Dynamic Response Analysis and Liquefaction Potential Evaluation of Riverbed Induced by Tidal Bore
<p>Distribution of typical tidal bores around the world.</p> "> Figure 2
<p>Schematic diagram of the interaction between a tidal bore and the riverbed. Inset: the Qiantang River tidal bore at Yanguan, China; <span class="html-italic">c</span> represents the celerity of the tidal bore, <span class="html-italic">d</span> is the water depth before the bore arrives, <span class="html-italic">h</span> is the thickness of the riverbed, <span class="html-italic">H</span> is the height of the tidal bore, <span class="html-italic">σ<sub>x</sub></span> and <span class="html-italic">σ<sub>z</sub></span> correspond to the normal stresses in the <span class="html-italic">x</span> and <span class="html-italic">z</span> directions, respectively, <span class="html-italic">τ<sub>xz</sub></span> is the shear stress, and <span class="html-italic">SWL</span> indicates the still water line.</p> "> Figure 3
<p>Comparison between the degenerate solution and the existing analytical solution [<a href="#B57-jmse-12-01668" class="html-bibr">57</a>]. (<b>a</b>) Dynamic water pressure, (<b>b</b>) horizontal seepage velocity, and (<b>c</b>) vertical seepage velocity.</p> "> Figure 4
<p>Contours of tidal bore induced pore pressure within the riverbed. (<b>a</b>) <span class="html-italic">S<sub>r</sub></span> = 1 and (<b>b</b>) <span class="html-italic">S<sub>r</sub></span> = 0.99, <span class="html-italic">S<sub>r</sub></span> is the degree of saturation.</p> "> Figure 5
<p>Contours of tidal bore-induced effective stresses within the riverbed. Vertical effective stress: (<b>a</b>) <span class="html-italic">S<sub>r</sub></span> = 1 and (<b>b</b>) <span class="html-italic">S<sub>r</sub></span> = 0.99; horizontal effective stress: (<b>c</b>) <span class="html-italic">S<sub>r</sub></span> = 1 and (<b>d</b>) <span class="html-italic">S<sub>r</sub></span> = 0.99; and shear stress: (<b>e</b>) <span class="html-italic">S<sub>r</sub></span> = 1 and (<b>f</b>) <span class="html-italic">S<sub>r</sub></span> = 0.99. <span class="html-italic">S<sub>r</sub></span> is the degree of saturation.</p> "> Figure 5 Cont.
<p>Contours of tidal bore-induced effective stresses within the riverbed. Vertical effective stress: (<b>a</b>) <span class="html-italic">S<sub>r</sub></span> = 1 and (<b>b</b>) <span class="html-italic">S<sub>r</sub></span> = 0.99; horizontal effective stress: (<b>c</b>) <span class="html-italic">S<sub>r</sub></span> = 1 and (<b>d</b>) <span class="html-italic">S<sub>r</sub></span> = 0.99; and shear stress: (<b>e</b>) <span class="html-italic">S<sub>r</sub></span> = 1 and (<b>f</b>) <span class="html-italic">S<sub>r</sub></span> = 0.99. <span class="html-italic">S<sub>r</sub></span> is the degree of saturation.</p> "> Figure 6
<p>Time histories of the horizontal and vertical seepage velocities induced by the tidal bore at three different elevations (0, − 0.25 <span class="html-italic">h</span>, and − 0.5 <span class="html-italic">h</span>). (<b>a</b>) Dynamic water pressure at the interface of water and riverbed, (<b>b</b>) horizontal seepage velocity, and (<b>c</b>) vertical seepage velocity.</p> "> Figure 7
<p>Contours of tidal bore-induced seepage velocity within the riverbed. Vertical seepage velocity: (<b>a</b>) <span class="html-italic">S<sub>r</sub></span> = 1 and (<b>b</b>) <span class="html-italic">S<sub>r</sub></span> = 0.99; horizontal seepage velocity: (<b>c</b>) <span class="html-italic">S<sub>r</sub></span> = 1 and (<b>d</b>) <span class="html-italic">S<sub>r</sub></span> = 0.99. <span class="html-italic">S<sub>r</sub></span> is the degree of saturation.</p> "> Figure 8
<p>(<b>a</b>) Dynamic water pressure at the water–riverbed interface. (<b>b</b>) The boundary between the liquefaction zone and the stable zone based on Equations (53) and (55), respectively.</p> "> Figure 9
<p>Maximum liquefaction depth <span class="html-italic">z<sub>l</sub></span>/<span class="html-italic">d</span> as a function of tidal bore height <span class="html-italic">H/d</span> for a partially saturated riverbed composed of isotropic silt soil and fine sand.</p> "> Figure 10
<p>Maximum liquefaction depth <span class="html-italic">z<sub>l</sub></span>/<span class="html-italic">d</span> as a function of water depth <span class="html-italic">d/h</span> before the arrival of the tidal bore for a partially saturated riverbed composed of isotropic silt soil and fine sand.</p> "> Figure 11
<p>Maximum liquefaction depth <span class="html-italic">z<sub>l</sub></span>/<span class="html-italic">d</span> as a function of relative riverbed thickness <span class="html-italic">h</span>/<span class="html-italic">d</span> for a partially saturated riverbed composed of isotropic silt soil and fine sand.</p> "> Figure 12
<p>Maximum liquefaction depth <span class="html-italic">z<sub>l</sub></span>/<span class="html-italic">d</span> as a function of soil stiffness <span class="html-italic">Gβ</span> for a riverbed composed of isotropic silt soil and fine sand.</p> "> Figure 13
<p>Maximum liquefaction depth <span class="html-italic">z<sub>l</sub></span>/<span class="html-italic">d</span> as a function of soil permeability <span class="html-italic">k<sub>z</sub></span> for a partially saturated isotropic riverbed.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Theoretical Model
- The riverbed is considered horizontal, homogeneous, highly saturated, isotropic in permeability, and of finite thickness.
- The compressibility coefficients of the soil skeleton and pore water are constant, while the soil particles are assumed to be incompressible.
- The stress–strain relationship of the soil skeleton adheres to Hooke’s law.
- The seepage of pore water complies with Darcy’s law.
- The energy loss during tidal bore propagation is disregarded.
- The water pressure exerted on the riverbed surface is equivalent to the water pressure on the surface of an impermeable, rigid horizontal riverbed at the same depth.
2.1.1. Governing Equations
2.1.2. Integral Transform Method
2.2. Solving the Boundary Value Problem
2.3. Liquefaction Triggered Criterion
3. Results
3.1. Verification
3.2. Riverbed Responses
3.3. Seepage Characteristics
3.4. Liquefaction Analysis
- Tidal bore height: 0.6 m to 4 m;
- Water depth: 2 m to 5 m;
- Bed thickness: 0.6 m to 10 m;
- Degree of saturation: Gβ from 0 to 0.6;
- Permeability coefficient: kx = kz, from 10−6 m/s to 10−2 m/s.
4. Discussion
4.1. Liquefaction Potential Evaluation
4.2. Addressing Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Appendix B
- c, the tidal bore celerity
- d, the water depth
- f(x,z,t), the original function in the time domain
- , the Laplace transformed function
- , the Fourier transformed function
- G, the shear modulus
- gi, the body force acceleration
- h, the riverbed thickness
- H, the tidal bore height
- Kw, the true modulus of elasticity of water
- kx, the permeability coefficient in the x direction
- kz, the permeability coefficient in the z direction
- n, the solid phase porosity
- p, the pore pressure in the riverbed
- pb, the water pressure at the water–riverbed interface
- Pw0, the absolute water pressure
- s, the complex frequency variable in the Laplace domain
- Sr, the saturation degree
- Sx, the horizontal seepage velocity
- Sz, the vertical seepage velocity
- ui, the solid matrix displacement
- wi, the average relative displacement of the fluid to the solid
- x, the horizontal coordinate
- z, the vertical coordinate
- β, the volumetric compressibility coefficient of the fluid
- γs′, the effective unit weight of the soil particles
- γw, the unit weight of water
- δij, the Kronecker delta denotation
- θ, the volume strain
- λ, the Lamé constant
- ξ, the frequency variable in the Fourier domain
- ρ0, the combined density
- ρs, the solid density
- ρw, the fluid density
- σij, the total stress components
- σx, the normal stresses in the x directions
- σz, the normal stresses in the z directions
- τxz, the shear stress
- φ, the internal friction angle
References
- Lynch, D.K. Tidal bores. Sci. Am. 1982, 247, 146–157. [Google Scholar] [CrossRef]
- Li, Y.; Pan, D.-Z.; Chanson, H.; Pan, C.-H. Tidal bore progressing on a small slope. Exp. Therm. Fluid Sci. 2017, 88, 513–518. [Google Scholar] [CrossRef]
- Li, Y.; Pan, D.-Z.; Chanson, H.; Pan, C.-H. Real-time characteristics of tidal bore propagation in the Qiantang River Estuary, China, recorded by marine radar. Cont. Shelf Res. 2019, 180, 48–58. [Google Scholar] [CrossRef]
- Bonneton, P.; Bonneton, N.; Parisot, J.-P.; Castelle, B. Tidal bore dynamics in funnel-shaped estuaries. J. Geophys. Res. Oceans 2015, 120, 923–941. [Google Scholar] [CrossRef]
- Filippini, A.G.; Arpaia, L.; Bonneton, P.; Ricchiuto, M. Modeling analysis of tidal bore formation in convergent estuaries. Eur. J. Mech. B Fluids 2019, 73, 55–68. [Google Scholar] [CrossRef]
- Colas, A. Mascaret, Prodige de la Marée; Editions YEP: Anglet, France, 2017. [Google Scholar]
- Pan, D.; Li, Y.; Pan, C. A review on field observations of tidal bore-induced flow and sediment dynamic processes. Ocean Eng. 2023, 41, 169–181. [Google Scholar]
- Li, Y.; Pan, D. Tidal bore impact pressures on a trestle pier in the Qiantang River Estuary, China. Adv. Mech. Eng. 2022, 14, 16878132221131435. [Google Scholar] [CrossRef]
- Pan, D.; Li, Y. Tidal bore scour around a spur dike. J. Mar. Sci. Eng. 2022, 10, 1086. [Google Scholar] [CrossRef]
- Chanson, H. Tidal Bores, Aegir, Eagre, Mascaret, Pororoca Theory and Observations; World Scientific: Singapore, 2012. [Google Scholar]
- Moore, R.N. Report on the Bore of the Tsien-Tang Kiang; Hydrographic Office: London, UK, 1888. [Google Scholar]
- Reungoat, D.; Lubin, P.; Leng, X.; Chanson, H. Tidal bore hydrodynamics and sediment processes: 2010–2016 field observations in France. Coast. Eng. J. 2018, 60, 484–498. [Google Scholar] [CrossRef]
- Tu, J.; Fan, D.; Voulgaris, G. Field observations of turbulence, sediment suspension, and transport under breaking tidal bores. Mar. Geol. 2021, 437, 106498. [Google Scholar] [CrossRef]
- Wisha, U.J.; Wijaya, Y.J.; Hisaki, Y. Real-time properties of hydraulic jump off a tidal bore, its generation and transport mechanisms: A case study of the Kampar River Estuary, Indonesia. Water 2022, 14, 2561. [Google Scholar] [CrossRef]
- Leng, X.; Chanson, H. Turbulent advances of a breaking bore: Preliminary physical experiments. Exp. Therm. Fluid Sci. 2015, 62, 70–77. [Google Scholar] [CrossRef]
- Li, Y.; Chanson, H. Physical modeling of vanishing bores in open-channel flows. Can. J. Civ. Eng. 2022, 49, 289–294. [Google Scholar] [CrossRef]
- Simon, B.; Lubin, P.; Chanson, H. Hydrodynamic shock in rivers: Physical and numerical modelling of flow structures in tsunami-like bores. Phys. Fluids 2023, 35, 106607. [Google Scholar] [CrossRef]
- Gualtieri, C.; Chanson, H. Physical and numerical modelling of air-water flows: An introductory overview. Environ. Model. Softw. 2021, 143, 105109. [Google Scholar] [CrossRef]
- Leng, X.; Simon, B.; Khezri, N.; Lubin, P.; Chanson, H. CFD Modelling of tidal bores: Development and validation challenges. Coast. Eng. J. 2018, 60, 423–436. [Google Scholar] [CrossRef]
- Shi, R.; Wuthrich, D.; Chanson, H. Air-water properties of unsteady breaking bores Part 1: Novel Eulerian and Lagrangian velocity measurements using intrusive and non-intrusive Techniques. Int. J. Multiph. Flow 2023, 159, 104338. [Google Scholar] [CrossRef]
- Shi, R.; Wuthrich, D.; Chanson, H. Air-water properties of unsteady breaking bore Part 2: Void fraction and bubble statistics. Int. J. Multiph. Flow 2023, 159, 104337. [Google Scholar] [CrossRef]
- Wuthrich, D.; Shi, R.; Chanson, H. Strong free-surface turbulence in breaking bores: A physical study on the free-surface dynamics and air-water interfacial features. J. Fluid Mech. 2021, 924, A20. [Google Scholar] [CrossRef]
- Committee on Soil Dynamics of the Geotechnical Engineering Division, ASCE. Definition of terms related to liquefaction. J. Geotech. Eng. Div. 1978, 104, 1197–1200. [Google Scholar]
- Popescu, R.; Chakrabortty, P. Mechanism of seismic liquefaction for heterogeneous soil. Soil Dyn. Earthq. Eng. 2024, 176, 10833. [Google Scholar] [CrossRef]
- Jeng, D.-S. Wave-induced sea floor dynamics. Appl. Mech. Rev. 2003, 56, 407–429. [Google Scholar] [CrossRef]
- Lin, J.; Jeng, D.-S.; Zhao, H.; Gao, Y.; Liu, J.; Guo, Y. Recent advances of seabed liquefaction around the vicinity of marine structures. Ocean Eng. 2023, 280, 114660. [Google Scholar] [CrossRef]
- Sumer, B.M. Liquefaction Around Marine Structures; World Scientific: Singapore, 2014. [Google Scholar]
- Guo, Z.; Jeng, D.-S.; Guo, W. Simplified approximation of wave-induced liquefaction in a shallow porous seabed. Int. J. Geomech. 2014, 14, 06014008. [Google Scholar] [CrossRef]
- Qi, W.G.; Gao, F.P. A modified criterion for wave-induced momentary liquefaction of sandy seabed. Theor. Appl. Mech. Lett. 2015, 5, 20–23. [Google Scholar] [CrossRef]
- Sui, T.; Yang, M.; Peng, L.; Chen, J.; Zhang, C.; Zheng, J. Wave-induced residual response and liquefaction of a nonhomogeneous layered seabed. Front. Mar. Sci. 2024, 11, 1360641. [Google Scholar] [CrossRef]
- Yamamoto, T.; Koning, H.L.; Sellmeijer, H.; Hijum, E.V. On the response of a poro-elastic bed to water waves. J. Fluid Mech. 1978, 87, 193–206. [Google Scholar] [CrossRef]
- Tsai, C.P. Wave-induced liquefaction potential in a porous seabed in front of a breakwater. Ocean Eng. 1995, 22, 1–18. [Google Scholar] [CrossRef]
- Ulker, M.B.C.; Rahman, M.S.; Guddati, M.N. Wave-induced dynamic response and instability of seabed around a breakwater. Ocean Eng. 2010, 37, 1522–1545. [Google Scholar] [CrossRef]
- Seed, H.B.; Rahman, M.S. Wave-induced pore pressure in relation to ocean floor stability of cohesionless soils. Mar. Georesour. Geotec. 1978, 3, 123–150. [Google Scholar] [CrossRef]
- Sumer, B.M.; Kirca, V.S.O.; Fredsøe, J. Experimental validation of a mathematical model for seabed liquefaction under waves. Int. J. Offshore Polar Eng. 2012, 22, 133–141. [Google Scholar]
- Sui, T.; Zhang, C.; Jeng, D.-S.; Guo, Y.; Zheng, J.; Zhang, W.; Shi, J. Wave- induced seabed residual response and liquefaction around a mono-pile foundation with various embedded depth. Ocean Eng. 2019, 173, 157–173. [Google Scholar] [CrossRef]
- Tessier, B.; Furgerot, L.; Mouazé, D. Sedimentary signatures of tidal bores: A brief synthesis. Geo.-Mar. Lett. 2016, 37, 325–331. [Google Scholar] [CrossRef]
- Tessier, B.; Terwindt, J.H.J. An example of soft-sediment deformations in an intertidal environment-the effect of a tidal bore. C. R. Acad. Sci. Sér. II 1994, 319, 217–233. [Google Scholar]
- Greb, S.F.; Archer, A.W. Soft-sediment deformation produced by tides in a meizoseismic area, Turnagain Arm, Alaska. Geology 2007, 35, 425–438. [Google Scholar] [CrossRef]
- Fan, D.D.; Cai, G.F.; Shang, S.; Wu, Y.J.; Zhang, Y.W.; Gao, L. Sedimentation processes and sedimentary characteristics of tidal bores along the north bank of the Qiantang Estuary. Chin. Sci. Bull. 2012, 57, 1578–1589. [Google Scholar] [CrossRef]
- Pan, D. Dynamic Response of Seabed and Pipeline Due to Wave Loading. Ph.D. Thesis, Zhejiang University, Hangzhou, China, 2007. [Google Scholar]
- Hsu, J.R.C.; Jeng, D.S.; Tsai, C.P. Short-crested wave-induced soil response in a porous seabed of infinite thickness. Int. J. Numer. Anal. Methods Geomech. 1993, 17, 553–576. [Google Scholar] [CrossRef]
- Arab, A.; Belkhatir, M. Fines content and cyclic preloading effect on liquefaction potential of silty sand: A laboratory study. Acta Polytech. Hung. 2012, 9, 47–64. [Google Scholar]
- Hsu, C.-J.; Tsai, C.-C.; Chen, Y.-Y. Wave-induced seabed momentary liquefaction in shallow water. Appl. Ocean Res. 2021, 115, 102819. [Google Scholar] [CrossRef]
- Biot, M.A. General theory of three-dimensional consolidation. J. Appl. Phys. 1941, 12, 155–164. [Google Scholar] [CrossRef]
- Biot, M.A. Theory of propagation of elastic waves in a fluidsaturated porous solid. I. Low-frequency range. J. Acoust. Soc. Am. 1956, 282, 168–178. [Google Scholar] [CrossRef]
- Biot, M.A. Mechanics of deformation and acoustic propagation in porous media. J. Appl. Phys. 1962, 33, 1482–1498. [Google Scholar] [CrossRef]
- Madsen, O.S. Wave-induced pore pressures and effective stresses in a porous bed. Geotechnique 1978, 28, 377–393. [Google Scholar] [CrossRef]
- Hsu, C.-J.; Hung, C. Three-dimensional wave-induced dynamic response in anisotropic poroelastic seabed. Water 2019, 12, 1465. [Google Scholar] [CrossRef]
- Hsu, C.-J.; Chen, Y.-Y.; Tsai, C.-C. Wave-induced seabed response in shallow water. Appl. Ocean Res. 2019, 89, 211–223. [Google Scholar] [CrossRef]
- Wang, L.; Pan, D.; Ling, D. Analysis on integral transform of the wave-induced response in seabed and its application. Chin. J. Geotech. Eng. 2006, 28, 847–852. [Google Scholar]
- Tong, L.; Liu, P.L.F. Transient wave-induced pore-water-pressure and soil responses in a shallow unsaturated poroelastic seabed. J. Fluid Mech. 2022, 938, A36. [Google Scholar] [CrossRef]
- Pan, D.; Wang, L.; Ling, D. State-space solution of the wave-induced responses in multilayered seabed and its application. Ocean Eng. 2006, 24, 23–30. [Google Scholar]
- Pan, D.; Wang, L.; Pan, C. State-space solution of seabed–geotextile systems subjected to cyclic wave loadings. Geotext. Geomembr. 2007, 25, 242–250. [Google Scholar] [CrossRef]
- Zienkiewicz, O.C.; Chang, C.T.; Bettess, P. Drained, undrained, consolidating and dynamic behaviour assumptions in soils. Geotechnique 1980, 30, 385–395. [Google Scholar] [CrossRef]
- Verruijt, A. Elastic Storage of Aquifers. In Flow Through Porous Media; de Wiest, R.J.M., Ed.; Academic Press: Cambridge, MA, USA, 1969. [Google Scholar]
- Packwood, A.R.; Peregrine, D.H. Loss of water wave energy due to percolation in a permeable sea bottom. Coast. Eng. 1980, 3, 221–242. [Google Scholar] [CrossRef]
- Durbin, F. Numerical inversion of Laplace transforms: An efficient improvement to Dubner and Abate’s method. Comput. J. 1974, 17, 371–376. [Google Scholar] [CrossRef]
- Cohen, A.M. Numerical Methods for Laplace Transform Inversion; Springer Science: New York, NY, USA, 2007. [Google Scholar]
- Bear, J. Dynamics of Fluids in Porous Media; American Elsevier Publishing Company: New York, NY, USA, 1972. [Google Scholar]
- Madsen, O.S. Stability of a sand bed under breaking waves. In Proceedings of the 14th International Conference on Coastal Engineering, Copenhagen, Denmark, 24–28 June 1974; pp. 776–794. [Google Scholar]
- Hazirbaba, K. Pore Pressure Generation Characteristics of Sands and Silty Sands: A Strain Approach. Ph.D. Thesis, University of Texas, Austin, TX, USA, 2005. [Google Scholar]
- Zuo, L.; Baudet, B.A. Determination of the transitional fines content of sand-non plastic fines mixtures. Soils Found. 2015, 55, 213–219. [Google Scholar] [CrossRef]
- Porcino, D.D.; Diano, V.; Triantafyllidis, T.; Wichtmann, T. Predicting undrained static response of sand with non-plastic fines in terms of equivalent granular state parameter. Acta Geotech. 2020, 15, 867–882. [Google Scholar] [CrossRef]
- Savvides, A.A.; Papadrakakis, M. A probabilistic assessment for porous consolidation of clays. SN Appl. Sci. 2020, 2, 2115. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pan, D.; Li, Y. Dynamic Response Analysis and Liquefaction Potential Evaluation of Riverbed Induced by Tidal Bore. J. Mar. Sci. Eng. 2024, 12, 1668. https://doi.org/10.3390/jmse12091668
Pan D, Li Y. Dynamic Response Analysis and Liquefaction Potential Evaluation of Riverbed Induced by Tidal Bore. Journal of Marine Science and Engineering. 2024; 12(9):1668. https://doi.org/10.3390/jmse12091668
Chicago/Turabian StylePan, Dongzi, and Ying Li. 2024. "Dynamic Response Analysis and Liquefaction Potential Evaluation of Riverbed Induced by Tidal Bore" Journal of Marine Science and Engineering 12, no. 9: 1668. https://doi.org/10.3390/jmse12091668
APA StylePan, D., & Li, Y. (2024). Dynamic Response Analysis and Liquefaction Potential Evaluation of Riverbed Induced by Tidal Bore. Journal of Marine Science and Engineering, 12(9), 1668. https://doi.org/10.3390/jmse12091668