Target Tracking and Circumnavigation Control for Multi-Unmanned Aerial Vehicle Systems Using Bearing Measurements
<p>Illustration of the case that when <math display="inline"><semantics> <mrow> <mi>j</mi> <mo>=</mo> <msub> <mi>v</mi> <mi>i</mi> </msub> </mrow> </semantics></math>, the geometric relationship between bearings and relative positions of the target and UAVs.</p> "> Figure 2
<p>Estimation of relative position and encircling effect for the low-speed target using estimator (9) and control protocol (10). (<b>a</b>) Change of the relative target position estimation error <math display="inline"><semantics> <mrow> <mrow> <mo stretchy="false">‖</mo> </mrow> <msub> <mover accent="true"> <mi>p</mi> <mo stretchy="false">^</mo> </mover> <mrow> <mi>i</mi> <mn>0</mn> </mrow> </msub> </mrow> </semantics></math> − <math display="inline"><semantics> <mrow> <msub> <mi>p</mi> <mrow> <mi>i</mi> <mn>0</mn> </mrow> </msub> <mrow> <mo stretchy="false">‖</mo> </mrow> </mrow> </semantics></math>. (<b>b</b>) Change in the circumnavigation radius controlling error <math display="inline"><semantics> <msub> <mi>D</mi> <mi>i</mi> </msub> </semantics></math> − <math display="inline"><semantics> <mrow> <mi>D</mi> <mo>*</mo> </mrow> </semantics></math>. (<b>c</b>) Change in the angles between neighboring UAVs.</p> "> Figure 2 Cont.
<p>Estimation of relative position and encircling effect for the low-speed target using estimator (9) and control protocol (10). (<b>a</b>) Change of the relative target position estimation error <math display="inline"><semantics> <mrow> <mrow> <mo stretchy="false">‖</mo> </mrow> <msub> <mover accent="true"> <mi>p</mi> <mo stretchy="false">^</mo> </mover> <mrow> <mi>i</mi> <mn>0</mn> </mrow> </msub> </mrow> </semantics></math> − <math display="inline"><semantics> <mrow> <msub> <mi>p</mi> <mrow> <mi>i</mi> <mn>0</mn> </mrow> </msub> <mrow> <mo stretchy="false">‖</mo> </mrow> </mrow> </semantics></math>. (<b>b</b>) Change in the circumnavigation radius controlling error <math display="inline"><semantics> <msub> <mi>D</mi> <mi>i</mi> </msub> </semantics></math> − <math display="inline"><semantics> <mrow> <mi>D</mi> <mo>*</mo> </mrow> </semantics></math>. (<b>c</b>) Change in the angles between neighboring UAVs.</p> "> Figure 3
<p>Estimation of relative position and encircling effect for the low-speed target by the Kalman filtering method. (<b>a</b>) Change of the relative target position estimation error <math display="inline"><semantics> <mrow> <mrow> <mo stretchy="false">‖</mo> </mrow> <msub> <mover accent="true"> <mi>p</mi> <mo stretchy="false">^</mo> </mover> <mrow> <mi>i</mi> <mn>0</mn> </mrow> </msub> </mrow> </semantics></math> − <math display="inline"><semantics> <mrow> <msub> <mi>p</mi> <mrow> <mi>i</mi> <mn>0</mn> </mrow> </msub> <mrow> <mo stretchy="false">‖</mo> </mrow> </mrow> </semantics></math>. (<b>b</b>) Change in the circumnavigation radius controlling error <math display="inline"><semantics> <msub> <mi>D</mi> <mi>i</mi> </msub> </semantics></math> − <math display="inline"><semantics> <mrow> <mi>D</mi> <mo>*</mo> </mrow> </semantics></math>. (<b>c</b>) Change in the angles between neighboring UAVs.</p> "> Figure 3 Cont.
<p>Estimation of relative position and encircling effect for the low-speed target by the Kalman filtering method. (<b>a</b>) Change of the relative target position estimation error <math display="inline"><semantics> <mrow> <mrow> <mo stretchy="false">‖</mo> </mrow> <msub> <mover accent="true"> <mi>p</mi> <mo stretchy="false">^</mo> </mover> <mrow> <mi>i</mi> <mn>0</mn> </mrow> </msub> </mrow> </semantics></math> − <math display="inline"><semantics> <mrow> <msub> <mi>p</mi> <mrow> <mi>i</mi> <mn>0</mn> </mrow> </msub> <mrow> <mo stretchy="false">‖</mo> </mrow> </mrow> </semantics></math>. (<b>b</b>) Change in the circumnavigation radius controlling error <math display="inline"><semantics> <msub> <mi>D</mi> <mi>i</mi> </msub> </semantics></math> − <math display="inline"><semantics> <mrow> <mi>D</mi> <mo>*</mo> </mrow> </semantics></math>. (<b>c</b>) Change in the angles between neighboring UAVs.</p> "> Figure 4
<p>The impact of target state estimation by the Kalman filtering method in high-speed target scenario. (<b>a</b>) Change of the relative target position estimation error <math display="inline"><semantics> <mrow> <mrow> <mo stretchy="false">‖</mo> </mrow> <msubsup> <mover accent="true"> <mi>p</mi> <mo stretchy="false">^</mo> </mover> <mrow> <mi>i</mi> <mn>0</mn> </mrow> <mrow> <mi>K</mi> <mi>a</mi> <mi>l</mi> </mrow> </msubsup> </mrow> </semantics></math> − <math display="inline"><semantics> <mrow> <msub> <mi>p</mi> <mrow> <mi>i</mi> <mn>0</mn> </mrow> </msub> <mrow> <mo stretchy="false">‖</mo> </mrow> </mrow> </semantics></math>. (<b>b</b>) Change in the relative target velocity estimation error <math display="inline"><semantics> <mrow> <mrow> <mo stretchy="false">‖</mo> </mrow> <msubsup> <mover accent="true"> <mover accent="true"> <mi>p</mi> <mo>˙</mo> </mover> <mo stretchy="false">^</mo> </mover> <mrow> <mn>0</mn> </mrow> <mrow> <mi>K</mi> <mi>a</mi> <mi>l</mi> </mrow> </msubsup> </mrow> </semantics></math> − <math display="inline"><semantics> <mrow> <msub> <mover accent="true"> <mi>p</mi> <mo>˙</mo> </mover> <mn>0</mn> </msub> <mrow> <mo stretchy="false">‖</mo> </mrow> </mrow> </semantics></math>.</p> "> Figure 5
<p>The target encircling tracking effect by the Kalman filtering method in high-speed target scenario. (<b>a</b>) Change of the circumnavigation radius controlling error <math display="inline"><semantics> <msub> <mi>D</mi> <mi>i</mi> </msub> </semantics></math> − <math display="inline"><semantics> <mrow> <mi>D</mi> <mo>*</mo> </mrow> </semantics></math>. (<b>b</b>) Change in the angles between neighboring UAVs.</p> "> Figure 6
<p>Trajectories of the target and circumnavigating UAVs during the encircling tracking process by the Kalman filtering method in the high-speed target scenario.</p> "> Figure 7
<p>Target encircling tracking effect by the Kalman filtering method in the high-speed target scenario under noise disturbance. (<b>a</b>) Change of the circumnavigation radius controlling error <math display="inline"><semantics> <msub> <mi>D</mi> <mi>i</mi> </msub> </semantics></math> − <math display="inline"><semantics> <mrow> <mi>D</mi> <mo>*</mo> </mrow> </semantics></math>. (<b>b</b>) Change in the angles between neighboring UAVs. (<b>c</b>) Trajectories of the target and UAVs.</p> "> Figure 7 Cont.
<p>Target encircling tracking effect by the Kalman filtering method in the high-speed target scenario under noise disturbance. (<b>a</b>) Change of the circumnavigation radius controlling error <math display="inline"><semantics> <msub> <mi>D</mi> <mi>i</mi> </msub> </semantics></math> − <math display="inline"><semantics> <mrow> <mi>D</mi> <mo>*</mo> </mrow> </semantics></math>. (<b>b</b>) Change in the angles between neighboring UAVs. (<b>c</b>) Trajectories of the target and UAVs.</p> "> Figure 8
<p>The target estimation and encircling effect by VILA method in the reference [<a href="#B16-actuators-13-00323" class="html-bibr">16</a>]. (<b>a</b>) Change of the target position estimation error <math display="inline"><semantics> <mrow> <mrow> <mo stretchy="false">‖</mo> </mrow> <msub> <mover accent="true"> <mi>p</mi> <mo stretchy="false">^</mo> </mover> <mn>0</mn> </msub> </mrow> </semantics></math> − <math display="inline"><semantics> <mrow> <msub> <mi>p</mi> <mn>0</mn> </msub> <mrow> <mo stretchy="false">‖</mo> </mrow> </mrow> </semantics></math> in low-speed target scenario. (<b>b</b>) Change in the circumnavigation radius controlling error <math display="inline"><semantics> <msub> <mi>D</mi> <mi>i</mi> </msub> </semantics></math> − <math display="inline"><semantics> <mrow> <mi>D</mi> <mo>*</mo> </mrow> </semantics></math> in low-speed target scenario. (<b>c</b>) Change in the relative target position estimation error <math display="inline"><semantics> <mrow> <mrow> <mo stretchy="false">‖</mo> </mrow> <msub> <mover accent="true"> <mi>p</mi> <mo stretchy="false">^</mo> </mover> <mrow> <mi>i</mi> <mn>0</mn> </mrow> </msub> </mrow> </semantics></math> − <math display="inline"><semantics> <mrow> <msub> <mi>p</mi> <mrow> <mi>i</mi> <mn>0</mn> </mrow> </msub> <mrow> <mo stretchy="false">‖</mo> </mrow> </mrow> </semantics></math> in high-speed target scenario. (<b>d</b>) Change in the circumnavigation radius controlling error <math display="inline"><semantics> <msub> <mi>D</mi> <mi>i</mi> </msub> </semantics></math> − <math display="inline"><semantics> <mrow> <mi>D</mi> <mo>*</mo> </mrow> </semantics></math> in high-speed target scenario.</p> "> Figure 9
<p>The circumnavigation effect of the method described in reference [<a href="#B31-actuators-13-00323" class="html-bibr">31</a>] for low-speed target in GPS-Free environment. (<b>a</b>) Change of the circumnavigation radius controlling error <math display="inline"><semantics> <msub> <mi>D</mi> <mi>i</mi> </msub> </semantics></math> − <math display="inline"><semantics> <mrow> <mi>D</mi> <mo>*</mo> </mrow> </semantics></math>. (<b>b</b>) Change in the angles between neighboring UAVs.</p> ">
Abstract
:1. Introduction
- (1)
- A distributed target estimation algorithm and a circumnavigation control protocol are designed by using bearing measurements of the target. In contrast to the proportional (P) estimator used in [11,12,13,14,15,16,17,18,19,20,23,24,25,29,30,31,32,33], we introduce a PI control method to develop the estimator, which significantly enhances its robustness. It can be proven that the algorithm converges to a bounded range near the true value. Moreover, in comparison with [11,12,13,14,15,16,17,18,19,20,23,24,25], we take into account practical communication range restrictions and employ dynamic compensation to enable the system to track and encircle the target in a GPS-denied environment.
- (2)
- A Kalman filter approach is applied to improve the accuracy of target estimation and circumnavigation control. Each UAV in the system utilizes local information, including relative bearing and velocity data from neighbors, to calculate measurements of the target’s relative position. These measurements are then incorporated into a Kalman filter for target state estimation. This approach enhances circumnavigation tracking precision, enabling successful tracking of the dynamic target within the system. Compared to previous methods [11,12,13,14,15,16,17,18,19,20,23,24,25,28,29,30,31,32,33,34,35], our approach leverages effective communication and collaboration among agents to achieve superior target localization and circumnavigation performance, especially in high-speed target scenarios.
2. Preliminaries and Problem Statement
2.1. Notations
2.2. Problem Statement
2.3. Technical Lemmas
3. Distributed Estimation and Circumnavigation Algorithms
4. Kalman Filtering Strategy
- Step 1:
- Define two integers, k and N, where k is the number of simulation steps, and N denotes a pre-set threshold value. Additionally, initialize the estimation of the relative target position , the error covariance matrix , prediction covariance matrix Q, and measurement covariance matrix R in the filter.
- Step 2:
- When , we estimate the target state using in Equation (9). Then, we update as , as in control law (33). Finally, apply the updated control law to drive each UAV i.
- Step 3:
- When , we start the Kalman filtering process. Each UAV i begins to calculate in Equation (30); if the observed value is not available, we let . Next, for agent i, by calculating , we using the modified controller (33) to eventually complete the target encircling tracking.
5. Numerical Simulations
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Li, S.; Shao, X.; Zhang, W.; Zhang, Q. Distributed multicircular circumnavigation control for UAVs with desired angular spacing. Def. Technol. 2024, 31, 429–446. [Google Scholar] [CrossRef]
- Chen, B.; Hu, J.; Ghosh, B.K. Finite-time tracking control of heterogeneous multi-AUV systems with partial measurements and intermittent communication. Sci. China Inf. Sci. 2024, 67, 152202. [Google Scholar] [CrossRef]
- Chen, B.; Hu, J.; Zhao, Y.; Ghosh, B.K. Finite-time velocity-free rendezvous control of multiple AUV systems with intermittent communication. IEEE Trans Syst. Man Cybern. Syst. 2022, 52, 6618–6629. [Google Scholar] [CrossRef]
- Chen, B.; Hu, J.; Zhao, Y.; Ghosh, B.K. Finite-time observer based tracking control of uncertain heterogeneous underwater vehicles using adaptive sliding mode approach. Neurocomputing 2022, 481, 322–332. [Google Scholar] [CrossRef]
- Wang, R.; Shen, J. Disturbance observer and adaptive control for disturbance rejection of quadrotor: A survey. Actuators 2024, 13, 217. [Google Scholar] [CrossRef]
- Lei, B.; Liu, B.; Wang, C. Robust geometric control for a quadrotor UAV with extended Kalman filter estimation. Actuators 2024, 13, 205. [Google Scholar] [CrossRef]
- Duan, M.; Yang, Z.; Zhu, S.; Chen, C. Bearing-only containment control of multi-agent systems. Int. J. Robust Nonlinear Control 2023, 33, 11335–11350. [Google Scholar] [CrossRef]
- Su, H.; Chen, C.; Yang, Z.; Zhu, S.; Guan, X. Bearing-based formation tracking control with time-varying velocity estimation. IEEE Trans. Cybern. 2023, 53, 3961–3973. [Google Scholar] [CrossRef]
- Sewlia, M.; Zelazo, D. Bearing-based formation stabilization using event-triggered control. Int. J. Robust Nonlinear Control 2024, 34, 4375–4387. [Google Scholar] [CrossRef]
- Mesbah, A. Stochastic model predictive control with active uncertainty learning: A survey on dual control. Annu. Rev. Control 2018, 45, 107–117. [Google Scholar] [CrossRef]
- Deghat, M.; Shames, I.; Anderson, B.D.; Yu, C. Target localization and circumnavigation using bearing measurements in 2D. In Proceedings of the 49th IEEE Conference on Decision and Control, Atlanta, GA, USA, 5–17 December 2010; pp. 334–339. [Google Scholar]
- Deghat, M.; Shames, I.; Anderson, B.D.; Yu, C. Localization and circumnavigation of a slowly moving target using bearing measurements. IEEE Trans. Automat. Control 2014, 59, 2182–2188. [Google Scholar] [CrossRef]
- Deghat, M.; Xia, L.; Anderson, B.D.; Hong, Y. Multi-target localization and circumnavigation by a single agent using bearing measurements. Int. J. Robust Nonlinear Control 2015, 25, 2362–2374. [Google Scholar] [CrossRef]
- Shao, J.; Tian, Y. Multi-target localisation and circumnavigation by a multi-agent system with bearing measurements in 2D space. Int. J. Syst. Sci. 2018, 49, 15–26. [Google Scholar] [CrossRef]
- Li, R.; Shi, Y.; Wu, X.; Song, Y. Safe-circumnavigation of one single agent around a group of targets with only bearing information. J. Frankl. Inst. 2019, 356, 11546–11560. [Google Scholar] [CrossRef]
- Qi, G.; Li, Y.; Sheng, A. Virtual intersecting location based UAV circumnavigation and bearings-only target-tracking techniques. Inf. Sci. 2019, 505, 571–585. [Google Scholar] [CrossRef]
- Wang, W.; Chen, X.; Jia, J.; Fu, Z. Target localization and encirclement control for multi-UAVs with limited information. IET Control Theory Appl. 2022, 16, 1396–1404. [Google Scholar] [CrossRef]
- Chen, K.; Qi, G.; Li, Y.; Sheng, A. Target localization and multicircular circumnavigation with bearing-only measurements. Int. J. Adapt. Control Signal Process. 2023, 37, 168–182. [Google Scholar] [CrossRef]
- Chen, K.; Qi, G.; Li, Y.; Sheng, A. Finite-time target localization and multicircular circumnavigation with bearing-only measurements. J. Frankl. Inst. 2023, 360, 6338–6356. [Google Scholar] [CrossRef]
- Ma, Z.; Li, Y.; Qi, G.; Sheng, A. Finite-time distributed localization and multi-orbit circumnavigation with bearing-only measurements. J. Frankl. Inst. 2023, 360, 6712–6735. [Google Scholar] [CrossRef]
- Huang, S.; Teo, R.; Tan, K. Collision avoidance of multi unmanned aerial vehicles: A review. Ann. Rev. Control 2019, 48, 147–164. [Google Scholar] [CrossRef]
- Niloy, M.; Shama, A.; Chakrabortty, R.; Ryan, M.; Badal, F.; Tasneem, Z. Critical design and control issues of indoor autonomous mobile robots: A review. IEEE Access 2021, 9, 35338–35370. [Google Scholar] [CrossRef]
- Chen, K.; Qi, G.; Li, Y.; Sheng, A. Target Localization and Standoff Tracking with Discrete-Time Bearing-Only Measurements. IEEE Trans. Circuits Syst. II Express Briefs 2022, 69, 4448–4452. [Google Scholar] [CrossRef]
- Chen, K.; Qi, G.; Li, Y.; Sheng, A. Cooperative localization and circumnavigation of multiple targets with bearing-only measurements. J. Frankl. Inst. 2023, 360, 9159–9179. [Google Scholar] [CrossRef]
- Su, D.; Deghat, M. Communication-free bearing-only distributed target localization and circumnavigation by multiple agents. In Proceedings of the 2024 Australian and New Zealand Control Conference, Gold Coast, Australia, 1–2 February 2024; pp. 158–163. [Google Scholar]
- Shao, X.; Li, S.; Zhang, J.; Zhang, F.; Zhang, W.; Zhang, Q. GPS-free collaborative elliptical circumnavigation control for multiple non-holonomic vehicles. IEEE Trans. Intell. Veh. 2023, 8, 3750–3761. [Google Scholar] [CrossRef]
- Li, Z.; Tnunay, H.; Zhao, S.; Meng, W.; Xie, S.; Ding, Z. Bearing-only formation control with prespecified convergence time. IEEE Trans. Cybern. 2022, 52, 620–629. [Google Scholar] [CrossRef]
- Wang, Z.; Chang, Y.; Zhang, H.; Yan, H. Bearing-only distributed localization for multi-agent systems with complex coordinates. Inf. Sci. 2023, 626, 837–850. [Google Scholar] [CrossRef]
- Lin, Q.; Miao, Z.; Wang, Y.; Wu, Z.; He, W.; Fierro, R. Differentiator-based bearing-only formation control of quadrotors. Int. J. Robust Nonlinear Control 2023, 33, 10606–10624. [Google Scholar] [CrossRef]
- Yu, Y.; Li, Z.; Wang, X.; Shen, L. Bearing-only circumnavigation control of the multi-agent system around a moving target. IET Control Theory Appl. 2019, 13, 2747–2757. [Google Scholar] [CrossRef]
- Dou, L.; Song, C.; Wang, X.; Liu, L.; Feng, G. Target localization and enclosing control for networked mobile agents with bearing measurements. Automatica 2020, 118, 109022. [Google Scholar] [CrossRef]
- Cao, S.; Li, R.; Shi, Y.; Song, Y. A low-cost estimator for target localization and circumnavigation using bearing measurements. J. Frankl. Inst. 2020, 357, 9654–9672. [Google Scholar] [CrossRef]
- Cao, S.; Li, R.; Shi, Y.; Song, Y. Safe convex-circumnavigation of one agent around multiple targets using bearing-only measurements. Automatica 2021, 134, 109934. [Google Scholar] [CrossRef]
- Hu, B.; Zhang, H. Bearing-only motional target-surrounding control for multiple unmanned surface vessels. IEEE Trans. Ind. Electron. 2022, 69, 3988–3997. [Google Scholar] [CrossRef]
- Cao, S.; Duan, G. Bearing-only circumnavigation based on fully actuated system approach. In Proceedings of the 2nd Conference on Fully Actuated System Theory and Applications, Qingdao, China, 14–16 July 2023. [Google Scholar]
- Kou, L.; Xiang, J. Target fencing control of multiple mobile robots using output feedback linearization. Acta Autom. Sin. 2022, 48, 1285–1291. [Google Scholar]
- Sastry, S.; Bodson, M. Adaptive Control: Stability, Convergence and Robustness; Prentice-Hall: Chelmsford, UK, 2011. [Google Scholar]
- Zhao, S.; Zelazo, D. Localizability and distributed protocols for bearing-based network localization in arbitrary dimensions. Automatica 2016, 69, 334–341. [Google Scholar] [CrossRef]
- Bar-Shalom, Y.; Li, R.; Kirubarajan, T. Estimation with Applications to Tracking and Navigation: Theory Algorithms and Software; John Wiley and Sons: New York, NY, USA, 2001. [Google Scholar]
- Wei, M.; Bar-Shalom, Y. Unbiased Kalman filter using converted measurements: Revisit. In Proceedings of the Signal and Data Processing of Small Targets 2009, San Diego, CA, USA, 2–6 August 2009. [Google Scholar]
- Zhang, L.; Sidoti, D.; Bienkowski, A.; Pattipati, K.; Bar-Shalom, Y.; Kleinman, D. On the identification of noise covariances and adaptive Kalman filtering: A new look at a 50 year-old problem. IEEE Access 2020, 8, 59362–59388. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, Z.; Hu, J.; Chen, B.; Shen, X.; Meng, B. Target Tracking and Circumnavigation Control for Multi-Unmanned Aerial Vehicle Systems Using Bearing Measurements. Actuators 2024, 13, 323. https://doi.org/10.3390/act13090323
Zhou Z, Hu J, Chen B, Shen X, Meng B. Target Tracking and Circumnavigation Control for Multi-Unmanned Aerial Vehicle Systems Using Bearing Measurements. Actuators. 2024; 13(9):323. https://doi.org/10.3390/act13090323
Chicago/Turabian StyleZhou, Zican, Jiangping Hu, Bo Chen, Xixi Shen, and Bin Meng. 2024. "Target Tracking and Circumnavigation Control for Multi-Unmanned Aerial Vehicle Systems Using Bearing Measurements" Actuators 13, no. 9: 323. https://doi.org/10.3390/act13090323
APA StyleZhou, Z., Hu, J., Chen, B., Shen, X., & Meng, B. (2024). Target Tracking and Circumnavigation Control for Multi-Unmanned Aerial Vehicle Systems Using Bearing Measurements. Actuators, 13(9), 323. https://doi.org/10.3390/act13090323