A Study on Complex t-Neutrosophic Graph with Intention to Preserve Biodiversity
<p>The graphical representation of a CTNG, where t = 0.6<inline-formula><mml:math id="mm472"><mml:semantics><mml:mrow><mml:msup><mml:mrow><mml:mi>e</mml:mi></mml:mrow><mml:mrow><mml:mi>i</mml:mi><mml:mn>0.9</mml:mn><mml:mi>π</mml:mi></mml:mrow></mml:msup></mml:mrow></mml:semantics></mml:math></inline-formula>; <inline-formula><mml:math id="mm32"><mml:semantics><mml:mrow><mml:msub><mml:mrow><mml:mi mathvariant="script">G</mml:mi></mml:mrow><mml:mrow><mml:mn>0.6</mml:mn></mml:mrow></mml:msub><mml:mo>=</mml:mo><mml:mo>(</mml:mo><mml:msub><mml:mrow><mml:mi>A</mml:mi></mml:mrow><mml:mrow><mml:mn>0.60</mml:mn><mml:msup><mml:mrow><mml:mi>e</mml:mi></mml:mrow><mml:mrow><mml:mi>i</mml:mi><mml:mn>0.6</mml:mn><mml:mi>π</mml:mi></mml:mrow></mml:msup></mml:mrow></mml:msub><mml:mo>,</mml:mo><mml:msub><mml:mrow><mml:mi>B</mml:mi></mml:mrow><mml:mrow><mml:mn>0.60</mml:mn><mml:msup><mml:mrow><mml:mi>e</mml:mi></mml:mrow><mml:mrow><mml:mi>i</mml:mi><mml:mn>0.6</mml:mn><mml:mi>π</mml:mi></mml:mrow></mml:msup></mml:mrow></mml:msub><mml:mo>)</mml:mo></mml:mrow></mml:semantics></mml:math></inline-formula>.</p> "> Figure 2
<p><inline-formula><mml:math id="mm473"><mml:semantics><mml:mrow><mml:msub><mml:mrow><mml:mi mathvariant="script">G</mml:mi></mml:mrow><mml:mrow><mml:mn>0.6</mml:mn><mml:msup><mml:mrow><mml:mi>e</mml:mi></mml:mrow><mml:mrow><mml:mi>i</mml:mi><mml:mn>0.5</mml:mn><mml:mi>π</mml:mi></mml:mrow></mml:msup></mml:mrow></mml:msub></mml:mrow></mml:semantics></mml:math></inline-formula>.</p> "> Figure 3
<p>(<bold>a</bold>). 0.4<inline-formula><mml:math id="mm474"><mml:semantics><mml:mrow><mml:msup><mml:mrow><mml:mi>e</mml:mi></mml:mrow><mml:mrow><mml:mi>i</mml:mi><mml:mn>0.7</mml:mn><mml:mi>π</mml:mi></mml:mrow></mml:msup></mml:mrow></mml:semantics></mml:math></inline-formula>-NG. (<bold>b</bold>). 0.4<inline-formula><mml:math id="mm95"><mml:semantics><mml:mrow><mml:msup><mml:mrow><mml:mi>e</mml:mi></mml:mrow><mml:mrow><mml:mi>i</mml:mi><mml:mn>0.7</mml:mn><mml:mi>π</mml:mi></mml:mrow></mml:msup></mml:mrow></mml:semantics></mml:math></inline-formula>-NG.</p> "> Figure 4
<p>The corresponding Cartesian product <inline-formula><mml:math id="mm475"><mml:semantics><mml:mrow><mml:msub><mml:mrow><mml:mi mathvariant="script">G</mml:mi></mml:mrow><mml:mrow><mml:mn>0.4</mml:mn><mml:msup><mml:mrow><mml:mi>e</mml:mi></mml:mrow><mml:mrow><mml:mi>i</mml:mi><mml:mn>0.7</mml:mn><mml:mi>π</mml:mi></mml:mrow></mml:msup></mml:mrow></mml:msub><mml:mo>×</mml:mo><mml:msubsup><mml:mrow><mml:mi mathvariant="script">G</mml:mi></mml:mrow><mml:mrow><mml:mn>0.4</mml:mn><mml:msup><mml:mrow><mml:mi>e</mml:mi></mml:mrow><mml:mrow><mml:mi>i</mml:mi><mml:mn>0.7</mml:mn><mml:mi>π</mml:mi></mml:mrow></mml:msup></mml:mrow><mml:mrow><mml:mo>′</mml:mo></mml:mrow></mml:msubsup></mml:mrow></mml:semantics></mml:math></inline-formula>.</p> "> Figure 5
<p>(<bold>a</bold>). 0.6<inline-formula><mml:math id="mm476"><mml:semantics><mml:mrow><mml:msup><mml:mrow><mml:mi>e</mml:mi></mml:mrow><mml:mrow><mml:mi>i</mml:mi><mml:mn>0.5</mml:mn><mml:mi>π</mml:mi></mml:mrow></mml:msup></mml:mrow></mml:semantics></mml:math></inline-formula>-<inline-formula><mml:math id="mm166"><mml:semantics><mml:mrow><mml:msub><mml:mrow><mml:mi mathvariant="script">G</mml:mi></mml:mrow><mml:mrow><mml:mi>t</mml:mi></mml:mrow></mml:msub></mml:mrow></mml:semantics></mml:math></inline-formula>. (<bold>b</bold>). 0.6<inline-formula><mml:math id="mm167"><mml:semantics><mml:mrow><mml:msup><mml:mrow><mml:mi>e</mml:mi></mml:mrow><mml:mrow><mml:mi>i</mml:mi><mml:mn>0.5</mml:mn><mml:mi>π</mml:mi></mml:mrow></mml:msup></mml:mrow></mml:semantics></mml:math></inline-formula>-<inline-formula><mml:math id="mm168"><mml:semantics><mml:mrow><mml:msubsup><mml:mrow><mml:mi mathvariant="script">G</mml:mi></mml:mrow><mml:mrow><mml:mi>t</mml:mi></mml:mrow><mml:mrow><mml:mo>′</mml:mo></mml:mrow></mml:msubsup></mml:mrow></mml:semantics></mml:math></inline-formula>.</p> "> Figure 6
<p><inline-formula><mml:math id="mm477"><mml:semantics><mml:mrow><mml:msub><mml:mrow><mml:mi mathvariant="script">G</mml:mi></mml:mrow><mml:mrow><mml:mn>0.6</mml:mn><mml:msup><mml:mrow><mml:mi>e</mml:mi></mml:mrow><mml:mrow><mml:mi>i</mml:mi><mml:mn>0.5</mml:mn><mml:mi>π</mml:mi></mml:mrow></mml:msup></mml:mrow></mml:msub><mml:mo>∘</mml:mo><mml:msubsup><mml:mrow><mml:mi mathvariant="script">G</mml:mi></mml:mrow><mml:mrow><mml:mn>0.6</mml:mn><mml:msup><mml:mrow><mml:mi>e</mml:mi></mml:mrow><mml:mrow><mml:mi>i</mml:mi><mml:mn>0.5</mml:mn><mml:mi>π</mml:mi></mml:mrow></mml:msup></mml:mrow><mml:mrow><mml:mo>′</mml:mo></mml:mrow></mml:msubsup></mml:mrow></mml:semantics></mml:math></inline-formula>.</p> "> Figure 7
<p>(<bold>a</bold>). 0.7<inline-formula><mml:math id="mm478"><mml:semantics><mml:mrow><mml:msup><mml:mrow><mml:mi>e</mml:mi></mml:mrow><mml:mrow><mml:mi>i</mml:mi><mml:mn>0.6</mml:mn><mml:mi>π</mml:mi></mml:mrow></mml:msup><mml:mo>−</mml:mo><mml:mi>N</mml:mi><mml:mi>G</mml:mi><mml:msub><mml:mrow><mml:mi mathvariant="script">G</mml:mi></mml:mrow><mml:mrow><mml:mn>0.7</mml:mn><mml:msup><mml:mrow><mml:mi>e</mml:mi></mml:mrow><mml:mrow><mml:mi>i</mml:mi><mml:mn>0.6</mml:mn><mml:mi>π</mml:mi></mml:mrow></mml:msup></mml:mrow></mml:msub></mml:mrow></mml:semantics></mml:math></inline-formula>. (<bold>b</bold>). 0.7<inline-formula><mml:math id="mm235"><mml:semantics><mml:mrow><mml:msup><mml:mrow><mml:mi>e</mml:mi></mml:mrow><mml:mrow><mml:mi>i</mml:mi><mml:mn>0.6</mml:mn><mml:mi>π</mml:mi></mml:mrow></mml:msup><mml:mo>−</mml:mo><mml:mi>N</mml:mi><mml:mi>G</mml:mi><mml:msubsup><mml:mrow><mml:mi mathvariant="script">G</mml:mi></mml:mrow><mml:mrow><mml:mn>0.7</mml:mn><mml:msup><mml:mrow><mml:mi>e</mml:mi></mml:mrow><mml:mrow><mml:mi>i</mml:mi><mml:mn>0.6</mml:mn><mml:mi>π</mml:mi></mml:mrow></mml:msup></mml:mrow><mml:mrow><mml:mo>′</mml:mo></mml:mrow></mml:msubsup></mml:mrow></mml:semantics></mml:math></inline-formula>.</p> "> Figure 8
<p><inline-formula><mml:math id="mm479"><mml:semantics><mml:mrow><mml:msub><mml:mrow><mml:mi mathvariant="script">G</mml:mi></mml:mrow><mml:mrow><mml:mn>0.7</mml:mn></mml:mrow></mml:msub><mml:mo>∪</mml:mo><mml:msubsup><mml:mrow><mml:mi mathvariant="script">G</mml:mi></mml:mrow><mml:mrow><mml:mn>0.7</mml:mn></mml:mrow><mml:mrow><mml:mo>′</mml:mo></mml:mrow></mml:msubsup></mml:mrow></mml:semantics></mml:math></inline-formula>.</p> "> Figure 9
<p><inline-formula><mml:math id="mm480"><mml:semantics><mml:mrow><mml:msub><mml:mrow><mml:mi mathvariant="script">G</mml:mi></mml:mrow><mml:mrow><mml:mn>0.4</mml:mn><mml:msup><mml:mrow><mml:mi mathvariant="normal">e</mml:mi></mml:mrow><mml:mrow><mml:mi mathvariant="normal">i</mml:mi><mml:mn>0.7</mml:mn><mml:mi mathvariant="sans-serif">π</mml:mi></mml:mrow></mml:msup></mml:mrow></mml:msub><mml:mo>+</mml:mo><mml:msubsup><mml:mrow><mml:mi mathvariant="script">G</mml:mi></mml:mrow><mml:mrow><mml:mo> </mml:mo><mml:mn>0.4</mml:mn><mml:msup><mml:mrow><mml:mi>e</mml:mi></mml:mrow><mml:mrow><mml:mi>i</mml:mi><mml:mn>0.7</mml:mn><mml:mi>π</mml:mi></mml:mrow></mml:msup></mml:mrow><mml:mrow><mml:mo>′</mml:mo></mml:mrow></mml:msubsup></mml:mrow></mml:semantics></mml:math></inline-formula>.</p> "> Figure 10
<p>(<bold>a</bold>) 0.8<inline-formula><mml:math id="mm481"><mml:semantics><mml:mrow><mml:msup><mml:mrow><mml:mi>e</mml:mi></mml:mrow><mml:mrow><mml:mi>i</mml:mi><mml:mn>0.7</mml:mn><mml:mi>π</mml:mi></mml:mrow></mml:msup><mml:mo>−</mml:mo><mml:mi>N</mml:mi><mml:mi>G</mml:mi><mml:msub><mml:mrow><mml:mi mathvariant="script">G</mml:mi></mml:mrow><mml:mrow><mml:mn>0.8</mml:mn><mml:msup><mml:mrow><mml:mi>e</mml:mi></mml:mrow><mml:mrow><mml:mi>i</mml:mi><mml:mn>0.7</mml:mn><mml:mi>π</mml:mi></mml:mrow></mml:msup></mml:mrow></mml:msub></mml:mrow></mml:semantics></mml:math></inline-formula>. (<bold>b</bold>). <inline-formula><mml:math id="mm389"><mml:semantics><mml:mrow><mml:mn>0.8</mml:mn><mml:msup><mml:mrow><mml:mi>e</mml:mi></mml:mrow><mml:mrow><mml:mi>i</mml:mi><mml:mn>0.7</mml:mn><mml:mi>π</mml:mi></mml:mrow></mml:msup><mml:mo>−</mml:mo><mml:mi>N</mml:mi><mml:mi>G</mml:mi><mml:msubsup><mml:mrow><mml:mi mathvariant="script">G</mml:mi></mml:mrow><mml:mrow><mml:mn>0.8</mml:mn><mml:msup><mml:mrow><mml:mi>e</mml:mi></mml:mrow><mml:mrow><mml:mi>i</mml:mi><mml:mn>0.7</mml:mn><mml:mi>π</mml:mi></mml:mrow></mml:msup></mml:mrow><mml:mrow><mml:mo>′</mml:mo></mml:mrow></mml:msubsup></mml:mrow></mml:semantics></mml:math></inline-formula>.</p> "> Figure 11
<p>Graphical representation of biodiversity conservation.</p> "> Figure 12
<p>Graphical representation of score values of CTNGs.</p> ">
Abstract
:1. Introduction
1.1. Fuzzy Set
1.2. Intuitionistic Fuzzy Set
1.3. Fuzzy, Intuitionistic Fuzzy, and Neutrosophic Graph Theory
1.4. Motivation
1.5. Novelty
1.6. Goal
- To introduce CTNGs and its associated properties.
- To give the new framework of CTNGs with the intention of preserving biodiversity.
- To develop theoretical foundations for CTNGs.
- To illustrate that CTNGs can be used in real applications to address biodiversity conservation.
- To show the impact of isomorphism and homomorphism in CTNGs for making better decisions preserving biodiversity.
1.7. Objective
- Complex objective: A mathematical tool for modeling ambiguous or imprecise information inside a graph structure is the T-neutrosophic graph. T-neutrosophic sets, a generalization of fuzzy sets, intuitionistic fuzzy sets, and classical sets, are included into the idea of traditional graphs to expand upon it.
- Expand the scope of standard graph theory principles and techniques to intricate t-neutrosophic graphs, enabling more thorough examination and resolution of issues in intricate systems.
- Utilize complex t-neutrosophic graphs in decision-making processes where multiple conflicting criteria or uncertain information need to be considered simultaneously.
- Utilize intricate t-neutrosophic graphs to solve practical issues in a variety of fields, including biological, transportation, social, and communication networks.
1.8. Key Contribution
2. Basics of CTNGs
3. Operation on CTNG
3.1. Cartesian Product of CTNG
- 1.
- (a)
- (b)
- (c)
- 2.
- If and
- (a)
- (b)
- (c)
- 3.
- If and
- (a)
- (b)
- (c)
3.2. Composistion of CTNG
- 1.
- (a)
- (b)
- (c)
- 2.
- If and
- (i)
- (ii)
- (iii)
- 3.
- If and
- (a)
- ′1, ⍵1, 2, ⍵2
- (b)
- (c)
- 4.
- If and
- (a)
- (b)
- (c)
3.3. Union of CTNG
- (1)
- If and
- (a)
- =
- (b)
- =
- (c)
- =
- (2)
- If and
- (a)
- =
- (b)
- =
- (c)
- =
- (3)
- If
- (a)
- =
- (b)
- =
- (c)
- =
- (4)
- If and
- (a)
- =
- (b)
- =
- (c)
- =
- (5)
- If and
- (a)
- =
- (b)
- =
- (c)
- =
- (6)
- If
- (a)
- =
- (b)
- =
- (c)
- =
3.4. Joining of CTNGs
- (1)
- If and
- (a)
- =
- (b)
- =
- (c)
- =
- (2)
- If and
- (a)
- =
- (b)
- =
- (c)
- =
- (3)
- If
- (a)
- =
- (b)
- =
- (c)
- =
- (4)
- If and
- (a)
- =
- (b)
- =
- (c)
- =
- (5)
- If and
- (a)
- =
- (b)
- =
- (c)
- =
- (6)
- If
- (a)
- =
- (b)
- =
- (c)
- =
- (7)
- If
- (a)
- =
- (b)
- =
- (c)
- =
4. Isomorphism of CTNGs
- ,, and; .
- , and; .
- ,, and; .
- , and; .
- , and; .
- , and; .
- , and; .
5. Real-World Applications in Biodiversity Conservation
5.1. Experiment Description
- CTNGs made it easier to identify critical aspects that contribute to biodiversity conservation, giving decision-makers insight into the complicated relationships between conservation elements.
- Using CTNGs to examine the links between conservation factors and prioritize interventions allowed decision-makers to make more informed conservation program decisions.
- The parameter ‘t’ in CTNGs allows decision-makers to tailor the graphs to their domain knowledge and problem, resulting in better targeted interventions and informed biodiversity conservation decisions.
- Visual representations of CTNGs shed light on the intricate relationships between conservation factors, contributing to the formulation of effective conservation strategies and biodiversity preservation.
5.2. Application of CTNGs in Biodiversity Conservation
5.3. Performance Comparative Analysis
5.4. Sensitivity Analysis
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Zadeh, L.A. Fuzzy sets. Inf. Control 1965, 8, 338–353. [Google Scholar] [CrossRef]
- Kandel, A. Fuzzy Mathematical Techniques with Applications 325; Addison-Wesley Educational Publishers Inc.: Boston, MA, USA, 1986. [Google Scholar]
- Klir, G.J.; Yuan, B. Fuzzy Sets and Fuzzy Logic: Theory and Applications 1–12; Prentice-Hall: New York, NY, USA, 1995. [Google Scholar]
- Mendel, J.M. Fuzzy logic systems for engineering: A tutorial. Proc. IEEE 1995, 83, 345–377. [Google Scholar] [CrossRef]
- Zimmermann, L.A. Fuzzy Set Theory and Its Applications, 2nd ed.; Kluwer: Boston, MA, USA, 1991. [Google Scholar]
- Atanassov, K.T. Intuitionistic fuzzy sets. Fuzzy Sets Syst. 1987, 20, 87–96. [Google Scholar] [CrossRef]
- De, S.K.; Biswas, R.; Roy, A.R. Some operations on intuitionistic fuzzy sets. Fuzzy Sets Syst. 2000, 114, 477–484. [Google Scholar] [CrossRef]
- Ejegwa, P.A.; Onoja, A.M.; Emmanue, I.T. A note on some models of intuitionistic fuzzy sets in real life. GRMA 2014, 2, 42–50. [Google Scholar]
- Smarandache, F. A Unifying Field in Logics Neutrosophy: Neutrosophic Probability, Set and Logic; American Research Press: Rehoboth, DE, USA, 1999. [Google Scholar]
- Turksen, I. Interval valued fuzzy sets based on normal forms. Fuzzy Sets Syst. 1986, 20, 191–210. [Google Scholar] [CrossRef]
- Wang, H.; Smarandache, F.; Zhang, Q.Y.; Sunderraman, R. Single valued neutrosophic sets. Multispace Multistruc. 2010, 4, 410–413. [Google Scholar]
- Hanafy, M.I.; Salama, A.A.; Mahfouz, K. Correlation of neutrosophic data. Int. Ref. J. Eng. Sci. 2012, 1, 39–43. [Google Scholar]
- Hanafy, K.; Salama, A.A.; Mahfouz, M.K. Correlation coefficients of neutrosophic sets by centroid method. Int. J. Probab. Stat. 2013, 2, 9–12. [Google Scholar]
- Ye, J. Similarity measures between interval neutrosophic sets and their applications in multicriteria decision making. J. Intell. Fuzzy Syst. 2013, 26, 165–172. [Google Scholar] [CrossRef]
- Broumi, S.; Smarandache, F. Correlation coefficient of interval neutrosophic set. Appl Mech. Mater. 2013, 436, 511–517. [Google Scholar] [CrossRef]
- Ye, J. Single valued neutrosophic cross-entropy for multicriteria decision making problems. Appl. Math. Model. 2014, 38, 1170–1175. [Google Scholar] [CrossRef]
- Rosenfeld, A. Fuzzy Graphs and Fuzzy Hypergraphs. Studies in Fuzziness and Soft Computing; Physica: Heidelberg, Germany, 2000. [Google Scholar]
- Mordeson, J.N.; Chang-Shyh, P. Operations on fuzzy graphs. Inf. Sci. 1994, 79, 159–170. [Google Scholar] [CrossRef]
- Bhattacharya, P. Some remarks on fuzzy graphs. Pattern Recognit. Lett. 1987, 5, 297302. [Google Scholar] [CrossRef]
- Bhutani, K.R. On automorphisms of fuzzy graphs. Pattern Recognit. Lett. 1989, 3, 159–162. [Google Scholar] [CrossRef]
- Shannon, A.; Atanassov, K.T. A first step to a theory of the intuitionistic fuzzy graphs. In Proceeding of the FUBEST; Lakov, D., Ed.; Ifigenia: Sofia, Bulgaria, 1994; pp. 59–61. [Google Scholar]
- Parvathi, R.; Karunambigai, M.G.; Atanassov, K.T. Operations on intuitionistic fuzzy graphs. In Proceedings of the IEEE International Conference on Fuzzy Systems (FUZZ-IEEE), Jeju, Republic of Korea, 20–24 August 2009; pp. 1369–1401. [Google Scholar]
- Gani, A.N.; Begum, S.S. Degree, order and size in intuitionistic fuzzy graphs. Int. J. Algorithms Comput. Math. 2010, 3, 11–16. [Google Scholar]
- Shahzadi, S.; Akram, M. Graphs in an intuitionistic fuzzy soft environment. Axioms 2018, 7, 20. [Google Scholar] [CrossRef]
- Yaqoob, N.; Gulistan, M.; Kadry, S.; Wahab, H.A. Complex intuitionistic fuzzy graphs with application in cellular network provider companies. Mathematics 2019, 7, 35. [Google Scholar] [CrossRef]
- Anwar, A.; Chaudhry, F. On certain products of complex intuitionistic fuzzy graphs. J. Funct. Spaces 2021, 2021, 6515646. [Google Scholar] [CrossRef]
- Quek, S.G.; Selvachandran, G.; Ajay, D.; Chellamani, P.; Taniar, D.; Fujita, H.; Duong, P.; Son, L.H.; Giang, N.L. New concepts of pentapartitioned neutrosophic graphs and applications for determining safest paths and towns in response to COVID-19. Comp. Appl. Math. 2022, 41, 151. [Google Scholar] [CrossRef]
- AL Al-Omeri, W.F.; Kaviyarasu, M.M.R. Identifying Internet Streaming Services using Max Product of Complement in Neutrosophic Graphs. Int. J. Neutrosophic Sci. 2024, 23, 257–272. [Google Scholar] [CrossRef]
- Broumi, S.; Talea, M.; Bakali, A.; Smarandache, F. Single valued neutrosophic graphs. J. New Theory 2016, 10, 86–101. [Google Scholar]
- Broumi, S.; Mohanaselvi, S.; Witczak, T.; Talea, M.; Bakali, A.; Smarandache, F. Complex fermatean neutrosophic graph and application to decision making. Decis. Mak. Appl. Manag. Eng. 2023, 6, 474–501. [Google Scholar] [CrossRef]
- Akram, M.; Shahzadi, G. Operations on single-valued neutrosophic graphs. J. Uncertain Syst. 2017, 11, 176–196. [Google Scholar]
- Yaqoob, N.; Akram, M. Complex neutrosophic graphs. Bull. Comput. Appl. Math. 2018, 6, 85–109. [Google Scholar]
- Sahin, R. An approach to neutrosophic graph theory with applications. Soft Comput. 2019, 23, 569–581. [Google Scholar] [CrossRef]
- Kaviyarasu, M. On r-Edge Regular Neutrosophic Graphs. Neutrosophic Sets Syst. 2023, 53, 239–250. [Google Scholar]
- Alqahtani, M.; Kaviyarasu, M.; Al-Masarwah, A.; Rajeshwari, M. Application of Complex Neutrosophic Graphs in Hospital Infrastructure Design. Mathematics 2024, 12, 719. [Google Scholar] [CrossRef]
- Razzaque, A.; Masmali, I.; Latif, L.; Shuaib, U.; Razaq, A.; Alhamzi, G.; Noor, S. On t-intuitionistic fuzzy graphs: A comprehensive analysis and application in poverty reduction. Sci. Rep. 2013, 13, 17027. [Google Scholar]
- Ahmad, U.; Sabir, M. Multicriteria decision-making based on the degree and distance-based indices of fuzzy graphs. Granul. Comput. 2023, 8, 793–807. [Google Scholar] [CrossRef]
- Fang, G.; Ahmad, U.; Ikhlaq, S.; Asgharsharghi, L. Multi-Attribute Group Decision Making Based on Spherical Fuzzy Zagreb Energy. Symmetry 2023, 15, 1536. [Google Scholar] [CrossRef]
- Gulistan, M.; Yaqoob, N.; Rashid, Z.; Smarandache, F.; Wahab, H.A. A Study on Neutrosophic Cubic Graphs with Real Life Applications in Industries. Symmetry 2018, 10, 203. [Google Scholar] [CrossRef]
- Fei, Y. Study on neutrosophic graph with application in wireless network. CAAI Trans. Intell. Technol. 2020, 5, 301–307. [Google Scholar] [CrossRef]
- Borzooei, R.A.; Sheikh Hoseini, B.; Mohseni Takallo, M. Results on t-Fuzzy Graphs. New Math. Nat. Comput. 2020, 16, 143–161. [Google Scholar] [CrossRef]
Years | Reference | Technique Used | Decision-Making |
---|---|---|---|
2022 | 37 | Degree and distance of fuzzy graph | Urban public transportation problem for finding the best place for a bus stop |
2023 | 38 | Spherical Fuzzy Zagreb Energy | Selecting location |
2018 | 39 | Neutrosophic Cubic Graphs | Real-life applications in industries |
2020 | 40 | Neutrosophic graph | Application in wireless network |
2020 | 41 | t-fuzzy graphs | Find minimum distance |
2023 | 36 | t-intuitionistic fuzzy graphs | Application in poverty reduction |
2024 | 35 | Complex neutrosophic graphs | Hospital infrastructure design |
2024 | Present | Complex t-neutrosophic graph | Biodiversity conservation |
Vertices | CNS | Complex 0.7-NS |
---|---|---|
B1 | ||
B2 | ||
B3 | ||
B4 | ||
B5 | ||
B6 |
Edges | Complex 0.7-NS |
---|---|
Factor | Degree of Each Factor |
---|---|
B1 | |
B2 | |
B3 | |
B4 | |
B5 | |
B6 |
Factor | Score Value SV(lj) of CTNG |
---|---|
Habitat protection (B1) | 6.24159265 |
Species conservation (B2) | 5.06991118 |
Sustainable land-use practice (B3) | 7.99822971 |
Ecosystem restoration (B4) | 9.49822971 |
Climate change adaptation (B5) | 8.94070751 |
Public awareness and education (B6) | 8.51238898 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kaviyarasu, M.; Cotîrlă, L.-I.; Breaz, D.; Rajeshwari, M.; Rapeanu, E. A Study on Complex t-Neutrosophic Graph with Intention to Preserve Biodiversity. Symmetry 2024, 16, 1033. https://doi.org/10.3390/sym16081033
Kaviyarasu M, Cotîrlă L-I, Breaz D, Rajeshwari M, Rapeanu E. A Study on Complex t-Neutrosophic Graph with Intention to Preserve Biodiversity. Symmetry. 2024; 16(8):1033. https://doi.org/10.3390/sym16081033
Chicago/Turabian StyleKaviyarasu, Murugan, Luminița-Ioana Cotîrlă, Daniel Breaz, Murugesan Rajeshwari, and Eleonora Rapeanu. 2024. "A Study on Complex t-Neutrosophic Graph with Intention to Preserve Biodiversity" Symmetry 16, no. 8: 1033. https://doi.org/10.3390/sym16081033