Tissue-Specific miRNAs Regulate the Development of Thoracic Aortic Aneurysm: The Emerging Role of KLF4 Network
<p>Differential miRNA expression analysis in TAA tissue and plasma samples using high-throughput RNA sequencing. (<b>A</b>) Schematic diagram of miRNA-Seq experiment. (<b>B</b>) Heat map showing a total of 20 miRNAs differentially expressed (fold change, FC > 1.5, <span class="html-italic">p</span> < 0.05, normalized read count average, RC > 10) in TAA tissue samples (<span class="html-italic">n</span> = 8) compared to normal aorta tissue (<span class="html-italic">n</span> = 6). Red color indicates upregulated log-transformed expression level ratios of corresponding miRNAs, blue – downregulated; (<b>C</b>) Venn’s diagram showing the number of differentially expressed miRNAs (FC > 1.5, <span class="html-italic">p</span> ≤ 0.05 and RC > 20) in TAA plasma samples (<span class="html-italic">n</span> = 7) compared to non-aneurysmal group (<span class="html-italic">n</span> = 7) and plasma samples obtained 3 months after aortic reconstructive surgery (<span class="html-italic">n</span> = 4); (<b>D</b>) Venn’s diagram demonstrating the number of differentially expressed miRNAs in TAA tissue and plasma samples; (<b>E</b>) Heat map demonstrating the expression of six miRNAs, which were significantly deregulated in TAA plasma samples, but were almost absent in TAA tissue samples. Color intensity indicates log-transformed normalized read counts of corresponding miRNA.</p> "> Figure 2
<p>Validation of differentially expressed miRNAs in TAA tissue and plasma samples by qRT-PCR. qRT-PCR analysis was used for the comparison of relative miRNA expression levels between non-TAA and TAA groups in tissue (<b>A</b>) and plasma (<b>B</b>) both types (<b>C</b>) of samples. The cycle threshold (Ct) values of observed miRNAs were normalized to miR-152-3p and miR-185-5p for tissue and plasma samples, respectively, which were revealed as the most reliable endogenous controls according to miRNA-Seq data. Lines within boxes indicate relative miRNA expression median values; whiskers—5–95 percentile of the relative miRNA expression values. Significance between each group was evaluated using Student’s t test and is shown as follows: n.s.—not significant; * <span class="html-italic">p</span> < 0.05; ** <span class="html-italic">p</span> < 0.01 and *** <span class="html-italic">p</span> < 0.001. (<b>D</b>) Diagnostic ROC curve analysis showing sensitivity and specificity of mir-122-3p, mir-483-3p, mir-4732-3p and mir-143-3p selected circulating miRNAs or the combination of mir-122-3p and mir-483-3p together. AUC denotes area under the ROC curve.</p> "> Figure 3
<p>Functional analysis of target genes of miRNAs dysregulated in TAA. (<b>A</b>) Network analysis of 48 KEGG categories specified three clusters of closely related categories including immune response, cancer, kinase signaling pathways and ten separate groups that were not significantly associated with any other category. <span class="html-italic">TGF-β</span> signaling pathway is included in a grey box. The size of node represents gene number in particular, KEGG category, the node color – the significance level value of particular KEGG category. Edges indicate a statistically significant association between categories. (<b>B</b>) Expanded molecular network of miRNAs and their potential target genes involved in <span class="html-italic">TGF-β</span> signaling pathway. Grey nodes denote target genes, red and blue – upregulated and downregulated miRNAs, respectively. Dark orange area covers <span class="html-italic">TGF-β</span> ligands and receptors; light orange – regulatory <span class="html-italic">SMAD</span>s (r<span class="html-italic">SMAD</span>s). (<b>C</b>) Simplified hypothetical schema of <span class="html-italic">TGF-β</span> signal transduction in TAA tissue cells. miRNAs, which were differentially expressed in TAA tissue (grey boxes), could potentially disturb <span class="html-italic">TGF-β</span> signaling by targeting <span class="html-italic">TGF-β</span> ligands, receptors or r<span class="html-italic">SMAD</span>s leading to dysregulation of <span class="html-italic">MyoCD</span>–<span class="html-italic">KLF4</span> transcription regulator axis and further TAA progression.</p> "> Figure 4
<p>Immunohistochemical (IHC) analysis of KLF4, MyoCD, and osteopontin expression in non-TAA and TAA tissue samples. The abundance of proteins was examined by immunostaining and visualized with diaminobenzidine (brown). The sections were counterstained with hematoxylin (blue). Histological quantification of KLF4 was performed by counting KLF4 positive cell nucleus (black arrows; <span class="html-italic">n</span> = 43), whereas osteopontin (<span class="html-italic">n</span> = 46) and MyoCD (<span class="html-italic">n</span> = 20) by IHC score (graphs in right panel). Lines within boxes indicate KLF4 positive nucleus mean or MyoCD and osteopontin IHC score median values, whiskers – 5-95 percentile of KLF4 positive nucleus or MyoCD and osteopontin IHC score values. The histological data were assessed using Student’s t test (for KLF4) or non-parametric Mann-Whitney U test (for MyoCD and osteopontin). The significance between each group is shown as follows: n.s.—not significant; * <span class="html-italic">p</span> < 0.05; ** <span class="html-italic">p</span> < 0.01, *** <span class="html-italic">p</span> < 0.001.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Patient Samples
2.2. Study Design
3. Results
3.1. Differential miRNA Expression Analysis in TAA Tissue and Blood Plasma Samples
3.2. Validation of Selected miRNAs in TAA Tissue and Plasma Samples by qRT-PCR
3.3. Functional Analysis of miRNA Target Genes Involved in TAA Development
3.4. Number of VSMCs Expressing KLF4 Dramatically Increases during TAA Development
4. Discussion
4.1. miRNA Expression Patterns in Tissues May Be Influenced by Aneurysmal Location and Sex
4.2. Circulating miRNA Profile Does Not Match to Aneurysmal Signature of TAA Tissues
4.3. miRNA Target Analysis Reveals KLF4 As a Key Factor for the TAA Development in vivo
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Kuzmik, G.A.; Sang, A.X.; Elefteriades, J.A. Natural history of thoracic aortic aneurysms. J. Vasc. Surg. 2012, 56, 565–571. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Elefteriades, J.A.; Farkas, E.A. Thoracic Aortic Aneurysm Clinically Pertinent Controversies and Uncertainties. J. Am. Coll. Cardiol. 2010, 55, 841–857. [Google Scholar] [CrossRef] [PubMed]
- Quintana, R.A.; Taylor, W.R. Cellular Mechanisms of Aortic Aneurysm Formation. Circ. Res. 2019, 124, 607–618. [Google Scholar] [CrossRef] [PubMed]
- Olsson, C.; Thelin, S.; Ståhle, E.; Ekbom, A.; Granath, F. Thoracic Aortic Aneurysm and Dissection. Circulation 2006, 114, 2611–2618. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Von Allmen, R.S.; Anjum, A.; Powell, J.T. Incidence of Descending Aortic Pathology and Evaluation of the Impact of Thoracic Endovascular Aortic Repair: A Population-based Study in England and Wales from 1999 to 2010. Eur. J. Vasc. Endovasc. Surg. 2013, 45, 154–159. [Google Scholar] [CrossRef] [Green Version]
- Cheung, K.; Boodhwani, M.; Chan, K.L.; Beauchesne, L.; Dick, A.; Coutinho, T. Thoracic Aortic Aneurysm Growth: Role of Sex and Aneurysm Etiology. J. Am. Heart Assoc. 2017, 6, e003792. [Google Scholar] [CrossRef]
- Nicolini, F.; Vezzani, A.; Corradi, F.; Gherli, R.; Benassi, F.; Manca, T.; Gherli, T. Gender differences in outcomes after aortic aneurysm surgery should foster further research to improve screening and prevention programmes. Eur. J. Prev. Cardiol. 2018, 25, 32–41. [Google Scholar] [CrossRef]
- Owens, G.K. Regulation of Differentiation of Vascular Smooth-Muscle Cells. Physiol. Rev. 1995, 75, 487–517. [Google Scholar] [CrossRef]
- Owens, G.K.; Kumar, M.S.; Wamhoff, B.R. Molecular regulation of vascular smooth muscle cell differentiation in development and disease. Physiol. Rev. 2004, 84, 767–801. [Google Scholar] [CrossRef]
- Wang, Z.G.; Wang, D.Z.; Pipes, G.C.T.; Olson, E.N. Myocardin is a master regulator of smooth muscle gene expression. Proc. Natl. Acad. Sci. USA 2003, 100, 7129–7134. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Sinha, S.; McDonald, O.G.; Shang, Y.T.; Hoofnagle, M.H.; Owens, G.K. Kruppel-like factor 4 abrogates myocardin-induced activation of smooth muscle gene expression. J. Biol. Chem. 2005, 280, 9719–9727. [Google Scholar] [CrossRef] [PubMed]
- Tang, Y.F.; Yang, X.H.; Friesel, R.E.; Vary, C.P.H.; Liaw, L. Mechanisms of TGF-beta-Induced Differentiation in Human Vascular Smooth Muscle Cells. J. Vasc. Res. 2011, 48, 485–494. [Google Scholar] [CrossRef] [PubMed]
- Chuang, J.C.; Jones, P.A. Epigenetics and microRNAs. Pediatr. Res. 2007, 61, 24–29. [Google Scholar] [CrossRef] [PubMed]
- Small, E.M.; Frost, R.J.A.; Olson, E.N. MicroRNAs Add a New Dimension to Cardiovascular Disease. Circulation 2010, 121, 1022–1032. [Google Scholar] [CrossRef] [Green Version]
- Zhou, S.S.; Jin, J.P.; Wang, J.Q.; Zhang, Z.G.; Freedman, J.H.; Zheng, Y.; Cai, L. miRNAS in cardiovascular diseases: Potential biomarkers, therapeutic targets and challenges. Acta Pharmacol. Sin. 2018, 39, 1073–1084. [Google Scholar] [CrossRef] [PubMed]
- Song, Z.F.; Li, G.H. Role of Specific MicroRNAs in Regulation of Vascular Smooth Muscle Cell Differentiation and the Response to Injury. J. Cardiovasc. Transl. Res. 2010, 3, 246–250. [Google Scholar] [CrossRef] [Green Version]
- Merlet, E.; Atassi, F.; Motiani, R.K.; Mougenot, N.; Jacquet, A.; Nadaud, S.; Capiod, T.; Trebak, M.; Lompre, A.M.; Marchand, A. miR-424/322 regulates vascular smooth muscle cell phenotype and neointimal formation in the rat. Cardiovasc. Res. 2013, 98, 458–468. [Google Scholar] [CrossRef] [Green Version]
- Dong, N.N.; Wang, W.; Tian, J.W.; Xie, Z.L.; Lv, B.; Dai, J.N.; Jiang, R.; Huang, D.; Fang, S.H.; Tian, J.T.; et al. MicroRNA-182 prevents vascular smooth muscle cell dedifferentiation via FGF9/PDGFR signaling. Int. J. Mol. Med. 2017, 39, 791–798. [Google Scholar] [CrossRef]
- Jones, J.A.; Stroud, R.E.; O’Quinn, E.C.; Black, L.E.; Barth, J.L.; Elefteriades, J.A.; Bavaria, J.E.; Gorman, J.H.; Gorman, R.C.; Spinale, F.G.; et al. Selective MicroRNA Suppression in Human Thoracic Aneurysms Relationship of miR-29a to Aortic Size and Proteolytic Induction. Circ-Cardiovasc. Genet. 2011, 4, 605–613. [Google Scholar] [CrossRef]
- Licholai, S.; Blaz, M.; Kapelak, B.; Sanak, M. Unbiased Profile of MicroRNA Expression in Ascending Aortic Aneurysm Tissue Appoints Molecular Pathways Contributing to the Pathology. Ann. Thorac. Surg. 2016, 102, 1245–1252. [Google Scholar] [CrossRef] [Green Version]
- Boileau, A.; Lindsay, M.E.; Michel, J.B.; Devaux, Y. Epigenetics in Ascending Thoracic Aortic Aneurysm and Dissection. Aorta 2018, 6, 1–12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moushi, A.; Michailidou, K.; Soteriou, M.; Cariolou, M.; Bashiardes, E. MicroRNAs as possible biomarkers for screening of aortic aneurysms: A systematic review and validation study. Biomarkers 2018, 23, 253–264. [Google Scholar] [CrossRef] [PubMed]
- Raffort, J.; Lareyre, F.; Clement, M.; Mallat, Z. Micro-RNAs in abdominal aortic aneurysms: Insights from animal models and relevance to human disease. Cardiovasc. Res. 2016, 110, 165–177. [Google Scholar] [CrossRef]
- Butkytė, S.; Čiupas, L.; Jakubauskienė, E.; Vilys, L.; Mocevicius, P.; Kanopka, A.; Vilkaitis, G. Splicing-dependent expression of microRNAs of mirtron origin in human digestive and excretory system cancer cells. Clin. Epigenet. 2016, 8, 33. [Google Scholar] [CrossRef] [PubMed]
- Torella, D.; Iaconetti, C.; Catalucci, D.; Ellison Georgina, M.; Leone, A.; Waring Cheryl, D.; Bochicchio, A.; Vicinanza, C.; Aquila, I.; Curcio, A.; et al. MicroRNA-133 Controls Vascular Smooth Muscle Cell Phenotypic Switch In Vitro and Vascular Remodeling In Vivo. Circ. Res. 2011, 109, 880–893. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jonas, S.; Izaurralde, E. Towards a molecular understanding of microRNA-mediated gene silencing. Nat. Rev. Genet. 2015, 16, 421. [Google Scholar] [CrossRef] [PubMed]
- Huusko, T.; Salonurmi, T.; Taskinen, P.; Liinamaa, J.; Juvonen, T.; Paakko, P.; Savolainen, M.; Kakko, S. Elevated messenger RNA expression and plasma protein levels of osteopontin and matrix metalloproteinase types 2 and 9 in patients with ascending aortic aneurysms. J. Thorac. Cardiovasc. Surg. 2013, 145, 1117–1123. [Google Scholar] [CrossRef] [Green Version]
- Lesauskaite, V.; Tanganelli, P.; Sassi, C.; Neri, E.; Diciolla, F.; Ivanoviene, L.; Epistolato, M.C.; Lalinga, A.V.; Alessandrini, C.; Spina, D. Smooth muscle cells of the media in the dilatative pathology of ascending thoracic aorta: Morphology, immunoreactivity for osteopontin, matrix metalloproteinases, and their inhibitors. Hum. Pathol. 2001, 32, 1003–1011. [Google Scholar] [CrossRef]
- Spin, J.M.; Li, D.Y.; Maegdefessel, L.; Tsao, P.S. Non-coding RNAs in aneurysmal aortopathy. Vascul. Pharmacol. 2018, 114, 110–121. [Google Scholar] [CrossRef]
- Li, Y.H.; Maegdefessel, L. Non-coding RNA Contribution to Thoracic and Abdominal Aortic Aneurysm Disease Development and Progression. Front. Physiol. 2017, 8, 429. [Google Scholar] [CrossRef]
- Ruddy, J.M.; Jones, J.A.; Spinale, F.G.; Ikonomidis, J.S. Regional heterogeneity within the aorta: Relevance to aneurysm disease. J. Thorac. Cardiovasc. Surg. 2008, 136, 1123–1130. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Venkatesh, P.; Phillippi, J.; Chukkapalli, S.; Rivera-Kweh, M.; Velsko, I.; Gleason, T.; VanRyzin, P.; Aalaei-Andabili, S.H.; Ghanta, R.K.; Beaver, T.; et al. Aneurysm-Specific miR-221 and miR-146a Participates in Human Thoracic and Abdominal Aortic Aneurysms. Int. J. Mol. Sci. 2017, 18, 875. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Liang, K.; Zou, G.; Chen, X.; Shi, S.; Wang, G.; Zhang, K.; Li, K.; Zhai, S. Inhibition of miR-155 attenuates abdominal aortic aneurysm in mice by regulating macrophage-mediated inflammation. Biosci. Rep. 2018, 38. [Google Scholar] [CrossRef] [PubMed]
- Welten, S.M.J.; Goossens, E.A.C.; Quax, P.H.A.; Nossent, A.Y. The multifactorial nature of microRNAs in vascular remodelling. Cardiovasc. Res. 2016, 110, 6–22. [Google Scholar] [CrossRef] [PubMed]
- Deaton, R.A.; Gan, Q.; Owens, G.K. Sp1-dependent activation of KLF4 is required for PDGF-BB-induced phenotypic modulation of smooth muscle. Am. J. Physiol. Heart Circ. Physiol. 2009, 296, H1027–H1037. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huang, H.R.; Xie, C.Q.; Sun, X.; Ritchie, R.P.; Zhang, J.F.; Chen, Y.E. miR-10a Contributes to Retinoid Acid-induced Smooth Muscle Cell Differentiation. J. Biol. Chem. 2010, 285, 9383–9389. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sokolis, D.P.; Iliopoulos, D.C. Impaired mechanics and matrix metalloproteinases/inhibitors expression in female ascending thoracic aortic aneurysms. J. Mech. Behav. Biomed. 2014, 34, 154–164. [Google Scholar] [CrossRef]
- Guay, C.; Regazzi, R. Exosomes as new players in metabolic organ cross-talk. Diabetes Obes. Metab. 2017, 19, 137–146. [Google Scholar] [CrossRef] [PubMed]
- Hu, J.; Xu, Y.; Hao, J.; Wang, S.; Li, C.; Meng, S. MiR-122 in hepatic function and liver diseases. Protein Cell 2012, 3, 364–371. [Google Scholar] [CrossRef] [Green Version]
- Bandiera, S.; Pfeffer, S.; Baumert, T.F.; Zeisel, M.B. miR-122–A key factor and therapeutic target in liver disease. J. Hepatol. 2015, 62, 448–457. [Google Scholar] [CrossRef]
- Olijhoek, J.K.; van der Graaf, Y.; Banga, J.-D.; Algra, A.; Rabelink, T.J.; Visseren, F.L. The Metabolic Syndrome is associated with advanced vascular damage in patients with coronary heart disease, stroke, peripheral arterial disease or abdominal aortic aneurysm. Eur. Heart J. 2004, 25, 342–348. [Google Scholar] [CrossRef] [PubMed]
- D’Alessandra, Y.; Devanna, P.; Limana, F.; Straino, S.; Di Carlo, A.; Brambilla, P.G.; Rubino, M.; Carena, M.C.; Spazzafumo, L.; De Simone, M.; et al. Circulating microRNAs are new and sensitive biomarkers of myocardial infarction. Eur. Heart J. 2010, 31, 2765–2773. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Devaux, Y.; Salgado-Somoza, A.; Dankiewicz, J.; Boileau, A.; Stammet, P.; Schritz, A.; Zhang, L.; Vausort, M.; Gilje, P.; Erlinge, D.; et al. Incremental Value of Circulating MiR-122-5p to Predict Outcome after Out of Hospital Cardiac Arrest. Theranostics 2017, 7, 2555–2564. [Google Scholar] [CrossRef] [PubMed]
- Martínez-Micaelo, N.; Beltrán-Debón, R.; Baiges, I.; Faiges, M.; Alegret, J.M. Specific circulating microRNA signature of bicuspid aortic valve disease. J. Transl. Med. 2017, 15, 76. [Google Scholar] [CrossRef] [PubMed]
- Kraenkel, N.; Kuschnerus, K.; Briand, S.; Luescher, T.F.; Landmesser, U. miR-483 impairs endothelial homeostasis and response to vascular injury: Upregulation by high-glucose and in patients with type-2 diabetes. Eur. Heart J. 2013, 34, 762. [Google Scholar] [CrossRef]
- Takeda, N.; Hara, H.; Fujiwara, T.; Kanaya, T.; Maemura, S.; Komuro, I. TGF-β Signaling-Related Genes and Thoracic Aortic Aneurysms and Dissections. Int. J. Mol. Sci. 2018, 19, 2125. [Google Scholar] [CrossRef]
- Zhang, P.; Hou, S.Y.; Chen, J.C.; Zhang, J.S.; Lin, F.Y.; Ju, R.J.; Cheng, X.; Ma, X.W.; Song, Y.; Zhang, Y.Y.; et al. Smad4 Deficiency in Smooth Muscle Cells Initiates the Formation of Aortic Aneurysm. Circ. Res. 2016, 118, 388–399. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, W.; Li, Q.L.; Jiao, Y.; Qin, L.F.; Ali, R.; Zhou, J.; Ferruzzi, J.; Kim, R.W.; Geirsson, A.; Dietz, H.C.; et al. Tgfbr2 disruption in postnatal smooth muscle impairs aortic wall homeostasis. J. Clin. Investig. 2014, 124, 755–767. [Google Scholar] [CrossRef]
- Gomez, D.; Coyet, A.; Ollivier, V.; Jeunemaitre, X.; Jondeau, G.; Michel, J.B.; Vranckx, R. Epigenetic control of vascular smooth muscle cells in Marfan and non-Marfan thoracic aortic aneurysms. Cardiovasc. Res. 2011, 89, 446–456. [Google Scholar] [CrossRef]
- Jones, J.A.; Barbour, J.R.; Stroud, R.E.; Bouges, S.; Stephens, S.L.; Spinale, F.G.; Ikonomidis, J.S. Altered Transforming Growth Factor-Beta Signaling in a Murine Model of Thoracic Aortic Aneurysm. J. Vasc. Res. 2008, 45, 457–468. [Google Scholar] [CrossRef] [Green Version]
- Leeper, N.J.; Raiesdana, A.; Kojima, Y.; Chun, H.J.; Azuma, J.; Maegdefessel, L.; Kundu, R.K.; Quertermous, T.; Tsao, P.S.; Spin, J.M. MicroRNA-26a is a novel regulator of vascular smooth muscle cell function. J. Cell. Physiol. 2011, 226, 1035–1043. [Google Scholar] [CrossRef] [PubMed]
- Frismantiene, A.; Philippova, M.; Erne, P.; Resink, T.J. Smooth muscle cell-driven vascular diseases and molecular mechanisms of VSMC plasticity. Cell. Signal. 2018, 52, 48–64. [Google Scholar] [CrossRef] [PubMed]
- Salmon, M.; Johnston, W.F.; Woo, A.; Pope, N.H.; Su, G.; Upchurch, G.R.; Owens, G.K.; Ailawadi, G. KLF4 Regulates Abdominal Aortic Aneurysm Morphology and Deletion Attenuates Aneurysm Formation. Circulation 2013, 128, S163–S174. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Tissue | Plasma | ||||
---|---|---|---|---|---|
Variables | non-TAA (n = 6) | TAA (n = 8) | non-TAA (n = 7) | TAA (n = 7) | Operated (n = 4) |
Age, years ± SD | 47 ± 5 | 62 ± 10 | 54 ± 12 | 63 ± 11 | 64 ± 12 |
Sex, male (%) | 4 (67 %) | 6 (75 %) | 4 (57 %) | 5 (71 %) | 3 (75 %) |
Ascending aortic diameter, mm | 36 ± 0.7 * | 50 ± 3 | 35 ± 3 | 53 ± 5 | 52 ± 4 |
Aortic valve stenosis (%) | 0 (0 %) | 3 (38 %) | 1 (14 %) | 2 (29 %) | 1 (25 %) |
Bicuspid aortic valve (%) | 0 (0 %) | 5 (63 %) | 0 (0 %) | 4 (57 %) | 2 (50 %) |
Aortic valve insufficiency (%) | 0 (0 %) | 5 (63 %) | 1 (14 %) | 3 (43 %) | 1 (25 %) |
Hypertension (%) | 2 (100 %) * | 7 (88 %) | 4 (57 %) | 6 (86 %) | 4 (100 %) |
Smokers (%) | 2 (100 %) * | 1 (13 %) | 1 (14 %) | 1 (14 %) | 0 (0 %) |
Diabetes (%) | 0 (0 %) | 1 (13 %) | 0 (0%) | 3 (43 %) | 1 (25 %) |
Groups | Number of miRNAs | Upregulated | Downregulated |
---|---|---|---|
Tissue | |||
TAA vs. non-TAA | 20 | 15 | 5 |
Plasma | |||
TAA vs. non-TAA | 14 | 3 | 11 |
TAA v.s Op | 6 | 4 | 2 |
TAA vs. non-TAA + Op | 10 | 2 | 8 |
No. | miRNAs | Fold Change | p Value |
---|---|---|---|
Upregulated | |||
1 | hsa-miR-10a-3p | 2.69 | 2.05E–06 |
2 | hsa-miR-10a-5p | 2.45 | 8.63E–07 |
3 | hsa-miR-150-5p | 2.21 | 2.05E–05 |
4 | hsa-miR-199b-5p | 2.12 | 1.19E–04 |
5 | hsa-miR-126-5p | 1.89 | 7.95E–04 |
6 | hsa-miR-126-3p | 1,88 | 2.10E–05 |
7 | hsa-miR-139-5p | 1.74 | 7.22E–04 |
8 | hsa-miR-148a-3p | 1.71 | 3.44E–05 |
9 | hsa-miR-10b-5p | 1.70 | 7.78E–04 |
10 | hsa-miR-148a-5p | 1.70 | 0.0112 |
11 | hsa-miR-99a-5p | 1.68 | 1.76E–05 |
12 | hsa-miR-21-5p | 1.67 | 1.10E–03 |
13 | hsa-miR-146a-5p | 1.67 | 0.002 |
14 | hsa-miR-142-3p | 1.66 | 0.020 |
15 | hsa-miR-542-3p | 1.64 | 0.009 |
Downregulated | |||
16 | hsa-miR-1-3p | −1.59 | 0.001 |
17 | hsa-miR-133a-3p | −1.64 | 2.96E–07 |
18 | hsa-miR-1307-3p | −1.68 | 0.011 |
19 | hsa-miR-9-3p | −1.79 | 0.021 |
20 | hsa-miR-155-5p | −1.88 | 7.34E−08 |
Group | No. | miRNA | Regulation | Fold Change | p Value |
---|---|---|---|---|---|
TAA vs. non-TAA | 1 | hsa-miR-146b-3p | up | 9.11 | 0.044 |
2 | hsa-miR-1255b-5p | up | 8.87 | 0.015 | |
3 | hsa-miR-889-3p | up | 7.95 | 0.047 | |
4 | hsa-miR-375-3p | down | –2.38 | 0.036 | |
5 | hsa–miR-30a-5p | down | –2.54 | 0.033 | |
6 | hsa-miR-483-3p | down | –2.68 | 0.015 | |
7 | hsa-miR-23b-3p | down | –2.79 | 0.017 | |
8 | hsa-miR-140-3p | down | –4.01 | 0.010 | |
9 | hsa-miR-100-5p | down | –9.17 | 0.003 | |
10 | hsa-miR-145-5p | down | –17.36 | 1.44E–04 | |
11 | hsa-miR-143-3p | down | –17.74 | 3.27E–05 | |
12 | hsa–miR-23b-5p | down | –24.93 | 0.013 | |
13 | hsa-miR-122-3p | down | –69.32 | 3.31E–04 | |
14 | hsa-miR-34a-5p | down | –71.95 | 4.01E–05 | |
TAA vs. Operated | 1 | hsa-miR-1255b-5p | up | 9.7203 | 0.045 |
2 | hsa-miR-4732-3p | up | 3.9801 | 0.050 | |
3 | hsa-miR-6803-3p | up | 3.4495 | 0.011 | |
4 | hsa-miR-22-3p | up | 2.5198 | 0.029 | |
5 | hsa-miR-122-3p | down | –18.4085 | 0.024 | |
6 | hsa-miR-23b-5p | down | –44.7992 | 0.001 | |
TAA vs. non-TAA & Operated | 1 | hsa-miR-1255b-5p | up | 11.68 | 0.004 |
2 | hsa-miR-22-3p | up | 1.73 | 0.034 | |
3 | hsa-miR-375-3p | down | –2.12 | 0.049 | |
4 | hsa-miR-483-3p | down | –2.29 | 0.035 | |
5 | hsa-miR-23b-3p | down | –2.36 | 0.024 | |
6 | hsa-miR-143-3p | down | –3.83 | 0.012 | |
7 | hsa-miR-145-5p | down | –4.83 | 0.019 | |
8 | hsa-miR-23b-5p | down | –29.67 | 0.003 | |
9 | hsa-miR-34a-5p | down | –48.62 | 6.26E–05 | |
10 | hsa-miR-122-3p | down | –53.67 | 2.31E–04 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gasiulė, S.; Stankevičius, V.; Patamsytė, V.; Ražanskas, R.; Žukovas, G.; Kapustina, Ž.; Žaliaduonytė, D.; Benetis, R.; Lesauskaitė, V.; Vilkaitis, G. Tissue-Specific miRNAs Regulate the Development of Thoracic Aortic Aneurysm: The Emerging Role of KLF4 Network. J. Clin. Med. 2019, 8, 1609. https://doi.org/10.3390/jcm8101609
Gasiulė S, Stankevičius V, Patamsytė V, Ražanskas R, Žukovas G, Kapustina Ž, Žaliaduonytė D, Benetis R, Lesauskaitė V, Vilkaitis G. Tissue-Specific miRNAs Regulate the Development of Thoracic Aortic Aneurysm: The Emerging Role of KLF4 Network. Journal of Clinical Medicine. 2019; 8(10):1609. https://doi.org/10.3390/jcm8101609
Chicago/Turabian StyleGasiulė, Stasė, Vaidotas Stankevičius, Vaiva Patamsytė, Raimundas Ražanskas, Giedrius Žukovas, Žana Kapustina, Diana Žaliaduonytė, Rimantas Benetis, Vaiva Lesauskaitė, and Giedrius Vilkaitis. 2019. "Tissue-Specific miRNAs Regulate the Development of Thoracic Aortic Aneurysm: The Emerging Role of KLF4 Network" Journal of Clinical Medicine 8, no. 10: 1609. https://doi.org/10.3390/jcm8101609
APA StyleGasiulė, S., Stankevičius, V., Patamsytė, V., Ražanskas, R., Žukovas, G., Kapustina, Ž., Žaliaduonytė, D., Benetis, R., Lesauskaitė, V., & Vilkaitis, G. (2019). Tissue-Specific miRNAs Regulate the Development of Thoracic Aortic Aneurysm: The Emerging Role of KLF4 Network. Journal of Clinical Medicine, 8(10), 1609. https://doi.org/10.3390/jcm8101609