The Dynamical and Kinetic Equations of Four-Five-Six-Wave Resonance for Ocean Surface Gravity Waves in Water with a Finite Depth
Abstract
:1. Introduction
2. Background and the Expansion Form of the Hamiltonian
3. The Six-Order Expansion Coefficients of the Hamiltonian
3.1. Expending the Hamiltonian H in Powers of and with Accuracy up to the Sixth Order
3.2. Expressing through and with Accuracy up to the Fifth Order
3.3. Presenting H through the Canonically Conjugate Variables and with Accuracy up to the Sixth Order
3.4. The Forms of Coefficients , , , and
4. The Dynamical Equation
5. The Kinetic Equation
6. Discussion and Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. Derivation of the Three Expressions for the Kinetic Energy in (31)
Appendix A.1. The Calculation of
Appendix A.2. The Calculation of
Appendix A.3. The Calculation of
Appendix B. Derivation of the Expression Forms of the Function (n = 1,2,3,4,5,6) in (48)–(53)
References
- Lin, G.B.; Huang, H. Proof of six-wave resonance conditions of ocean surface gravity waves in deep water. China Ocean Eng. 2019, 33, 734–738. [Google Scholar] [CrossRef]
- Phillips, O.M. On the dynamics of unsteady gravity waves of finite amplitude Part 1. The elementary interactions. J. Fluid Mech. 1960, 9, 193–217. [Google Scholar] [CrossRef]
- Krasitskii, V.P.; Kozhelupova, N.G. On conditions for five-wave resonant interactions of surface gravity waves. Oceanlogy 1994, 34, 485–489. [Google Scholar]
- Mcgoldrick, L.F. Resonant interactions among capillary-gravity waves. J. Fluid Mech. 1965, 21, 305–331. [Google Scholar] [CrossRef]
- Hammack, J.L.; Henderson, D.M. Resonant interactions among surface water waves. Annu. Rev. Fluid Mech. 1993, 25, 55–97. [Google Scholar] [CrossRef]
- Az-Zo’bi, E.A.; AlZoubi, W.A.; Akinyemi, L.; Şenol, M.; Alsaraireh, I.W.; Mamat, M. Abundant closed-form solitons for time-fractional integro–differential equation in fluid dynamics. Opt. Quant. Electron. 2021, 53, 132. [Google Scholar] [CrossRef]
- Krasitskii, V.P. On reduced equations in the Hamiltonian theory of weakly nonlinear surface waves. J. Fluid Mech. 1994, 272, 1–20. [Google Scholar] [CrossRef]
- Zakharov, V.E. Stability of periodic waves of finite amplitude on the surface of a deep fluid. J. Appl. Mech. Tech. Phys. 1968, 9, 190–194. [Google Scholar] [CrossRef]
- Hasselmann, K. On the non-linear energy transfer in a gravity-wave spectrum Part 1. General theory. J. Fluid Mech. 1962, 12, 481–500. [Google Scholar] [CrossRef]
- Dyachenko, A.I.; Lvov, Y.V. On the Hasselmann and Zakharov Approaches to the Kinetic Equations for Gravity Waves. J. Phys. Oceanogr. 1995, 25, 3237–3238. [Google Scholar] [CrossRef]
- Zakharov, V.E.; L’vov, V.S.; Falkovich, G. Kolmogorov Spectra of Turbulence I: Wave Turbulence; Springer: Berlin/Heidelberg, Germany, 1992. [Google Scholar]
- Nazarenko, S. Wave Turbulence; Springer: Berlin/Heidelberg, Germany, 2011. [Google Scholar]
- Newell, A.C.; Rumpf, B. Wave turbulence. Annu. Rev. Fluid Mech. 2011, 43, 59–78. [Google Scholar] [CrossRef]
- Nazarenko, S.; Lukaschuk, S. Wave turbulence on water surface. Annu. Rev. Condens. Matter Phys. 2016, 7, 61–88. [Google Scholar] [CrossRef]
- Cazaubiel, A.; Mawet, S.; Darras, A.; Grosjean, G.; Loon, J.J.W.A.V.; Dorbolo, S.; Falcon, E. Wave turbulence on the surface of a fluid in a high-gravity environment. Phys. Rev. Lett. 2019, 123, 244501. [Google Scholar] [CrossRef]
- Chibbaro, S.; Dematteis, G.; Rondoni, L. 4-wave dynamics in kinetic wave turbulence. Phys. D 2018, 362, 24–59. [Google Scholar] [CrossRef]
- Düring, G.; Josserand, C.; Rica, S. Wave turbulence theory of elastic plates. Phys. D 2017, 347. [Google Scholar] [CrossRef]
- Stokes, G.G. On the theory of oscillatory waves. Trans. Camb. Philos. Soc. 1847, 8, 441–455. [Google Scholar]
- Mei, C.C.; Stiassnime, M.; Yue, D.K.P. Theory and Applications of Ocean Surface Waves; World Scientific: Singapore, 2005. [Google Scholar]
- Stuhlmeier, R.; Stiassnie, M. Nonlinear dispersion for ocean surface waves. J. Fluid Mech. 2019, 859, 49–58. [Google Scholar] [CrossRef]
- Zakharov, V.E.; Filonenko, N.N. Weak turbulence of capillary waves. J. Appl. Mech. Tech. Phys. 1967, 8, 37–40. [Google Scholar] [CrossRef]
- Janssen, P.A.E.M. The Interaction of Ocean Waves and Wind; Cambridge University Press: Cambridge, UK, 2004. [Google Scholar]
- Pan, Y.; Yue, D.K.P. Understanding discrete capillary-wave turbulence using a quasi-resonant kinetic equation. J. Fluid Mech. 2017, 816, R1. [Google Scholar] [CrossRef]
- Alfimov, G.L.; Medvedeva, E.V.; Pelinovsky, D.E. Wave systems with an infinite number of localized traveling waves. Phys. Rev. Lett. 2014, 112, 054103. [Google Scholar] [CrossRef]
- McLean, J.W.; Ma, Y.C.; Martin, D.U.; Saffman, P.G.; Yuen, H.C. Three-Dimensional Instability of Finite-Amplitude Water Waves. Phys. Rev. Lett. 1981, 46, 817–820. [Google Scholar] [CrossRef]
- McLean, J.W. Instabilities of finite-amplitude gravity waves on water of finite depth. J. Fluid Mech. 1982, 114, 331–341. [Google Scholar] [CrossRef]
- Shrira, V.I.; Badulin, S.I.; Kharif, C. A model of water wave ’horse-shoe’ patterns. J. Fluid Mech. 1996, 318, 375–405. [Google Scholar] [CrossRef]
- Glozman, M.; Agnon, Y.; Stiassnie, M. High-order formulation of the water-wave problem. Phys. D 1993, 66, 347–367. [Google Scholar] [CrossRef]
- Craig, W.; Worfolk, P. An integrable normal form for water waves in infinite depth. Phys. D 1995, 84, 513–531. [Google Scholar] [CrossRef]
- Dyachenko, A.I.; Lvov, Y.V.; Zakharov, V.E. Five-wave interaction on the surface of deep fluid. Phys. D 1995, 87, 233–261. [Google Scholar] [CrossRef]
- Lvov, Y.V. Effective five-wave Hamiltonian for surface water waves. Phys. Lett. A 1997, 230, 38–44. [Google Scholar] [CrossRef]
- Dyachenko, A.I.; Kachulin, D.I.; Zakharov, V.E. On the nonintegrability of the free surface hydrodynamics. JETP Lett. 2013, 98, 43–47. [Google Scholar] [CrossRef]
- Bortolozzo, U.; Laurie, J.; Nazarenko, S.; Residori, S. Optical wave turbulence and the condensation of light. J. Opt. Soc. Am. B 2009, 26, 2280–2284. [Google Scholar] [CrossRef]
- Laurie, J.; L’vov, V.S.; Nazarenko, S.; Rudenko, O. Interaction of Kelvin waves and non-locality of the energy transfer in superfluids. Phys. Rev. B 2010, 81, 104526. [Google Scholar] [CrossRef]
- Stiassnie, M.; Shemer, L. On modifications of the Zakharov equation for surface gravity waves. J. Fluid Mech. 1984, 143, 47–67. [Google Scholar] [CrossRef]
- Az-Zo’bi, E.A. Solitary and periodic exact solutions of the viscosity-capillarity van der Waals gas equations. Appl. Appl. Math. 2019, 14, 23. [Google Scholar]
- Akram, G.; Sadaf, M.; Khan, M.A.U. Soliton dynamics of the generalized shallow water like equation in nonlinear phenomenon. Front. Phys. 2022, 10, 822042. [Google Scholar] [CrossRef]
- Arshed, S.; Akram, G.; Sadaf, M.; Bilal Riaz, M.; Wojciechowski, A. Solitary wave behavior of (2+1)-dimensional Chaffee-Infante equation. PLoS ONE 2023, 18, e0276961. [Google Scholar] [CrossRef] [PubMed]
- Akram, G.; Arshed, S.; Sadaf, M.; Mariyam, H.; Aslam, M.N.; Ahmad, R.; Khan, I.; Alzahrani, J. Abundant solitary wave solutions of Gardner’s equation using three effective integration techniques. AIMS Math. 2023, 8, 8171–8184. [Google Scholar] [CrossRef]
- Dey, P.; Sadek, L.H.; Tharwat, M.M.; Sarker, S.; Karim, R.; Akbar, M.A.; Elazab, N.S.; Osman, M.S. Soliton solutions to generalized (3+1)-dimensional shallow water-like equation using the (ϕ′/ϕ,1/ϕ)-expansion method. Arab J. Basic Appl. Sci. 2024, 31, 121–131. [Google Scholar] [CrossRef]
- Krasitskii, V.P. On the canonical transformation of the theory of weakly nonlinear waves with nondecay dispersion law. Sov. Phys. JETP 1990, 98, 1644–1655. [Google Scholar]
- Janssen, P.A.E.M. On some consequences of the canonical transformation in the Hamiltonian theory of water waves. J. Fluid Mech. 2009, 637, 1–44. [Google Scholar] [CrossRef]
- Krasitskii, V.P. Five-wave kinetic equation for surface gravity waves. Phys. Oceanogr. 1994, 5, 413–421. [Google Scholar] [CrossRef]
- Gramstad, O.; Trulsen, K. Hamiltonian form of the modified nonlinear Schrödinger equation for gravity waves on arbitrary depth. J. Fluid Mech. 2011, 670, 404–426. [Google Scholar] [CrossRef]
- Peregrine, D.H. Interaction of Water Waves and Currents. Adv. Appl. Mech. 1976, 16, 9–117. [Google Scholar]
- Gramstad, O. The Zakharov equation with separate mean flow and mean surface. J. Fluid Mech. 2014, 740, 254–277. [Google Scholar] [CrossRef]
- Dingemans, M. Water Wave Propagation over Uneven Bottoms; World Scientific: Singapore, 1997. [Google Scholar]
- Porter, D. The mild-slope equations: A unified theory. J. Fluid Mech. 2020, 887, 21. [Google Scholar] [CrossRef]
- Cavaleri, L.; Barbariol, F.; Benetazzo, A.; Waseda, T. Ocean wave physics and modeling. Bull. Am. Met. Soc. 2019, 100, ES297–ES300. [Google Scholar] [CrossRef]
- Pedlosky, J. Waves in the Ocean and Atmosphere-Introduction to Wave Dynamics; Springer: Berlin/Heidelberg, Germany, 2003. [Google Scholar]
- Stiassnie, M. On the strength of the weakly nonlinear theory for surface gravity waves. J. Fluid Mech. 2017, 810, 1–4. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lin, G.; Huang, H. The Dynamical and Kinetic Equations of Four-Five-Six-Wave Resonance for Ocean Surface Gravity Waves in Water with a Finite Depth. Symmetry 2024, 16, 618. https://doi.org/10.3390/sym16050618
Lin G, Huang H. The Dynamical and Kinetic Equations of Four-Five-Six-Wave Resonance for Ocean Surface Gravity Waves in Water with a Finite Depth. Symmetry. 2024; 16(5):618. https://doi.org/10.3390/sym16050618
Chicago/Turabian StyleLin, Guobin, and Hu Huang. 2024. "The Dynamical and Kinetic Equations of Four-Five-Six-Wave Resonance for Ocean Surface Gravity Waves in Water with a Finite Depth" Symmetry 16, no. 5: 618. https://doi.org/10.3390/sym16050618
APA StyleLin, G., & Huang, H. (2024). The Dynamical and Kinetic Equations of Four-Five-Six-Wave Resonance for Ocean Surface Gravity Waves in Water with a Finite Depth. Symmetry, 16(5), 618. https://doi.org/10.3390/sym16050618