Urinary Exosomal MicroRNA Signatures in Nephrotic, Biopsy-Proven Diabetic Nephropathy
<p>Heat map of differentially-expressed microRNAs (miRs) in nephrotic diabetic nephropathy (DN) patients. Fold change of expression levels were normalized to the mean signal intensities of the controls. Red and green colors represent fold change up- and down-regulation, respectively, as indicated by the linear scale bar.</p> "> Figure 2
<p>The most deregulated miRs in DN: (<b>a</b>) the differentially-expressed miRs in DN (versus control) are shown in Log<sub>2</sub> fold change, with a positive value referring to up-regulation and a negative value meaning down-regulation; (<b>b</b>) the scatter plot shows that these deregulated miRs exhibited correlated-expression pattern between DN and control.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Patients
2.2. Isolation of Urinary-Exosomal RNA
2.3. Library Preparation and Sequencing
2.4. Small RNA- Sequencing Analysis
3. Results
3.1. Patient Characteristics
3.2. Urinary-Exosomal miR Signatures
3.3. Functional Analysis of the Identified miRs
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- De Boer, I.H.; Rue, T.C.; Hall, Y.N.; Heagerty, P.J.; Weiss, N.S.; Himmelfarb, J. Temporal trends in the prevalence of diabetic kidney disease in the United States. JAMA 2011, 305, 2532–2539. [Google Scholar] [CrossRef]
- Lee, W.C.; Lee, Y.T.; Li, L.C.; Ng, H.Y.; Kuo, W.H.; Lin, P.T.; Liao, Y.C.; Chiou, T.T.; Lee, C.T. The Number of Comorbidities Predicts Renal Outcomes in Patients with Stage 3(-)5 Chronic Kidney Disease. J. Clin. Med. 2018, 7. [Google Scholar] [CrossRef] [Green Version]
- Reutens, A.T. Epidemiology of diabetic kidney disease. Med. Clin. North Am. 2013, 97, 1–18. [Google Scholar] [CrossRef]
- Xie, Y.; Bowe, B.; Mokdad, A.H.; Xian, H.; Yan, Y.; Li, T.; Maddukuri, G.; Tsai, C.Y.; Floyd, T.; Al-Aly, Z. Analysis of the Global Burden of Disease study highlights the global, regional, and national trends of chronic kidney disease epidemiology from 1990 to 2016. Kidney Int. 2018, 94, 567–581. [Google Scholar] [CrossRef]
- American Diabetes, A. 11. Microvascular Complications and Foot Care: Standards of Medical Care in Diabetes-2019. Diabetes Care 2019, 42, S124–S138. [Google Scholar] [CrossRef] [Green Version]
- Umanath, K.; Lewis, J.B. Update on Diabetic Nephropathy: Core Curriculum 2018. Am. J. Kidney Dis. 2018, 71, 884–895. [Google Scholar] [CrossRef]
- Kitai, Y.; Doi, Y.; Osaki, K.; Sugioka, S.; Koshikawa, M.; Sugawara, A. Nephrotic range proteinuria as a strong risk factor for rapid renal function decline during pre-dialysis phase in type 2 diabetic patients with severely impaired renal function. Clin. Exp. Nephrol. 2015, 19, 1037–1043. [Google Scholar] [CrossRef]
- Agrawal, V.; Marinescu, V.; Agarwal, M.; McCullough, P.A. Cardiovascular implications of proteinuria: An indicator of chronic kidney disease. Nat. Rev. Cardiol. 2009, 6, 301–311. [Google Scholar] [CrossRef]
- Berni, E.; Pritchard, N.; Jenkins-Jones, S.; Ambery, P.; Jain, M.; Jermutus, L.; Scott, L.A.; Currie, C.J. Hospital admissions for severe infections in people with chronic kidney disease in relation to renal disease severity and diabetes status. Endocrinol. Diabetes Metab. 2018, 1, e00029. [Google Scholar] [CrossRef]
- Christensen, P.K.; Larsen, S.; Horn, T.; Olsen, S.; Parving, H.H. Causes of albuminuria in patients with type 2 diabetes without diabetic retinopathy. Kidney Int. 2000, 58, 1719–1731. [Google Scholar] [CrossRef] [Green Version]
- Kveder, R.; Kajtna-Koselj, M.; Rott, T.; Bren, A.F. Nephrotic syndrome in patients with diabetes mellitus is not always associated with diabetic nephropathy. Nephrol. Dial. Transplant. 2001, 16 (Suppl. 6), 86–87. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grujicic, M.; Salapura, A.; Basta-Jovanovic, G.; Figurek, A.; Micic-Zrnic, D.; Grbic, A. Non-Diabetic Kidney Disease in Patients with Type 2 Diabetes Mellitus-11-Year Experience from a Single Center. Med. Arch. 2019, 73, 87–91. [Google Scholar] [CrossRef] [PubMed]
- Rush, D. Protocol transplant biopsies: An underutilized tool in kidney transplantation. Clin. J. Am. Soc. Nephrol. 2006, 1, 138–143. [Google Scholar] [CrossRef] [Green Version]
- Moledina, D.G.; Luciano, R.L.; Kukova, L.; Chan, L.; Saha, A.; Nadkarni, G.; Alfano, S.; Wilson, F.P.; Perazella, M.A.; Parikh, C.R. Kidney Biopsy-Related Complications in Hospitalized Patients with Acute Kidney Disease. Clin. J. Am. Soc. Nephrol. 2018, 13, 1633–1640. [Google Scholar] [CrossRef] [Green Version]
- Gudehithlu, K.P.; Garcia-Gomez, I.; Vernik, J.; Brecklin, C.; Kraus, M.; Cimbaluk, D.J.; Hart, P.; Dunea, G.; Arruda, J.A.; Singh, A.K. In Diabetic Kidney Disease Urinary Exosomes Better Represent Kidney Specific Protein Alterations Than Whole Urine. Am. J. Nephrol. 2015, 42, 418–424. [Google Scholar] [CrossRef] [PubMed]
- Ludwig, A.K.; Giebel, B. Exosomes: Small vesicles participating in intercellular communication. Int. J. Biochem. Cell Biol. 2012, 44, 11–15. [Google Scholar] [CrossRef] [PubMed]
- Eissa, S.; Matboli, M.; Aboushahba, R.; Bekhet, M.M.; Soliman, Y. Urinary exosomal microRNA panel unravels novel biomarkers for diagnosis of type 2 diabetic kidney disease. J. Diabetes Complicat. 2016, 30, 1585–1592. [Google Scholar] [CrossRef]
- Tain, Y.L.; Huang, L.T.; Chan, J.Y.; Lee, C.T. Transcriptome analysis in rat kidneys: Importance of genes involved in programmed hypertension. Int. J. Mol. Sci. 2015, 16, 4744–4758. [Google Scholar] [CrossRef] [Green Version]
- Bolger, A.M.; Lohse, M.; Usadel, B. Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics 2014, 30, 2114–2120. [Google Scholar] [CrossRef] [Green Version]
- Friedlander, M.R.; Mackowiak, S.D.; Li, N.; Chen, W.; Rajewsky, N. miRDeep2 accurately identifies known and hundreds of novel microRNA genes in seven animal clades. Nucleic. Acids Res. 2012, 40, 37–52. [Google Scholar] [CrossRef]
- Xue, M.; Cheng, Y.; Han, F.; Chang, Y.; Yang, Y.; Li, X.; Chen, L.; Lu, Y.; Sun, B.; Chen, L. Triptolide Attenuates Renal Tubular Epithelial-mesenchymal Transition Via the MiR-188-5p-mediated PI3K/AKT Pathway in Diabetic Kidney Disease. Int. J. Biol. Sci. 2018, 14, 1545–1557. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, H.; Bae, Y.U.; Jeon, J.S.; Noh, H.; Park, H.K.; Byun, D.W.; Han, D.C.; Ryu, S.; Kwon, S.H. The circulating exosomal microRNAs related to albuminuria in patients with diabetic nephropathy. J. Transl. Med. 2019, 17, 236. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, X.; Zeng, L.; Cao, C.; Lu, C.; Lian, W.; Han, J.; Zhang, X.; Zhang, J.; Tang, T.; Li, M. Long noncoding RNA MALAT1 regulates renal tubular epithelial pyroptosis by modulated miR-23c targeting of ELAVL1 in diabetic nephropathy. Exp. Cell Res. 2017, 350, 327–335. [Google Scholar] [CrossRef] [PubMed]
- Marin, D.E.; Braicu, C.; Dumitrescu, G.; Pistol, G.C.; Cojocneanu, R.; Neagoe, I.B.; Taranu, I. MicroRNA profiling in kidney in pigs fed ochratoxin A contaminated diet. Ecotoxicol. Environ. Saf. 2019, 184, 109637. [Google Scholar] [CrossRef]
- Navarro-Quiroz, E.; Pacheco-Lugo, L.; Navarro-Quiroz, R.; Lorenzi, H.; Espana-Puccini, P.; Diaz-Olmos, Y.; Almendrales, L.; Olave, V.; Gonzalez-Torres, H.; Diaz-Perez, A.; et al. Profiling analysis of circulating microRNA in peripheral blood of patients with class IV lupus nephritis. PLoS ONE 2017, 12, e0187973. [Google Scholar] [CrossRef]
- Krupa, A.; Jenkins, R.; Luo, D.D.; Lewis, A.; Phillips, A.; Fraser, D. Loss of MicroRNA-192 promotes fibrogenesis in diabetic nephropathy. J. Am. Soc. Nephrol. 2010, 21, 438–447. [Google Scholar] [CrossRef]
- Delic, D.; Eisele, C.; Schmid, R.; Baum, P.; Wiech, F.; Gerl, M.; Zimdahl, H.; Pullen, S.S.; Urquhart, R. Urinary Exosomal miRNA Signature in Type II Diabetic Nephropathy Patients. PLoS ONE 2016, 11, e0150154. [Google Scholar] [CrossRef]
- Xie, Y.; Jia, Y.; Cuihua, X.; Hu, F.; Xue, M.; Xue, Y. Urinary Exosomal MicroRNA Profiling in Incipient Type 2 Diabetic Kidney Disease. J. Diabetes Res. 2017, 2017, 6978984. [Google Scholar] [CrossRef]
- Mishra, A.; Ayasolla, K.; Kumar, V.; Lan, X.; Vashistha, H.; Aslam, R.; Hussain, A.; Chowdhary, S.; Marashi Shoshtari, S.; Paliwal, N.; et al. Modulation of apolipoprotein L1-microRNA-193a axis prevents podocyte dedifferentiation in high-glucose milieu. Am. J. Physiol. Renal. Physiol. 2018, 314, F832–F843. [Google Scholar] [CrossRef]
- Kato, M.; Zhang, J.; Wang, M.; Lanting, L.; Yuan, H.; Rossi, J.J.; Natarajan, R. MicroRNA-192 in diabetic kidney glomeruli and its function in TGF-beta-induced collagen expression via inhibition of E-box repressors. Proc. Natl. Acad. Sci. USA 2007, 104, 3432–3437. [Google Scholar] [CrossRef] [Green Version]
- Putta, S.; Lanting, L.; Sun, G.; Lawson, G.; Kato, M.; Natarajan, R. Inhibiting microRNA-192 ameliorates renal fibrosis in diabetic nephropathy. J. Am. Soc. Nephrol. 2012, 23, 458–469. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Malik, S.; Suchal, K.; Khan, S.I.; Bhatia, J.; Kishore, K.; Dinda, A.K.; Arya, D.S. Apigenin ameliorates streptozotocin-induced diabetic nephropathy in rats via MAPK-NF-kappaB-TNF-alpha and TGF-beta1-MAPK-fibronectin pathways. Am. J. Physiol. Renal. Physiol. 2017, 313, F414–F422. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Adhikary, L.; Chow, F.; Nikolic-Paterson, D.J.; Stambe, C.; Dowling, J.; Atkins, R.C.; Tesch, G.H. Abnormal p38 mitogen-activated protein kinase signalling in human and experimental diabetic nephropathy. Diabetologia 2004, 47, 1210–1222. [Google Scholar] [CrossRef] [PubMed]
- Tung, C.W.; Hsu, Y.C.; Shih, Y.H.; Chang, P.J.; Lin, C.L. Glomerular mesangial cell and podocyte injuries in diabetic nephropathy. Nephrology 2018, 23 (Suppl. 4), 32–37. [Google Scholar] [CrossRef] [Green Version]
- Lin, C.L.; Wang, F.S.; Kuo, Y.R.; Huang, Y.T.; Huang, H.C.; Sun, Y.C.; Kuo, Y.H. Ras modulation of superoxide activates ERK-dependent fibronectin expression in diabetes-induced renal injuries. Kidney Int. 2006, 69, 1593–1600. [Google Scholar] [CrossRef] [Green Version]
- Peruchetti, D.B.; Silva-Aguiar, R.P.; Siqueira, G.M.; Dias, W.B.; Caruso-Neves, C. High glucose reduces megalin-mediated albumin endocytosis in renal proximal tubule cells through protein kinase B O-GlcNAcylation. J. Biol. Chem. 2018, 293, 11388–11400. [Google Scholar] [CrossRef] [Green Version]
- Coffey, S.; Costacou, T.; Orchard, T.; Erkan, E. Akt Links Insulin Signaling to Albumin Endocytosis in Proximal Tubule Epithelial Cells. PLoS ONE 2015, 10, e0140417. [Google Scholar] [CrossRef] [Green Version]
- Coward, R.; Fornoni, A. Insulin signaling: Implications for podocyte biology in diabetic kidney disease. Curr. Opin. Nephrol. Hypertens 2015, 24, 104–110. [Google Scholar] [CrossRef] [Green Version]
- Wang, H.; Misaki, T.; Taupin, V.; Eguchi, A.; Ghosh, P.; Farquhar, M.G. GIV/girdin links vascular endothelial growth factor signaling to Akt survival signaling in podocytes independent of nephrin. J. Am. Soc. Nephrol. 2015, 26, 314–327. [Google Scholar] [CrossRef] [Green Version]
- Uhlen, M.; Fagerberg, L.; Hallstrom, B.M.; Lindskog, C.; Oksvold, P.; Mardinoglu, A.; Sivertsson, A.; Kampf, C.; Sjostedt, E.; Asplund, A.; et al. Proteomics. Tissue-based map of the human proteome. Science 2015, 347, 1260419. [Google Scholar] [CrossRef]
- Leitao Mda, C.; Coimbra, E.C.; de Lima Rde, C.; Guimaraes Mde, L.; Heraclio Sde, A.; Silva Neto Jda, C.; de Freitas, A.C. Quantifying mRNA and microRNA with qPCR in cervical carcinogenesis: A validation of reference genes to ensure accurate data. PLoS ONE 2014, 9, e111021. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Eriksen, A.H.; Andersen, R.F.; Pallisgaard, N.; Sorensen, F.B.; Jakobsen, A.; Hansen, T.F. MicroRNA Expression Profiling to Identify and Validate Reference Genes for the Relative Quantification of microRNA in Rectal Cancer. PLoS ONE 2016, 11, e0150593. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Patient Number | 1 | 2 | 3 | 4 | 5 | 6 |
---|---|---|---|---|---|---|
Age (years) | 54 | 38 | 46 | 29 | 60 | 58 |
Gender | Female | Male | Female | Female | Female | Female |
Diabetes duration (years) | 4 | 2 | 15 | 13 | 9 | 10 |
Diabetic retinopathy | (−) | (+) | (+) | (+) | (−) | (+) |
Hypertension | (+) | (+) | (+) | (+) | (+) | (+) |
eGFR (mL/min/1.73 m2) at biopsy | 19 | 23 | 37 | 104 | 47 | 43 |
HbA1C (%) at biopsy | 7.0 | 14.9 | 10.4 | 14.9 | 6.7 | 12.2 |
UPCR (mg/g) at biopsy | 7662.2 | 11384.8 | 5470.6 | 11737.5 | 6617.3 | 20364.4 |
eGFR at 1 year after biopsy | 13 | 8 | 23 | 52 | 30 | 32 |
HbA1C at 1 year after biopsy | 8.2 | 6.6 | 7.3 | 10.0 | 6.9 | 7.4 |
Use of RAS blockade | (+) | (+) | (+) | (+) | (+) | (+) |
Use of statin | (+) | (+) | (+) | (+) | (+) | (+) |
Use of immunosuppressant | (+) | (−) | (−) | (−) | (−) | (−) |
miRNA | Fold Changes | Up/Down Regulation | p-Value | Reported Function or Altered Expression in Kidneys | References |
---|---|---|---|---|---|
miR-188-5p | 15.8830569 | Up | 0.043876707 | Regulates high glucose induced EMT in HK-2 cells via PTEN/PI3K/Akt pathway | [21] |
miR-150-3p | 14.9300289 | Up | 0.048010346 | Upregulated circulating miRs in DN patients | [22] |
miR-760 | 14.7636619 | Up | 0.022022315 | N/A | |
miR-3677-3p | 14.6891608 | Up | 0.022071453 | N/A | |
miR-548ah-3p | 13.8204449 | Up | 0.049986838 | N/A | |
miR-548p | 13.8204449 | Up | 0.049986838 | N/A | |
miR-320e | 13.6115628 | Up | 0.008895953 | N/A | |
miR-23c | 13.4447561 | Up | 0.037456289 | Inhibits pyroptosis in HK-2 cells | [23] |
miR-133a-3p | -7.1177188 | Down | 0.03960008 | Upregulated in OTA-intoxicated pig kidney | [24] |
miR-153-3p | -9.8199843 | Down | 0.038408788 | Abundant in class IV lupus nephritis | [25] |
ID | Description | GeneRatio | BgRatio | p Value | p.adjust | q Value |
---|---|---|---|---|---|---|
hsa04151 | PI3K-Akt signaling pathway | 65/847 | 354/7440 | 0.000049644 | 0.000533552 | 0.000363517 |
hsa04010 | MAPK signaling pathway | 61/847 | 295/7440 | 0.000001816 | 0.000070128 | 0.000047779 |
hsa05165 | Human papillomavirus infection | 54/847 | 339/7440 | 0.006064587 | 0.024417472 | 0.016635988 |
hsa04014 | Ras signaling pathway | 53/847 | 232/7440 | 0.000000358 | 0.000026492 | 0.000018049 |
hsa04144 | Endocytosis | 50/847 | 244/7440 | 0.000020338 | 0.000392778 | 0.000267606 |
hsa04550 | Signaling pathways regulating pluripotency of stem cells | 33/847 | 139/7440 | 0.000025650 | 0.000403281 | 0.000274761 |
PI3K-Akt Signaling Pathway | MAPK Signaling Pathway | Human Papillomavirus Infection | |||
---|---|---|---|---|---|
Target Genes | miRs | Target Genes | miRs | Target Genes | miRs |
EIF4E | miR-548p | MAP3K7 | miR-548p | FZD3 | miR-23c |
FGFR1 | miR-548p | FGFR1 | miR-548p | ||
PRLR | miR-548p, miR-23c | MKNK2 | miR-548ah-3p | HDAC2 | miR-548p, miR-548ah-3p |
CCND1 | miR-548ah-3p | TGFBR1 | miR-548ah-3p | CCND1 | miR-548ah-3p |
PRKAA2 | miR-548ah-3p | RPS6KA3 | miR-548ah-3p | ATP6V0A2 | miR-548ah-3p |
PPP2R5E | miR-548ah-3p | NF1 | miR-548ah-3p | PPP2R5E | miR-548ah-3p |
AKT3 | miR-320e | AKT3 | miR-320e | AKT3 | miR-320e |
CDK6 | miR-320e | STK4 | miR-320e | CDK6 | miR-320e |
FGF1 | miR-760 | FGF1 | miR-760 | ||
PDPK1 | miR-760 | ||||
Ras Signaling Pathway | Endocytosis Pathway | Signaling Pathways Regulating Pluripotency of Stem Cells | |||
Target Genes | miRs | Target Genes | miRs | Target Genes | miRs |
FGFR1 | miR-548p | DNM3 | miR-548p | FGFR1 | miR-548p |
NF1 | miR-548ah-3p | TGFBR1 | miR-548ah-3p | IL6ST | miR-188-5p, miR-320e |
AKT3 | miR-320e | CHMP1B | miR-548ah-3p | AKT3 | miR-320e |
STK4 | miR-320e | NEDD4L | miR-23c | ZFHX3 | miR-548ah-3p |
KSR2 | miR-320e, miR-760 | CBL | miR-760 | SKIL | miR-548ah-3p |
FGF1 | miR-760 | SNX1 | miR-760 | FZD3 | miR-548ah-3p, miR-23c |
SMAD4 | miR-760 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, W.-C.; Li, L.-C.; Ng, H.-Y.; Lin, P.-T.; Chiou, T.T.-Y.; Kuo, W.-H.; Lee, C.-T. Urinary Exosomal MicroRNA Signatures in Nephrotic, Biopsy-Proven Diabetic Nephropathy. J. Clin. Med. 2020, 9, 1220. https://doi.org/10.3390/jcm9041220
Lee W-C, Li L-C, Ng H-Y, Lin P-T, Chiou TT-Y, Kuo W-H, Lee C-T. Urinary Exosomal MicroRNA Signatures in Nephrotic, Biopsy-Proven Diabetic Nephropathy. Journal of Clinical Medicine. 2020; 9(4):1220. https://doi.org/10.3390/jcm9041220
Chicago/Turabian StyleLee, Wen-Chin, Lung-Chih Li, Hwee-Yeong Ng, Pei-Ting Lin, Terry Ting-Yu Chiou, Wei-Hung Kuo, and Chien-Te Lee. 2020. "Urinary Exosomal MicroRNA Signatures in Nephrotic, Biopsy-Proven Diabetic Nephropathy" Journal of Clinical Medicine 9, no. 4: 1220. https://doi.org/10.3390/jcm9041220
APA StyleLee, W.-C., Li, L.-C., Ng, H.-Y., Lin, P.-T., Chiou, T. T.-Y., Kuo, W.-H., & Lee, C.-T. (2020). Urinary Exosomal MicroRNA Signatures in Nephrotic, Biopsy-Proven Diabetic Nephropathy. Journal of Clinical Medicine, 9(4), 1220. https://doi.org/10.3390/jcm9041220