Transmission Electron Microscopy Study on the Precipitation Behaviors of Laser-Welded Ferritic Stainless Steels and Their Implications on Intergranular Corrosion Resistance
<p>Schematic detailing (<b>a</b>) sample extraction location and (<b>b</b>) tensile testing geometry. adapted from [<a href="#B16-metals-12-00086" class="html-bibr">16</a>] under CC-BY-license. All dimensions in millimeters.</p> "> Figure 2
<p>Microstructural evolution of laser-welds. Light microscopy images of (<b>a</b>) AISI 430 and (<b>b</b>) AISI 430Ti. (<b>c</b>,<b>d</b>) STEM-images of investigated grain boundary regions following FIB-extraction.</p> "> Figure 3
<p>(<b>a</b>) HAADF-image of investigated grain boundary within weld metal of AISI 430 with EDS-maps for (<b>b</b>) iron and (<b>c</b>) chromium. (<b>d</b>) quantitative EDS-linescan extracted from image (<b>a</b>).</p> "> Figure 4
<p>(<b>a</b>) HAADF-image of investigated grain boundary region within weld metal of AISI 430Ti with EDS-maps for (<b>b</b>) titanium and (<b>c</b>) chromium. (<b>d</b>) shows an overlay of Ti-EDS-map and HAADF image, (<b>e</b>) represents results of the EDS-line scan.</p> "> Figure 5
<p>Optical micrographs of (<b>a</b>) AISI 430 and (<b>b</b>) AISI 430Ti following exposure to 16% boiling sulfuric acid for a duration of 20 h.</p> "> Figure 6
<p>(<b>a</b>) SEM overview of the AISI 430Ti welding bead following exposure to 16% boiling sulfuric acid for a duration of 20 h, (<b>b</b>) detailed SEM image of a precipitate on top of the welding bead and (<b>c</b>) EDS linescan across the identified precipitate.</p> "> Figure 7
<p>Stress-strain curves depicting the residual mechanical properties of laser-welded AISI 430Ti specimens following exposure to boiling 16% boiling sulfuric acid for a duration of 20 h. All specimens were extracted from a single weld seam following corrosion testing.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Laser Welding
2.2. Corrosion Testing
2.3. Specimen Characterization
3. Results and Discussion
3.1. Microstructural Evolution and Precipitation Behavior
3.2. Intergranular Corrosion Resistance
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
EDM | electric discharge machining |
EDS | energy dispersive X-ray spectroscopy |
EELS | electron energy loss spectroscopy |
FIB | focused ion beam |
FSS | ferritic stainless steel |
HAZ | heat-affected zone |
IGC | intergranular corrosion |
SEM | scanning electron microscopy |
STEM | scanning transmission electron microscopy |
TEM | transmission electron microscopy |
References
- Čihal, V. Intergranular Corrosion of Steels and Alloys; Elsevier: Amsterdam, The Netherlands; Oxford, UK; New York, NY, USA; Tokyo, Japan,, 1984. [Google Scholar]
- Pedeferri, P. Corrosion Science and Engineering; Springer International Publishing: Cham, Switzerland, 2018. [Google Scholar]
- Wendler-Kalsch, E.; Gräfen, H. Korrosionsschadenkunde, 1st ed.; Springer Vieweg: Berlin, Germany, 2012. [Google Scholar]
- Herbsleb, G. Untersuchung der Potentialabhängigkeit der interkristallinen Korrosion eines sensibilisierten ferritischen Chromstahls mit rund 17% Cr. Mater. Corros. 1968, 19, 204–209. [Google Scholar] [CrossRef]
- Herbsleb, G. Interkristalline Korrosion ferritischer Chromstähle mit rd. 17 Gew.-% Chrom nach Glühen im Temperaturbereich um 500 °C. Mater. Corros. 1978, 29, 321–325. [Google Scholar] [CrossRef]
- Folkhard, E.; Rabensteiner, G.; Perteneder, E.; Schabereiter, H.; Tösch, J. Metallurgie der Schweißung Nichtrostender Stähle; Springer: Vienna, Austria, 1984. [Google Scholar] [CrossRef]
- Bäumel, A. Korrosion in der Wärmeeinflußzone geschweißter chemisch beständiger Stähle und Legierungen und ihre Verhütung. Mater. Corros. 1975, 26, 433–443. [Google Scholar] [CrossRef]
- Amuda, M.O.H.; Mridha, S. An Overview of Sensitization Dynamics in Ferritic Stainless Steel Welds. Int. J. Corros. 2011, 2011, 305793. [Google Scholar] [CrossRef]
- Herbsleb, G.; Schwenk, W. Untersuchungen über die Kornzerfallsanfälligkeit eines unstabilisierten 17%igen Chromstahles und ihre Beseitigung durch Stabilglühen. Mater. Corros. 1968, 19, 103–113. [Google Scholar] [CrossRef]
- Park, J.H.; Kim, J.K.; Lee, B.H.; Seo, H.S.; Kim, K.Y. Effect of Zr addition on intergranular corrosion of low-chromium ferritic stainless steel. Scr. Mater. 2014, 76, 77–80. [Google Scholar] [CrossRef]
- Kim, J.K.; Kim, Y.H.; Lee, J.S.; Kim, K.Y. Effect of chromium content on intergranular corrosion and precipitation of Ti-stabilized ferritic stainless steels. Corros. Sci. 2010, 52, 1847–1852. [Google Scholar] [CrossRef]
- Li, H.; Jiang, Z.; Feng, H.; Zhu, H.; Sun, B.; Li, Z. Corrosion behavior of ferritic stainless steel with 15 wt% chromium for the automobile exhaust system. Int. J. Miner. Metall. Mater. 2013, 20, 850–860. [Google Scholar] [CrossRef]
- Kim, J.K.; Kim, Y.H.; Lee, B.H.; Kim, K.Y. New findings on intergranular corrosion mechanism of stabilized stainless steels. Electrochim. Acta 2011, 56, 1701–1710. [Google Scholar] [CrossRef]
- Huang, X.; Wang, D.; Yang, Y. Effect of Precipitation on Intergranular Corrosion Resistance of 430 Ferritic Stainless Steel. J. Iron Steel Res. Int. 2015, 22, 1062–1068. [Google Scholar] [CrossRef]
- Toit, M.D.; Naudé, J. The influence of stabilization with titanium on the heat-affected zone sensitization of 11 to 12% chromium ferritic stainless steels under low heat input welding conditions. Weld World 2011, 55, 38–47. [Google Scholar] [CrossRef]
- Sommer, N.; Kryukov, I.; Wolf, C.; Wiegand, M.; Kahlmeyer, M.; Böhm, S. On the Intergranular Corrosion Properties of Thin Ferritic Stainless Steel Sheets Welded by Fiber-Laser. Metals 2020, 10, 1088. [Google Scholar] [CrossRef]
- Dilthey, U. Schweißtechnische Fertigungsverfahren 1: Schweiß- und Schneidtechnologien, 3rd ed.; Springer: Berlin/Heidelberg, Germany, 2006. [Google Scholar]
- ISO 3651-2; Determination of Resistance to Intergranular Corrosion of Stainless Steels—Part 2: Ferritic, Austenitic and Ferritic-Austenitic (Duplex) Stainless Steels—Corrosion Test in Media Containing Sulfuric Acid (ISO 3651-2: 1998): German Version EN ISO 3651-2: 1998. Deutsches Institut für Normung e. V.: Berlin, Germany, 1998.
- ISO 6892–1; Metallic Materials—Tensile Testing—Part 1: Method of Test at Room Temperature (ISO/FDIS 6892-1:2019); German and English Version prEN ISO 6892-1:2019. Deutsches Institut für Normung e. V.: Berlin, Germany, 2019.
- DIN 50125; Testing of Metallic Materials—Tensile Test Pieces: DIN 50125:2016-12. Deutsches Institut für Normung e. V.: Berlin, Germany, 2016.
- Kaul, R.; Ganesh, P.; Tripathi, P.; Nandedkar, R.V.; Nath, A.K. Comparison of Laser and Gas Tungsten Arc Weldments of Stabilized 17 wt% Cr Ferritic Stainless Steel. Mater. Manuf. Processes 2003, 18, 563–580. [Google Scholar] [CrossRef]
- Pekkarinen, J.; Kujanpää, V. The effects of laser welding parameters on the microstructure of ferritic and duplex stainless steels welds. Phys. Procedia 2010, 5, 517–523. [Google Scholar] [CrossRef] [Green Version]
- Lakshminarayanan, A.K.; Balasubramanian, V. Use of DL-EPR Test to Assess Sensitization Resistance of AISI 409M Grade Ferritic Stainless Steel Joints. J. Mater. Eng. Perform. 2013, 22, 2293–2303. [Google Scholar] [CrossRef]
- Nowell, M.M.; Wright, S.J.; Carpenter, J.O. Differentiating Ferrite and Martensite in Steel Microstructures Using Electron Backscatter Diffraction. In Materials Science & Technology Conference and Exhibition 2009, Proceedings of a Meeting Held 25–29 October 2009, Pittsburgh, PA, USA; Materials Science and Technology (MS&T); Curran: Red Hook, NY, USA, 2009. [Google Scholar]
- Weigl, M. Laserstrahlschweißen von Mischverbindungen aus Austenitischen und Ferritischen Korrosionsbeständigen Stahlwerkstoffen. Ph.D. Thesis, Lehrstuhl für photonische Technologien, FAU Erlangen-Nürnberg, Erlangen, Germany.
- Bargel, H.-J.; Schulze, G. (Eds.) Werkstoffkunde, 12th ed.; Springer Vieweg: Berlin, Germany, 2018. [Google Scholar]
- Ströber, K.; Abele, C. Titan-Schweißtechnik für die Serienproduktion. Lightweight Des. 2018, 11, 12–15. [Google Scholar] [CrossRef]
- Lütjering, G.; Williams, J.C. Titanium, 2nd ed.; Springer: Berlin/Heidelberg, Germany, 2007. [Google Scholar]
- Gateman, S.M.; Stephens, L.I.; Perry, S.C.; Lacasse, R.; Schulz, R.; Mauzeroll, J. The role of titanium in the initiation of localized corrosion of stainless steel 444. NPJ Mater. Degrad. 2018, 2, 1080. [Google Scholar] [CrossRef] [Green Version]
- EN 10088-2; Stainless Steels—Part 2: Technical Delivery Conditions for Sheet/Plate and Strip of Corrosion Resisting Steels for General Purposes: German Version EN 10088-2:2014. Deutsches Institut für Normung e. V.: Berlin, Germany, 2014.
Grade | Chemical Composition {wt.-%} | ||||||
---|---|---|---|---|---|---|---|
C | N | Cr | Ti | Ni | Mo | Fe | |
AISI 430 | 0.041 | 0.142 | 16.18 | 0.001 | 0.156 | 0.046 | Bal. |
AISI 430Ti | 0.018 | 0.079 | 16.18 | 0.326 | 0.260 | 0.046 | Bal. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sommer, N.; Warres, C.; Lutz, T.; Kahlmeyer, M.; Böhm, S. Transmission Electron Microscopy Study on the Precipitation Behaviors of Laser-Welded Ferritic Stainless Steels and Their Implications on Intergranular Corrosion Resistance. Metals 2022, 12, 86. https://doi.org/10.3390/met12010086
Sommer N, Warres C, Lutz T, Kahlmeyer M, Böhm S. Transmission Electron Microscopy Study on the Precipitation Behaviors of Laser-Welded Ferritic Stainless Steels and Their Implications on Intergranular Corrosion Resistance. Metals. 2022; 12(1):86. https://doi.org/10.3390/met12010086
Chicago/Turabian StyleSommer, Niklas, Clementine Warres, Tarek Lutz, Martin Kahlmeyer, and Stefan Böhm. 2022. "Transmission Electron Microscopy Study on the Precipitation Behaviors of Laser-Welded Ferritic Stainless Steels and Their Implications on Intergranular Corrosion Resistance" Metals 12, no. 1: 86. https://doi.org/10.3390/met12010086
APA StyleSommer, N., Warres, C., Lutz, T., Kahlmeyer, M., & Böhm, S. (2022). Transmission Electron Microscopy Study on the Precipitation Behaviors of Laser-Welded Ferritic Stainless Steels and Their Implications on Intergranular Corrosion Resistance. Metals, 12(1), 86. https://doi.org/10.3390/met12010086