flow into the interior of the harbour, while the bottom currents flow outward. This pattern aligns with the current profiles shown in <a href="#jmse-13-00341-f009" class="html-fig">Figure 9</a> and <a href="#jmse-13-00341-f011" class="html-fig">Figure 11</a>, as well as with the renewal time results described.</p> "> Figure 14
<p>Current profile of areas with different patterns or where extreme results have been identified in Barcelona (<b>A</b>), Tarragona (<b>B</b>) and Gijón (<b>C</b>).</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.1.1. Barcelona Harbour
2.1.2. Tarragona Harbour
2.1.3. Gijón Harbour
2.2. Model and Hydrodynamic Description
2.3. Model Setup
2.4. Renewal Times
3. Results
3.1. Barcelona Harbour
3.2. Tarragona Harbour
3.3. Gijón Harbour
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Gupta, A.K.; Gupta, S.K.; Patil, R.S. Environmental Management Plan for Port and Harbour Projects. Clean Technol. Environ. Policy 2005, 7, 133–141. [Google Scholar] [CrossRef]
- Daamen, T.A.; Vries, I. Governing the European Port–City Interface: Institutional Impacts on Spatial Projects between City and Port. J. Transp. Geogr. 2013, 27, 4–13. [Google Scholar] [CrossRef]
- Wenning, R.J.; Della Sala, S.; Magar, V. Role of risk assessment in environmental security planning and decision-making. In Environmental Security in Harbors and Coastal Areas; Linkov, I., Kiker, G.A., Wenning, R.J., Eds.; NATO Security through Science Series; Springer: Dordrecht, The Netherlands, 2007; pp. 329–341. ISBN 978-1-4020-5800-4. [Google Scholar]
- Dinwoodie, J.; Tuck, S.; Knowles, H.; Benhin, J.; Sansom, M. Sustainable Development of Maritime Operations in Ports. Bus. Strategy Environ. 2012, 21, 111–126. [Google Scholar] [CrossRef]
- Wong, L.A.; Chen, J.C.; Xue, H.; Dong, L.X.; Su, J.L.; Heinke, G. A Model Study of the Circulation in the Pearl River Estuary (PRE) and Its Adjacent Coastal Waters: 1. Simulations and Comparison with Observations. J. Geophys. Res. 2003, 108, 2002JC001451. [Google Scholar] [CrossRef]
- Cucco, A.; Umgiesser, G. Modeling the Venice Lagoon Residence Time. Ecol. Model. 2006, 193, 34–51. [Google Scholar] [CrossRef]
- Mestres, M.; Sierra, J.P.; Sánchez-Arcilla, A. Factors Influencing the Spreading of a Low-Discharge River Plume. Cont. Shelf Res. 2007, 27, 2116–2134. [Google Scholar] [CrossRef]
- Umgiesser, G.; Ferrarin, C.; Cucco, A.; De Pascalis, F.; Bellafiore, D.; Ghezzo, M.; Bajo, M. Comparative Hydrodynamics of 10 Mediterranean Lagoons by Means of Numerical Modeling. J. Geophys. Res. Ocean. 2014, 119, 2212–2226. [Google Scholar] [CrossRef]
- Leetmaa, A. OFFICER, C.B. 1976. Physical Oceanography of Estuaries (and Associated Coastal Waters). John Wiley and Sons, Inc., New York, Xii + 465 p. $27.50. Limnol. Oceanogr. 1977, 22, 975–976. [Google Scholar] [CrossRef]
- Rueda, F.J.; Cowen, E.A. Exchange between a Freshwater Embayment and a Large Lake through a Long, Shallow Channel. Limnol. Oceanogr. 2005, 50, 169–183. [Google Scholar] [CrossRef]
- Gómez-Gesteira, M.; deCastro, M.; Prego, R. Dependence of the Water Residence Time in Ria of Pontevedra (NW Spain) on the Seawater Inflow and the River Discharge. Estuar. Coast. Shelf Sci. 2003, 58, 567–573. [Google Scholar] [CrossRef]
- Stamou, A.I.; Memos, C.; Spanoudaki, K. Estimating Water Renewal Time in Semi-Enclosed Coastal Areas of Complicated Geometry Using a Hydrodynamic Model. J. Coast. Res. 2007, 50, 282–286. [Google Scholar] [CrossRef]
- Orfila, A.; Jordi, A.; Basterretxea, G.; Vizoso, G.; Marbà, N.; Duarte, C.M.; Werner, F.E.; Tintoré, J. Residence Time and Posidonia Oceanica in Cabrera Archipelago National Park, Spain. Cont. Shelf Res. 2005, 25, 1339–1352. [Google Scholar] [CrossRef]
- Grifoll, M.; Del Campo, A.; Espino, M.; Mader, J.; González, M.; Borja, Á. Water Renewal and Risk Assessment of Water Pollution in Semi-Enclosed Domains: Application to Bilbao Harbour (Bay of Biscay). J. Mar. Syst. 2013, 109–110, S241–S251. [Google Scholar] [CrossRef]
- Braunschweig, F.; Martins, F.; Chambel, P.; Neves, R. A Methodology to Estimate Renewal Time Scales in Estuaries: The Tagus Estuary Case. Ocean Dyn. 2003, 53, 137–145. [Google Scholar] [CrossRef]
- Darbra, R.M.; Pittam, N.; Royston, K.A.; Darbra, J.P.; Journee, H. Survey on Environmental Monitoring Requirements of European Ports. J. Environ. Manag. 2009, 90, 1396–1403. [Google Scholar] [CrossRef]
- Dias, J.M.; Lopes, J.E.; Dekeyser, I. Lagrangian Transport of Particles in Ria de Aveiro Lagoon, Portugal. Phys. Chem. Earth Part B Hydrol. Ocean. Atmos. 2001, 26, 721–727. [Google Scholar] [CrossRef]
- Samper, Y.; Liste, M.; Mestres, M.; Espino, M.; Sánchez-Arcilla, A.; Sospedra, J.; González-Marco, D.; Ruiz, M.I.; Álvarez Fanjul, E. Water Exchanges in Mediterranean Microtidal Harbours. Water 2022, 14, 2012. [Google Scholar] [CrossRef]
- Samper, Y.; Espino, M.; Liste, M.; Mestres, M.; Alsina, J.M.; Sánchez-Arcilla, A. Study of Atmospheric Forcing Influence on Harbour Water Renewal. Water 2023, 15, 1813. [Google Scholar] [CrossRef]
- Monsen, N.E.; Cloern, J.E.; Lucas, L.V.; Monismith, S.G. A Comment on the Use of Flushing Time, Residence Time, and Age as Transport Time Scales. Limnol. Oceanogr. 2002, 47, 1545–1553. [Google Scholar] [CrossRef]
- Hernández, I.; Castro-Rosero, L.M.; Espino, M.; Torrent, J.M.A. LOCATE v1.0: Numerical Modelling of Floating Marine Debris Dispersion in Coastal Regions Using Parcels v2.4.2. Geosci. Model Dev. 2024, 17, 2221–2245. [Google Scholar] [CrossRef]
- Galea, A.; Grifoll, M.; Roman, F.; Mestres, M.; Armenio, V.; Sanchez-Arcilla, A.; Zammit Mangion, L. Numerical Simulation of Water Mixing and Renewals in the Barcelona Harbour Area: The Winter Season. Environ. Fluid Mech. 2014, 14, 1405–1425. [Google Scholar] [CrossRef]
- Autoridad Portuaria de Barcelona Memoria Anual de Sostenibilidad de Puerto de Barcelona. Available online: https://www.portdebarcelona.cat/es/conoce-el-puerto/autoridad-portuaria/memorias-anuales (accessed on 10 February 2024).
- Sánchez-Arcilla, A.; González-Marco, D.; Bolaños, R. A Review of Wave Climate and Prediction along the Spanish Mediterranean Coast. Nat. Hazards Earth Syst. Sci. 2008, 8, 1217–1228. [Google Scholar] [CrossRef]
- Mestres, M.; Pau Sierra, J.; Sánchez-Arcilla, A. Baroclinic and Wind-Induced Circulation in Tarragona Harbour (Northeastern Spain). Sci. Mar. 2007, 71, 223–238. [Google Scholar] [CrossRef]
- González-Marco, D.; Sierra, J.P.; Fernández de Ybarra, O.; Sánchez-Arcilla, A. Implications of Long Waves in Harbor Management: The Gijón Port Case Study. Ocean Coast. Manag. 2008, 51, 180–201. [Google Scholar] [CrossRef]
- Borja, A.; Collins, M. Oceanography and Marine Environment of the Basque Country; Elsevier Oceanography Series; Elsevier: Amsterdam, The Netherlands, 2004; Volume 70, ISBN 978-0-444-51581-0. [Google Scholar]
- Rubio, A.; Solabarrieta, L.; Gonzalez, M.; Mader, J.; Castanedo, S.; Medina, R.; Charria, G.; Aranda, J.A. Surface Circulation and Lagrangian Transport in the SE Bay of Biscay from HF Radar Data. In Proceedings of the 2013 MTS/IEEE OCEANS, Bergen, Norway, 10–14 June 2013; pp. 1–7. [Google Scholar]
- Autoridad Portuaria de Gijón. Memoria AP Gijón 2020; APJ: Gijón, Spain, 2020; p. 146. [Google Scholar]
- Delandmeter, P.; Van Sebille, E. The Parcels v2.0 Lagrangian Framework: New Field Interpolation Schemes. Geosci. Model Dev. 2019, 12, 3571–3584. [Google Scholar] [CrossRef]
- Van Sebille, E.; Kehl, C.; Lange, M.; Delandmeter, P.; The Parcels Contributors. Parcels, v2.4.2; Zenodo: Geneva, Switzerland, 2023. [CrossRef]
- Shchepetkin, A.F.; McWilliams, J.C. The Regional Oceanic Modeling System (ROMS): A Split-Explicit, Free-Surface, Topography-Following-Coordinate Oceanic Model. Ocean Model. 2005, 9, 347–404. [Google Scholar] [CrossRef]
- Sotillo, M.; Cerralbo, P.; Lorente, P.; Grifoll, M.; Espino, M.; Sánchez-Arcilla, A.; Álvarez-Fanjul, E. Coastal Ocean Forecasting in Spanish Ports: The SAMOA Operational Service. J. Oper. Oceanogr. 2019, 13, 37–54. [Google Scholar] [CrossRef]
- García-León, M.; Sotillo, M.G.; Mestres, M.; Espino, M.; Fanjul, E.Á. Improving Operational Ocean Models for the Spanish Port Authorities: Assessment of the SAMOA Coastal Forecasting Service Upgrades. J. Mar. Sci. Eng. 2022, 10, 149. [Google Scholar] [CrossRef]
- Sotillo, M.G.; Cailleau, S.; Lorente, P.; Levier, B.; Aznar, R.; Reffray, G.; Amo-Baladrón, A.; Chanut, J.; Benkiran, M.; Fanjul, E.A. The MyOcean IBI Ocean Forecast and Reanalysis Systems: Operational Products and Roadmap to the Future Copernicus Service. J. Oper. Oceanogr. 2015, 8, 63–79. [Google Scholar] [CrossRef]
- Fanjul, E.A.; Sotillo, M.G.; Pérez Gómez, B.; Garcia Valdecasas, J.M.; Perez Rubio, S.; Lorente, P.; Rodriguez Dapena, A.; Martinez Marco, I.; Luna, Y.; Padorno, E.; et al. Operational Oceanography at the Service of the Ports. New Front. Oper. Oceanogr. 2018, 10, 729–736. [Google Scholar]
- Sotillo, M.G.; Mourre, B.; Mestres, M.; Lorente, P.; Aznar, R.; García-León, M.; Liste, M.; Santana, A.; Espino, M.; Álvarez, E. Evaluation of the Operational CMEMS and Coastal Downstream Ocean Forecasting Services During the Storm Gloria (January 2020). Front. Mar. Sci. 2021, 8, 644525. [Google Scholar] [CrossRef]
- Willmott, C.J.; Robeson, S.M.; Matsuura, K. A Refined Index of Model Performance. Int. J. Climatol. 2012, 32, 2088–2094. [Google Scholar] [CrossRef]
- Peters, H. Observations of Stratified Turbulent Mixing in an Estuary: Neap-to-Spring Variations During High River Flow. Estuar. Coast. Shelf Sci. 1997, 45, 69–88. [Google Scholar] [CrossRef]
- Okubo, A. Oceanic Diffusion Diagrams. Deep Sea Res. Oceanogr. Abstr. 1971, 18, 789–802. [Google Scholar] [CrossRef]
- Liu, Y.; Weisberg, R.H. Evaluation of Trajectory Modeling in Different Dynamic Regions Using Normalized Cumulative Lagrangian Separation. J. Geophys. Res. 2011, 116, C09013. [Google Scholar] [CrossRef]
- Castro-Rosero, L.M.; Hernández, I.; Alsina, J.M.; Espino, M. Transport and Accumulation of Floating Marine Litter in the Black Sea: Insights from Numerical Modeling. Front. Mar. Sci. 2023, 10, 1213333. [Google Scholar] [CrossRef]
- Révelard, A.; Reyes, E.; Mourre, B.; Hernández-Carrasco, I.; Rubio, A.; Lorente, P.; Fernández, C.D.L.; Mader, J.; Álvarez-Fanjul, E.; Tintoré, J. Sensitivity of Skill Score Metric to Validate Lagrangian Simulations in Coastal Areas: Recommendations for Search and Rescue Applications. Front. Mar. Sci. 2021, 8, 630388. [Google Scholar] [CrossRef]
- Geopy: Python Geocoding Toolbox 2022. Available online: https://pypi.org/project/geopy/ (accessed on 15 February 2024).
- Jouon, A.; Douillet, P.; Ouillon, S.; Fraunié, P. Calculations of Hydrodynamic Time Parameters in a Semi-Opened Coastal Zone Using a 3D Hydrodynamic Model. Cont. Shelf Res. 2006, 26, 1395–1415. [Google Scholar] [CrossRef]
- Riddle, A.M.; Lewis, R.E. Dispersion Experiments in U.K. Coastal Waters. Estuar. Coast. Shelf Sci. 2000, 51, 243–254. [Google Scholar] [CrossRef]
- Shapely: Manipulation and Analysis of Geometric Objects 2024. Available online: https://github.com/kannes/Shapely (accessed on 20 February 2024).
- Autoridad Portuaria de Gijón Memoria Anual Puerto Gijón 2022. 2022. Available online: https://www.puertogijon.es/wp-content/uploads/2023/11/memoria_apg_2022.pdf (accessed on 10 February 2024).
- Simpson, J.H.; Brown, J.; Matthews, J.; Allen, G. Tidal Straining, Density Currents, and Stirring in the Control of Estuarine Stratification. Estuaries 1990, 13, 125. [Google Scholar] [CrossRef]
- Alvarez, I.; Gomez-Gesteira, M.; deCastro, M.; Dias, J.M. Spatiotemporal Evolution of Upwelling Regime along the Western Coast of the Iberian Peninsula. J. Geophys. Res. 2008, 113, 2008JC004744. [Google Scholar] [CrossRef]
- Díez-Minguito, M.; Baquerizo, A.; Ortega-Sánchez, M.; Navarro, G.; Losada, M.A. Tide Transformation in the Guadalquivir Estuary (SW Spain) and Process-based Zonation. J. Geophys. Res. 2012, 117, 2011JC007344. [Google Scholar] [CrossRef]
- Cucco, A.; Umgiesser, G.; Ferrarin, C.; Perilli, A.; Canu, D.M.; Solidoro, C. Eulerian and Lagrangian Transport Time Scales of a Tidal Active Coastal Basin. Ecol. Model. 2009, 220, 913–922. [Google Scholar] [CrossRef]
- Viero, D.P.; Defina, A. Water Age, Exposure Time, and Local Flushing Time in Semi-Enclosed, Tidal Basins with Negligible Freshwater Inflow. J. Mar. Syst. 2016, 156, 16–29. [Google Scholar] [CrossRef]
- Carballo, R.; Iglesias, G.; Castro, A. Residual Circulation in the Ría de Muros (NW Spain): A 3D Numerical Model Study. J. Mar. Syst. 2009, 75, 116–130. [Google Scholar] [CrossRef]
Harbour | Domain | Dimension (Cells) | Extension (Km) |
---|---|---|---|
Barcelona | Coastal | 170 × 72 | 64 × 27 |
Harbour | 165 × 153 | 12 × 11 | |
Tarragona | Coastal | 260 × 166 | 100 × 65 |
Harbour | 130 × 125 | 9 × 9 | |
Gijón | Coastal | 223 × 115 | 78 × 40 |
Harbour | 222 × 142 | 15 × 10 |
Harbour | Nodes Inside Harbour | Number of Simulated Particles | Simulation Duration (Days) |
---|---|---|---|
Barcelona | 1514 | 1514 | 90 |
Tarragona | 765 | 1530 | 152 |
Gijón | 587 | 1174 | 73 |
Zone | Particle Number | Exported Particles (%) | Non-Exported Particles (%) | Mean RT (Days) | |||
---|---|---|---|---|---|---|---|
Surface | Bottom | Surface | Bottom | Surface | Bottom | ||
1 | 72 | 70.8 | 38.9 | 29.2 | 61.1 | 38.7 | 70.4 |
2 | 91 | 91.2 | 48.3 | 8.8 | 51.7 | 17.4 | 60.3 |
3 | 142 | 75.4 | 64.6 | 24.6 | 35.4 | 44.4 | 45.6 |
4 | 195 | 79.0 | 8.7 | 21.0 | 91.3 | 42.4 | 85.7 |
5 | 321 | 94.4 | 72.9 | 5.6 | 27.1 | 11.1 | 37.6 |
6 | 502 | 95.0 | 99.6 | 5.0 | 0.4 | 13.8 | 4.8 |
7 | 191 | 99.5 | 100 | 0.5 | - | 12.0 | 4.7 |
Total/ Mean | 1514 | 90.2 | 73.1 | 9.8 | 26.9 | 21.0 | 32.4 |
Zone | Particle Number | Exported Particles (%) | Non-Exported Particles (%) | Mean RT (Days) | |||
---|---|---|---|---|---|---|---|
Surface | Bottom | Surface | Bottom | Surface | Bottom | ||
1 | 86 | 76.7 | 89.5 | 23.3 | 10.5 | 61.5 | 64.3 |
2 | 190 | 67.9 | 88.4 | 32.1 | 11.6 | 61.8 | 64.7 |
3 | 50 | 74.0 | 82.0 | 26.0 | 18.0 | 46.3 | 71.3 |
4 | 322 | 59.9 | 36.3 | 40.1 | 63.7 | 65.4 | 110.8 |
5 | 326 | 79.5 | 76.4 | 20.5 | 23.6 | 37.8 | 69.0 |
6 | 228 | 97.8 | 89.9 | 2.2 | 10.1 | 7.3 | 48.3 |
7 | 328 | 99.1 | 97.9 | 0.9 | 2.1 | 2.5 | 10.1 |
Total/ Mean | 1530 | 80.5 | 77.0 | 19.5 | 23.0 | 36.1 | 61.4 |
Zone | Particle Number | Exported Particles (%) | Non-Exported Particles (%) | Mean RT (Days) | ||||
---|---|---|---|---|---|---|---|---|
Surface | Bottom | Surface | Bottom | Surface | Bottom | |||
1 | 558 | 98.9 | 98.8 | 1.01 | 1.2 | 1.7 | 5.8 | |
2 | 40 | 70.0 | 90.0 | 30.0 | 10.0 | 39.4 | 10.7 | |
3 | 62 | 87.1 | 100.0 | 12.9 | - | 31.9 | 2.8 | |
4 | 256 | 88.2 | 95.1 | 11.8 | 4.9 | 25.9 | 4.9 | |
5 | 74 | 93.2 | 96.0 | 6.8 | 4.0 | 19.4 | 4.8 | |
6 | 194 | 94.9 | 99.0 | 5.1 | 1.0 | 20.0 | 1.7 | |
Total/ Mean | 1174 | 94.0 | 97.6 | 6 | 2.4 | 13.8 | 4.9 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Samper, Y.; Hernández, I.; Castro-Rosero, L.M.; Liste, M.; Espino, M.; Alsina, J.M. Spatial Variability Analysis of Renewal Time in Harbour Environments Using a Lagrangian Model. J. Mar. Sci. Eng. 2025, 13, 341. https://doi.org/10.3390/jmse13020341
Samper Y, Hernández I, Castro-Rosero LM, Liste M, Espino M, Alsina JM. Spatial Variability Analysis of Renewal Time in Harbour Environments Using a Lagrangian Model. Journal of Marine Science and Engineering. 2025; 13(2):341. https://doi.org/10.3390/jmse13020341
Chicago/Turabian StyleSamper, Yaiza, Ivan Hernández, Leidy M. Castro-Rosero, Maria Liste, Manuel Espino, and José M. Alsina. 2025. "Spatial Variability Analysis of Renewal Time in Harbour Environments Using a Lagrangian Model" Journal of Marine Science and Engineering 13, no. 2: 341. https://doi.org/10.3390/jmse13020341
APA StyleSamper, Y., Hernández, I., Castro-Rosero, L. M., Liste, M., Espino, M., & Alsina, J. M. (2025). Spatial Variability Analysis of Renewal Time in Harbour Environments Using a Lagrangian Model. Journal of Marine Science and Engineering, 13(2), 341. https://doi.org/10.3390/jmse13020341