Gallic Acid as a Potential Green Corrosion Inhibitor for Aluminum in Acidic Solution
<p>Gallic acid molecule.</p> "> Figure 2
<p>Open circuit potential of aluminum immersed in deaerated 0.5 M H<sub>3</sub>PO<sub>4</sub> aqueous solution as a function of initial concentration of gallic acid and exposition time; agitation rate 300 rpm, <span class="html-italic">T</span> = 303 K.</p> "> Figure 3
<p>Polarization curves of aluminum: (<b>a</b>) as a function of the initial concentration of gallic acid; (<b>b</b>) an example showing how corrosion current density was determined; the red line indicates the approximation of the linear part of the polarization curve. Experiments were performed in deaerated 0.5 M H<sub>3</sub>PO<sub>4</sub> aqueous solutions with an agitation rate of 300 rpm, <span class="html-italic">T</span> = 303 K.</p> "> Figure 4
<p>Scanning electron microscopy (SEM) micrographs of corroded aluminum: (<b>a</b>) <sub>CGA</sub> = 0 mM; (<b>b</b>) <sub>CGA</sub> = 38 mM. Experiments were performed in deaerated 0.5 M H<sub>3</sub>PO<sub>4</sub> aqueous solutions with an agitation rate of 300 rpm, <span class="html-italic">T</span> = 303 K.</p> "> Figure 5
<p>Impedance spectra of aluminum: (<b>a</b>) recorded at OCP and subsequent anodic polarization; (<b>b</b>) recorded at OCP and subsequent cathodic polarization. Continuous lines indicate an approximation of these spectra using appropriate electrical equivalent circuit. Experiments were performed in a deaerated 0.5 M H<sub>3</sub>PO<sub>4</sub> aqueous solution with an agitation rate of 300 rpm, <span class="html-italic">T</span> = 303 K.</p> "> Figure 6
<p>Electrical equivalent circuits used for approximation of impedance spectra: (<b>a</b>) recorded at open circuit potential; (<b>b</b>) recorded at η = +0.1 V; (<b>c</b>) recorded at η = −0.1 V.</p> "> Figure 7
<p>Absorption spectra of aqueous solutions of gallic acid: (<b>a</b>) measured experimentally as a function of pH, <sub>CGA</sub> = 65 μM; (<b>b</b>) obtained using quantum mechanical calculations.</p> "> Figure 8
<p>Electrical charge distribution in gallic acid molecule; C, O, and H atoms are depicted as grey, red, and white balls, respectively.</p> "> Figure 9
<p>Speciation diagram for Al-H<sub>3</sub>PO<sub>4</sub>-GA-H<sub>2</sub>O system. Calculations were performed for 0.5 M H<sub>3</sub>PO<sub>4</sub> aqueous solution. Total aluminum concentration of 5 mM was obtained from corrosion rate, assuming <span class="html-italic">t</span> = 3 h, the total gallic acid concentration was 38 mM. Stability constants for complex ions are from [<a href="#B40-metals-12-00250" class="html-bibr">40</a>,<a href="#B46-metals-12-00250" class="html-bibr">46</a>].</p> "> Figure 10
<p>Impedance spectra of aluminum in 0.1 M HCl aqueous solution recorded at OCP and subsequent cathodic polarization. Continuous lines indicate an approximation of these spectra using appropriate electrical equivalent circuit. Experiments were performed in deaerated, agitated solutions with an agitation rate of 300 rpm, <span class="html-italic">T</span> = 303 K.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Inhibiting Ability of Gallic Acid
3.2. Corrosion Mechanism
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Starke, E.A.; Staley, J.T. Application of modern aluminium alloys to aircraft. Prog. Aerosp. Sci. 2010, 32, 131–172. [Google Scholar] [CrossRef]
- Vargel, C. Corrosion of Aluminium; Elsevier B.V.: Amsterdam, The Netherlands, 2004. [Google Scholar]
- Sheasby, P.G.; Pinner, R.; Wernick, S. The Surface Treatment and Finishing of Aluminium and Its Alloys; ASM International: Trowbridge, UK, 2001; ISBN 9780904477214. [Google Scholar]
- Li, X.; Deng, S.; Fu, H. Sodium molybdate as a corrosion inhibitor for aluminium in H3PO4 solution. Corros. Sci. 2011, 53, 2748–2753. [Google Scholar] [CrossRef]
- Kwolek, P.; Kamiński, A.; Dychtoń, K.; Drajewicz, M.; Sieniawski, J. The corrosion rate of aluminium in the orthophosphoric acid solutions in the presence of sodium molybdate. Corros. Sci. 2016, 106, 208–216. [Google Scholar] [CrossRef]
- Dychtoń, K.; Kwolek, P. The replacement of chromate by molybdate in phosphoric acid-based etch solutions for aluminium alloys. Corros. Eng. Sci. Technol. 2018, 53, 234–240. [Google Scholar] [CrossRef]
- Standard ISO 2106:2019; Anodizing of Aluminium and Its Alloys—Determination of Mass per Unit Area (Surface Density) of Anodic Oxidation Coatings—Gravimetric Method. International Organization for Standarization: Geneva, Switzerland, 2019.
- Desai, M.N. Corrosion Inhibitors for Aluminium Alloys. Mater. Corros. 1972, 23, 475–482. [Google Scholar] [CrossRef]
- Xhanari, K.; Finšgar, M. Organic corrosion inhibitors for aluminium and its alloys in acid solutions: A review. RSC Adv. 2016, 6, 62833–62857. [Google Scholar] [CrossRef]
- Xhanari, K.; Finšgar, M.; Knez Hrnčič, M.; Maver, U.; Knez, Ž.; Seiti, B. Green corrosion inhibitors for aluminium and its alloys: A review. RSC Adv. 2017, 7, 27299–27330. [Google Scholar] [CrossRef]
- Marzorati, S.; Verotta, L.; Trasatti, S.P. Green corrosion inhibitors from natural sources and biomass wastes. Molecules 2019, 24, 48. [Google Scholar] [CrossRef] [Green Version]
- Chaubey, N.; Savita; Qurashi, A.; Chauhan, D.S.; Quraishi, M.A. Frontiers and advances in green and sustainable inhibitors for corrosion applications: A critical review. J. Mol. Liq. 2021, 321, 114385. [Google Scholar] [CrossRef]
- Quraishi, M.A.; Chauhan, D.S.; Saji, V.S. Heterocyclic biomolecules as green corrosion inhibitors. J. Mol. Liq. 2021, 341, 117265. [Google Scholar] [CrossRef]
- Reena Kumari, P.D.; Kumari, D. Experimental and Theoretical Evaluation of Rutin as Eco-Friendly Corrosion Inhibitor for Aluminum 6063 Alloy in Acidic Medium. J. Fail. Anal. Prev. 2018, 18, 856–867. [Google Scholar] [CrossRef]
- Guedes, L.A.L.; Bacca, K.G.; Lopes, N.F.; da Costa, E.M. Tannin of Acacia mearnsii as green corrosion inhibitor for AA7075-T6 alluminum alloy in acidic medium. Mater. Corros. 2019, 70, 1288–1297. [Google Scholar] [CrossRef]
- Kumari, D.; Venugopal, P.P.; Kumari P. D., R.; Chakraborty, D. Exploring the potential role of quercetin in corrosion inhibition of aluminium alloy 6063 in hydrochloric acid solution by experimental and theoretical studies. J. Adhes. Sci. Technol. 2021. [Google Scholar] [CrossRef]
- Du, Y.T.; Wang, H.L.; Chen, Y.R.; Qi, H.P.; Jiang, W.F. Synthesis of baicalin derivatives as eco-friendly green corrosion inhibitors for aluminum in hydrochloric acid solution. J. Environ. Chem. Eng. 2017, 5, 5891–5901. [Google Scholar] [CrossRef]
- Hodgson, J.M.; Morton, L.W.; Puddey, I.B.; Beilin, L.J.; Croft, K.D. Gallic acid metabolites are markers of black tea intake in humans. J. Agric. Food Chem. 2000, 48, 2276–2280. [Google Scholar] [CrossRef] [PubMed]
- Ó’Coinceanainn, M.; Hynes, M.J. The kinetics and mechanisms of the reactions of aluminium(III) with gallic acid, gallic acid methyl ester and adrenaline. J. Inorg. Biochem. 2001, 84, 1–12. [Google Scholar] [CrossRef]
- Ali, A.I.; Foaud, N. Inhibition of aluminum corrosion in hydrochloric acid solutionusing black mulberry extract. J. Mater. Environ. Sci. 2012, 3, 917–924. [Google Scholar]
- Shalabi, K.; Fouda, A.S.; Elewady, G.Y.; El-Askalany, A. Adsorption and inhibitive properties of Phoenix dactylifera L. Extract as a green inhibitor for aluminum and aluminum-silicon alloy in HCl. Prot. Met. Phys. Chem. Surfaces 2014, 50, 420–431. [Google Scholar] [CrossRef]
- Chung, I.M.; Malathy, R.; Kim, S.H.; Kalaiselvi, K.; Prabakaran, M.; Gopiraman, M. Ecofriendly green inhibitor from Hemerocallis fulva against aluminum corrosion in sulphuric acid medium. J. Adhes. Sci. Technol. 2020, 34, 1483–1506. [Google Scholar] [CrossRef]
- Raghavendra, N.; Ishwara Bhat, J. Green approach to inhibition of corrosion of aluminum in 0.5 M HCl medium by tender arecanut seed extract: Insight from gravimetric and electrochemical studies. Res. Chem. Intermed. 2016, 42, 6351–6372. [Google Scholar] [CrossRef]
- Raghavendra, N.; Ishwara Bhat, J. Inhibition of Al corrosion in 0.5 M HCl solution by Areca flower extract. J. King Saud Univ.-Eng. Sci. 2019, 31, 202–208. [Google Scholar] [CrossRef]
- Ali, E.H.; Himdan, T.A.; Ahmed, Z.W. Gallic Acid as Corrosion Inhibitor for Aluminum 6061 in Alkali Solutions. Ibn AL- Haitham J. Pure Appl. Sci. 2019, 32, 16. [Google Scholar] [CrossRef]
- Moreau, P.; Colette-Maatouk, S.; Gareil, P.; Reiller, P.E. Modelling of the adsorption of phenolic acids onto α,γ-alumina particles. Colloids Surfaces A Physicochem. Eng. Asp. 2013, 435, 97–108. [Google Scholar] [CrossRef] [Green Version]
- Ribeiro, T.; Motta, A.; Marcus, P.; Gaigeot, M.P.; Lopez, X.; Costa, D. Formation of the OOH• radical at steps of the boehmite surface and its inhibition by gallic acid: A theoretical study including DFT-based dynamics. J. Inorg. Biochem. 2013, 128, 164–173. [Google Scholar] [CrossRef]
- Costa, D.; Ribeiro, T.; Cornette, P.; Marcus, P. DFT modeling of corrosion inhibition by organic molecules: Carboxylates as inhibitors of aluminum corrosion. J. Phys. Chem. C 2016, 120, 28607–28616. [Google Scholar] [CrossRef]
- Boukamp, B. A linear Kronig-Kramers transform test for immittance data validation. J. Electrochem. Soc. 1995, 142, 1885–1894. [Google Scholar] [CrossRef]
- Boukamp, B. Electrochemical impedance spectroscopy in solid state ionics: Recent advances. Solid State Ion. 2004, 169, 65–73. [Google Scholar] [CrossRef]
- Skoog, D.A.; West, D.M.; Holler, F.J.; Crouch, S.R. Fundamentals of Analytical Chemistry; Cengage Learning: Belmont, CA, USA, 2013; ISBN 9781285607191. [Google Scholar]
- Zoski, C.G. Handbook of Electrochemistry; Elsevier: Amsterdam, The Netherlands, 2007; ISBN 9780444519580. [Google Scholar]
- Vijh, A.K. Electrolytic hydrogen evolution reaction on aluminum in acidic solutions. J. Phys. Chem. 1968, 72, 1148–1156. [Google Scholar] [CrossRef]
- Kwolek, P.; Wojnicki, M. Spectrophotometric study of corrosion inhibition of aluminium in orthophosphoric acid aqueous solutions by using sodium molybdate. Corros. Eng. Sci. Technol. 2018, 54, 199–204. [Google Scholar] [CrossRef]
- Kwolek, P.; Mrówka-Nowotnik, G.; Wytrwal-Sarna, M. Corrosion of structural constituents of 2017 aluminium alloy in acidic solutions containing inhibitors. Mater. Corros. 2020, 72, 888–903. [Google Scholar] [CrossRef]
- Lasia, A. Electrochemical Impedance Spectroscopy and Its Applications; Springer: New York, NY, USA, 2014. [Google Scholar]
- Epelboin, I.; Gabrielli, C.; Keddam, M.; Takenouti, H. The Study of the Passivation Process by the Electrode Impedance Analysis. In Electrochemical Materials Science. Comprehensive Treatise of Electrochemistry; Bockris, J.O., Conway, B.E., Yeager, E., White, R.E., Eds.; Springer: Boston, MA, USA, 1981; pp. 151–192. [Google Scholar]
- Péter, L.; Arai, J.; Akahoshi, H. Impedance of a reaction involving two adsorbed intermediates: Aluminum dissolution in non-aqueous lithium imide solutions. J. Electroanal. Chem. 2000, 482, 125–138. [Google Scholar] [CrossRef]
- Chen, L.; Lasia, A. Study of the kinetics of hydrogen evolution reaction on Nickel-Zinc powder electrodes. J. Electrochem. Soc. 1992, 139, 3214–3219. [Google Scholar] [CrossRef]
- Öhman, L.-O.; Sjöberg, S. Equilibrium and structural studies of silicon(IV) and aluminium(III) in aqueous solution. 4. A potentiometric study of polynuclear aluminium(III) hydroxo complexes with gallic acid in hydrolyzed alunium(III) solutions. Acta Chem. Scand. A 1982, 36, 47–53. [Google Scholar] [CrossRef]
- Cappelli, C.; Mennucci, B.; Monti, S. Environmental effects on the spectroscopic properties of gallic acid: A combined classical and quantum mechanical study. J. Phys. Chem. A 2005, 109, 1933–1943. [Google Scholar] [CrossRef] [PubMed]
- Badhani, B.; Kakkar, R. DFT study of structural and electronic properties of gallic acid and its anions in gas phase and in aqueous solution. Struct. Chem. 2017, 28, 1789–1802. [Google Scholar] [CrossRef]
- Sato, N. Electrochemistry at Metal and Semiconductor Electrodes; Elsevier: Amsterdam, The Netherlands, 1998. [Google Scholar]
- Argade, S.D.; Gileadi, E. The Potential fo Zero Charge. In Electrosorption; Gileadi, E., Ed.; Plenum Press: New York, NY, USA, 1967; pp. 87–115. [Google Scholar]
- Kosmulski, M. Isoelectric points and points of zero charge of metal (hydr)oxides: 50 years after Parks’ review. Adv. Colloid Interface Sci. 2016, 238, 1–61. [Google Scholar] [CrossRef] [PubMed]
- Lakatos, A.; Evanics, F.; Dombi, G.; Bertani, R.; Kiss, T. Speciation of AlIII in blood serum-The AlIII-citrate-phosphate ternary system. Eur. J. Inorg. Chem. 2001, 2001, 3079–3086. [Google Scholar] [CrossRef]
- Cao, C. On the impedance plane displays for irreversible electrode reactions based on the stability conditions of the steady state II. Two state variables besides electrode potential. Electrochim. Acta 1990, 35, 837–844. [Google Scholar] [CrossRef]
Reaction | Standard Electrode Potential (V vs. Ag|AgCl (3M KCl)) |
---|---|
H3PO4 + 2H+ + 2e− = H3PO3 + H2O | −0.070 |
H3PO3 + 2H+ + 2e− = H3PO2 + H2O | −0.290 |
H3PO3 + 3H+ + 3e− = P + 3H2O | −0.290 |
P + 3H+ + 3e− = PH3 | 0.150 |
CGA (mM) | R1 (Ω∙cm2) | T1 (μF∙sα−1∙cm−2) | α1 | R2 (Ω∙cm2) | T2 (μF∙sα−1∙cm−2) | α2 | R3 (Ω∙cm2) | C1 (mF∙cm−2) | R4 (Ω∙cm2) |
---|---|---|---|---|---|---|---|---|---|
0 mM | 6.9 ± 0.3 | 16 ± 1 | 0.94 ± 0.01 | 723 ± 61 | 332 ± 69 | 0.82 ± 0.06 | 163 ± 25 | 41 ± 13 | 120 ± 19 |
38 mM | 7.0 ± 0.2 | 17 ± 1 | 0.94 ± 0.01 | 647 ± 48 | 358 ± 38 | 0.78 ± 0.03 | 164 ± 21 | 45 ± 15 | 98 ± 9 |
CGA (mM) | χ2 | R1 (Ω∙cm2) | T1 (μF∙sα−1∙cm−2) | α1 | R2 (Ω∙cm2) | T2 (μF∙sα−1∙cm−2) | α2 | R3 (Ω∙cm2) | C1 (mF∙cm−2) | R4 (Ω∙cm2) |
---|---|---|---|---|---|---|---|---|---|---|
0 mM | 0.00014 | 7.0 ± 0.1 | 15.2 ± 0.2 | 0.94 ± 0.01 | 721 ± 13 | 308 ± 39 | 0.83 ± 0.05 | 150 ± 14 | 59.7 ± 3.6 | 136 ± 6 |
38 mM | 0.00039 | 7.2 ± 0.1 | 15.8 ± 0.2 | 0.94 ± 0.01 | 672 ± 17 | 321 ± 39 | 0.74 ± 0.05 | 191 ± 19 | 40.9 ± 3.5 | 101 ± 5 |
CGA (mM) | χ2 | R1 (Ω∙cm2) | T1 (μF∙sα−1∙cm−2) | α1 | R2 (Ω∙cm2) | C1 (mF∙cm−2) | R3 (Ω∙cm2) |
---|---|---|---|---|---|---|---|
0 mM | 0.00053 | 6.9 ± 0.1 | 14.3 ± 0.1 | 0.94 ± 0.01 | 721 ± 2 | 12.1 ± 0.3 | 374 ± 6 |
38 mM | 0.00053 | 7.1 ± 0.1 | 15.4 ± 0.1 | 0.94 ± 0.01 | 743 ± 2 | 12.1 ± 0.4 | 353 ± 8 |
CGA (mM) | χ2 | R1 (Ω∙cm2) | T1 (μF∙sα−1∙cm−2) | α1 | R2 (Ω∙cm2) | T2 (μF∙sα−1∙cm−2) | α2 | R3 (Ω∙cm2) | C1 (mF∙cm−2) | R4 (Ω∙cm2) |
---|---|---|---|---|---|---|---|---|---|---|
0 mM | 0.00016 | 6.8 ± 0.1 | 15.0 ± 0.1 | 0.94 ± 0.01 | 739 ± 9 | 308 ± 23 | 0.79 ± 0.03 | 186 ± 11 | 40.2 ± 2 | 117 ± 2 |
38 mM | 0.00017 | 6.8 ± 0.1 | 17.1 ± 0.2 | 0.94 ± 0.01 | 667 ± 8 | 373 ± 28 | 0.80 ± 0.03 | 160 ± 9 | 39.5 ± 2 | 105 ± 3 |
CGA (mM) | χ2 | R1 (Ω∙cm2) | T1 (μF∙sα−1∙cm−2) | α1 | R2 (Ω∙cm2) | T2 (μF∙sα−1∙cm−2) | α2 | R3 (Ω∙cm2) | L1 (H∙cm2) | R4 (Ω∙cm2) |
---|---|---|---|---|---|---|---|---|---|---|
0 mM | 0.00017 | 6.7 ± 0.1 | 15.0 ± 0.2 | 0.94 ± 0.01 | 484 ± 16 | 619 ± 74 | 0.59 ± 0.05 | 2447 ± 331 | 4576 ± 652 | 166 ± 21 |
38 mM | 0.00032 | 6.8 ± 0.1 | 17.1 ± 0.2 | 0.94 ± 0.01 | 470 ± 7 | 616 ± 53 | 0.69 ± 0.04 | 2310 ± 157 | 5040 ± 426 | 125 ± 10 |
χ2 | R1 (Ω∙cm2) | T1 (μF∙sα−1∙cm−2) | α1 | R2 (Ω∙cm2) | C1 (μF∙cm−2) | R3 (Ω∙cm2) |
---|---|---|---|---|---|---|
0.00075 | 6.5 ± 0.1 | 16.0 ± 0.2 | 0.96 ± 0.01 | 2853 ± 68 | 55.0 ± 11 | 629 ± 67 |
χ2 | R1 (Ω∙cm2) | T1 (μF∙sα−1∙cm−2) | α1 | R2 (Ω∙cm2) | T2 (mF∙sα−1∙cm−2) | α2 | R3 (Ω∙cm2) | L1 (H∙cm2) | R4 (Ω∙cm2) |
---|---|---|---|---|---|---|---|---|---|
0.00093 | 6.5 ± 0.1 | 17.0 ± 0.2 | 0.95 ± 0.01 | 2856 ± 101 | 2.2 ± 0.6 | 0.22 ± 0.04 | 11377 ± 1736 | 30335 ± 5218 | n.d. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kwolek, P.; Dychtoń, K.; Kościelniak, B.; Obłój, A.; Podborska, A.; Wojnicki, M. Gallic Acid as a Potential Green Corrosion Inhibitor for Aluminum in Acidic Solution. Metals 2022, 12, 250. https://doi.org/10.3390/met12020250
Kwolek P, Dychtoń K, Kościelniak B, Obłój A, Podborska A, Wojnicki M. Gallic Acid as a Potential Green Corrosion Inhibitor for Aluminum in Acidic Solution. Metals. 2022; 12(2):250. https://doi.org/10.3390/met12020250
Chicago/Turabian StyleKwolek, Przemysław, Kamil Dychtoń, Barbara Kościelniak, Andrzej Obłój, Agnieszka Podborska, and Marek Wojnicki. 2022. "Gallic Acid as a Potential Green Corrosion Inhibitor for Aluminum in Acidic Solution" Metals 12, no. 2: 250. https://doi.org/10.3390/met12020250
APA StyleKwolek, P., Dychtoń, K., Kościelniak, B., Obłój, A., Podborska, A., & Wojnicki, M. (2022). Gallic Acid as a Potential Green Corrosion Inhibitor for Aluminum in Acidic Solution. Metals, 12(2), 250. https://doi.org/10.3390/met12020250