Comparison of NCEP-CFSR and CMADS for Hydrological Modelling Using SWAT in the Muda River Basin, Malaysia
<p>Muda River basin.</p> "> Figure 2
<p>Scatter plots of gauge stations with (<b>a</b>–<b>c</b>) NCEP-CFSR and (<b>d</b>–<b>f</b>) CMADS in daily precipitation (Pcp), daily maximum temperature (Tmax) and daily minimum temperature (Tmin) estimations.</p> "> Figure 3
<p>Scatter plots of gauge stations with (<b>a</b>–<b>c</b>) NCEP-CFSR and (<b>d</b>–<b>f</b>) CMADS in monthly precipitation (Pcp), monthly maximum temperature (Tmax) and monthly minimum temperature (Tmin) estimations.</p> "> Figure 4
<p>Observed monthly runoff and SWAT model simulations at the hydrological stations during the calibration period (2009–2011) and validation period (2012–2014).</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Observations
2.3. NCEP-CFSR
2.4. CMADS
2.5. SWAT Model
2.6. Statistical Measures
3. Results
3.1. Climate Aspect
3.1.1. Daily Climate Assessment
3.1.2. Monthly Climate Assessment
3.2. Hydrological Aspect
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Tan, M.L.; Gassman, P.W.; Srinivasan, R.; Arnold, J.G.; Yang, X. A Review of SWAT Studies in Southeast Asia: Applications, Challenges and Future Directions. Water 2019, 11, 914. [Google Scholar] [CrossRef] [Green Version]
- Tan, M.L.; Gassman, P.; Yang, X.; Haywood, J. A Review of SWAT Applications, Performance and Future Needs for Simulation of Hydro-Climatic Extremes. Adv. Water Resour. 2020, 143, 103662. [Google Scholar] [CrossRef]
- Mannschatz, T.; Wolf, T.; Hülsmann, S. Nexus Tools Platform: Web-based comparison of modelling tools for analysis of water-soil-waste nexus. Environ. Model. Softw. 2016, 76, 137–153. [Google Scholar] [CrossRef]
- Gassman, P.W.; Sadeghi, A.M.; Srinivasan, R. Applications of the SWAT Model Special Section: Overview and Insights. J. Environ. Qual. 2014, 43, 1–8. [Google Scholar] [CrossRef]
- Zhu, Q.; Xuan, W.; Liu, L.; Xu, Y.-P. Evaluation and hydrological application of precipitation estimates derived from PERSIANN-CDR, TRMM 3B42V7, and NCEP-CFSR over humid regions in China. Hydrol. Process. 2016, 30, 3061–3083. [Google Scholar] [CrossRef]
- Tan, M.L.; Santo, H. Comparison of GPM IMERG, TMPA 3B42 and PERSIANN-CDR satellite precipitation products over Malaysia. Atmos. Res. 2018, 202, 63–76. [Google Scholar] [CrossRef]
- Maggioni, V.; Massari, C. On the performance of satellite precipitation products in riverine flood modeling: A review. J. Hydrol. 2018, 558, 214–224. [Google Scholar] [CrossRef]
- Mohammed, I.N.; Bolten, J.D.; Srinivasan, R.; Lakshmi, V. Satellite observations and modeling to understand the Lower Mekong River Basin streamflow variability. J. Hydrol. 2018, 564, 559–573. [Google Scholar] [CrossRef]
- Tan, M.L.; Samat, N.; Chan, N.W.; Roy, R. Hydro-Meteorological Assessment of Three GPM Satellite Precipitation Products in the Kelantan River Basin, Malaysia. Remote Sens. 2018, 10, 1011. [Google Scholar] [CrossRef] [Green Version]
- Li, D.; Christakos, G.; Ding, X.; Wu, J. Adequacy of TRMM satellite rainfall data in driving the SWAT modeling of Tiaoxi catchment (Taihu lake basin, China). J. Hydrol. 2018, 556, 1139–1152. [Google Scholar] [CrossRef]
- Yang, Y.; Wang, G.; Wang, L.; Yu, J.; Xu, Z. Evaluation of Gridded Precipitation Data for Driving SWAT Model in Area Upstream of Three Gorges Reservoir. PLoS ONE 2014, 9, e112725. [Google Scholar] [CrossRef]
- Saha, S.; Moorthi, S.; Pan, H.-L.; Wu, X.; Wang, J.; Nadiga, S.; Tripp, P.; Kistler, R.; Woollen, J.; Behringer, D.; et al. The NCEP Climate Forecast System Reanalysis. Bull. Am. Meteorol. Soc. 2010, 91, 1015–1058. [Google Scholar] [CrossRef]
- Meng, X.; Wang, H. Significance of the China Meteorological Assimilation Driving Datasets for the SWAT Model (CMADS) of East Asia. Water 2017, 9, 765. [Google Scholar] [CrossRef]
- CARD. SWAT Literature Database for Peer-Reviewed Journal Articles; Center for Agricultural and Rural Development, Iowa State University: Ames, IA, USA; Available online: https://www.card.iastate.edu/swat_articles/ (accessed on 30 October 2020).
- Dile, Y.T.; Srinivasan, R. Evaluation of CFSR climate data for hydrologic prediction in data-scarce watersheds: An application in the Blue Nile River Basin. JAWRA J. Am. Water Resour. Assoc. 2014, 50, 1226–1241. [Google Scholar] [CrossRef]
- Fuka, D.R.; Walter, M.T.; MacAlister, C.; Degaetano, A.T.; Steenhuis, T.S.; Easton, Z.M. Using the Climate Forecast System Reanalysis as weather input data for watershed models. Hydrol. Process. 2014, 28, 5613–5623. [Google Scholar] [CrossRef]
- Tan, M.L.; Gassman, P.W.; Cracknell, A.P. Assessment of Three Long-Term Gridded Climate Products for Hydro-Climatic Simulations in Tropical River Basins. Water 2017, 9, 229. [Google Scholar] [CrossRef] [Green Version]
- Bressiani, D.A.; Gassman, P.W.; Fernandes, J.G.; Garbossa, L.H.P.; Srinivasan, R.; Bonumá, N.B.; Mendiondo, E.M. Review of Soil and Water Assessment Tool (SWAT) applications in Brazil: Challenges and prospects. Int. J. Agric. Biol. Eng. 2015, 8, 9–35. [Google Scholar] [CrossRef]
- Monteiro, J.A.F.; Strauch, M.; Srinivasan, R.; Abbaspour, K.; Gücker, B. Accuracy of grid precipitation data for Brazil: Application in river discharge modelling of the Tocantins catchment. Hydrol. Process. 2016, 30, 1419–1430. [Google Scholar] [CrossRef]
- Meng, X.; Wang, H.; Shi, C.; Wu, Y.; Ji, X. Establishment and Evaluation of the China Meteorological Assimilation Driving Datasets for the SWAT Model (CMADS). Water 2018, 10, 1555. [Google Scholar] [CrossRef] [Green Version]
- Song, Y.; Zhang, J.; Meng, X.; Zhou, Y.; Lai, Y.; Cao, Y. Comparison Study of Multiple Precipitation Forcing Data on Hydrological Modeling and Projection in the Qujiang River Basin. Water 2020, 12, 2626. [Google Scholar] [CrossRef]
- Lu, J.; Liu, Z.; Liu, W.; Chen, X.; Zhang, L. Assessment of CFSR and CMADS Weather Data for Capturing Extreme Hydrologic Events in the Fuhe River Basin of the Poyang Lake. JAWRA J. Am. Water Resour. Assoc. 2020, 56, 917–934. [Google Scholar] [CrossRef]
- Zhou, Z.; Gao, X.; Yang, Z.; Feng, J.; Meng, C.; Xu, Z. Evaluation of Hydrological Application of CMADS in Jinhua River Basin, China. Water 2019, 11, 138. [Google Scholar] [CrossRef] [Green Version]
- Vu, T.T.; Li, L.; Jun, K.S. Evaluation of Multi-Satellite Precipitation Products for Streamflow Simulations: A Case Study for the Han River Basin in the Korean Peninsula, East Asia. Water 2018, 10, 642. [Google Scholar] [CrossRef] [Green Version]
- Tan, M.L.; Samat, N.; Chan, N.W.; Lee, A.J.; Li, C. Analysis of Precipitation and Temperature Extremes over the Muda River Basin, Malaysia. Water 2019, 11, 283. [Google Scholar] [CrossRef] [Green Version]
- MADA. Information of MADA’s Dams. Available online: http://www.mada.gov.my/?page_id=4241&lang=en (accessed on 6 October 2020).
- DID. Introduction to Beris Dam. Available online: https://www.water.gov.my/index.php/pages/view/1257 (accessed on 7 October 2020).
- Tan, M.L.; Chua, V.P.; Tan, K.C.; Brindha, K. Evaluation of TMPA 3B43 and NCEP-CFSR precipitation products in drought monitoring over Singapore. Int. J. Remote Sens. 2018, 39, 2089–2104. [Google Scholar] [CrossRef]
- SWAT. Global Weather Data for SWAT. Available online: https://globalweather.tamu.edu/ (accessed on 1 September 2020).
- Zhang, L.; Meng, X.; Wang, H.; Yang, M.; Cai, S. Investigate the Applicability of CMADS and CFSR Reanalysis in Northeast China. Water 2020, 12, 996. [Google Scholar] [CrossRef] [Green Version]
- Liu, J.; Shanguan, D.; Liu, S.; Ding, Y. Evaluation and Hydrological Simulation of CMADS and CFSR Reanalysis Datasets in the Qinghai-Tibet Plateau. Water 2018, 10, 513. [Google Scholar] [CrossRef] [Green Version]
- Gao, X.; Zhu, Q.; Yang, Z.; Wang, H. Evaluation and Hydrological Application of CMADS against TRMM 3B42V7, PERSIANN-CDR, NCEP-CFSR, and Gauge-Based Datasets in Xiang River Basin of China. Water 2018, 10, 1225. [Google Scholar] [CrossRef] [Green Version]
- CMADS. The China Meteorological Assimilation Driving Datasets for the SWAT Model v1.1. Available online: http://www.cmads.org/ (accessed on 1 September 2020).
- Arnold, J.G.; Srinivasan, R.; Muttiah, R.S.; Williams, J.R. Large area hydrologic modeling and assessment part I: Model development. JAWRA J. Am. Water Resour. Assoc. 1998, 34, 73–89. [Google Scholar] [CrossRef]
- Arnold, J.; Moriasi, D.; Gassman, P.C.; Abbaspour, K.; White, M.; Srinivasan, R.; Santhi, C.D.; Harmel, R.; van Griensven, A.; Van Liew, M.; et al. SWAT: Model use, calibration, and validation. Trans. ASABE 2012, 55, 1491–1508. [Google Scholar] [CrossRef]
- Arnold, J.G.; Fohrer, N. SWAT2000: Current capabilities and research opportunities in applied watershed modelling. Hydrol. Process. 2005, 19, 563–572. [Google Scholar] [CrossRef]
- Tan, M.L.; Juneng, L.; Tangang, F.T.; Samat, N.; Chan, N.W.; Yusop, Z.; Ngai, S.T. SouthEast Asia HydrO-meteorological droughT (SEA-HOT) framework: A case study in the Kelantan River Basin, Malaysia. Atmos. Res. 2020, 246, 105155. [Google Scholar] [CrossRef]
- Yaduvanshi, A.; Sharma, R.K.; Kar, S.C.; Sinha, A.K. Rainfall–runoff simulations of extreme monsoon rainfall events in a tropical river basin of India. Nat. Hazards 2018, 90, 843–861. [Google Scholar] [CrossRef]
- Neitsch, S.L.; Arnold, J.G.; Kiniry, J.R.; Grassland, J.R.W. Soil and Water Assessment Tool Theoretical Documentation Version 2009; Agricultural Research Service Blackland Research Center: Temple, TX, USA, 2011. [Google Scholar]
- DID. National Water Balance Management System. Available online: http://nawabs.water.gov.my/ (accessed on 1 September 2020).
- Hargreaves, G.H. Moisture Availability and Crop Production. Trans. ASAE 1975, 18, 980–0984. [Google Scholar] [CrossRef]
- Tan, M.L.; Yang, X. Effect of rainfall station density, distribution and missing values on SWAT outputs in tropical region. J. Hydrol. 2020, 584, 124660. [Google Scholar] [CrossRef]
- Tan, M.; Duan, Z. Assessment of GPM and TRMM Precipitation Products over Singapore. Remote Sens. 2017, 9, 720. [Google Scholar] [CrossRef] [Green Version]
- Condom, T.; Rau, P.; Espinoza, J.C. Correction of TRMM 3B43 monthly precipitation data over the mountainous areas of Peru during the period 1998–2007. Hydrol. Process. 2011, 25, 1924–1933. [Google Scholar] [CrossRef]
- Tan, M.L.; Ibrahim, A.; Duan, Z.; Cracknell, A.; Chaplot, V. Evaluation of Six High-Resolution Satellite and Ground-Based Precipitation Products over Malaysia. Remote Sens. 2015, 7, 1504. [Google Scholar] [CrossRef] [Green Version]
- Yang, J.; Reichert, P.; Abbaspour, K.C.; Xia, J.; Yang, H. Comparing uncertainty analysis techniques for a SWAT application to the Chaohe Basin in China. J. Hydrol. 2008, 358, 1–23. [Google Scholar] [CrossRef]
- Abbaspour, K.C.; Vaghefi, S.A.; Srinivasan, R. A Guideline for Successful Calibration and Uncertainty Analysis for Soil and Water Assessment: A Review of Papers from the 2016 International SWAT Conference. Water 2018, 10, 6. [Google Scholar] [CrossRef] [Green Version]
- Moriasi, D.N.; Gitau, M.W.; Pai, N.; Daggupati, P. Hydrologic and water quality models: Performance measures and evaluation criteria. Trans. ASABE 2015, 58, 1763–1785. [Google Scholar] [CrossRef] [Green Version]
- Tan, M.L.; Juneng, L.; Tangang, F.T.; Chan, N.W.; Ngai, S.T. Future hydro-meteorological drought of the Johor River Basin, Malaysia, based on CORDEX-SEA projections. Hydrol. Sci. J. 2019, 64, 921–933. [Google Scholar] [CrossRef]
- Tan, M.L.; Ficklin, D.; Ibrahim, A.L.; Yusop, Z. Impacts and uncertainties of climate change on streamflow of the Johor River Basin, Malaysia using a CMIP5 General Circulation Model ensemble. J. Water Climate Change 2014, 5, 676–695. [Google Scholar] [CrossRef]
- Tan, M.L.; Ibrahim, A.L.; Yusop, Z.; Duan, Z.; Ling, L. Impacts of land-use and climate variability on hydrological components in the Johor River basin, Malaysia. Hydrol. Sci. J. 2015, 60, 873–889. [Google Scholar] [CrossRef]
- Dlamini, N.S.; Kamal, M.R.; Soom, M.A.B.M.; Mohd, M.S.F.b.; Abdullah, A.F.B.; Hin, L.S. Modeling Potential Impacts of Climate Change on Streamflow Using Projections of the 5th Assessment Report for the Bernam River Basin, Malaysia. Water 2017, 9, 226. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Yang, G.; Gu, X.; He, X.; Gao, Y.; Tian, L.; Liao, N. Application of SWAT model with CMADS data for hydrological simulation in western China. J. Water Climate Change 2020. [Google Scholar] [CrossRef]
- Cao, Y.; Zhang, J.; Yang, M.; Lei, X.; Guo, B.; Yang, L.; Zeng, Z.; Qu, J. Application of SWAT Model with CMADS Data to Estimate Hydrological Elements and Parameter Uncertainty Based on SUFI-2 Algorithm in the Lijiang River Basin, China. Water 2018, 10, 742. [Google Scholar] [CrossRef] [Green Version]
- Zhang, L.; Meng, X.; Wang, H.; Yang, M. Simulated Runoff and Sediment Yield Responses to Land-Use Change Using the SWAT Model in Northeast China. Water 2019, 11, 915. [Google Scholar] [CrossRef] [Green Version]
- Meng, X.; Wang, H. China Meteorological Assimilation Datasets for the SWAT model Version 1.1 User Guide (in Chinese). Available online: https://pan.baidu.com/s/10v9jhcvKXWLfFcLj8rksdw#list/path=%2Fsharelink3691329061-606819072012486%2FCMADSV1.1&parentPath=%2Fsharelink3691329061-606819072012486 (accessed on 10 November 2020).
- Li, Y.; Wang, Y.; Zheng, J.; Yang, M. Investigating Spatial and Temporal Variation of Hydrological Processes in Western China Driven by CMADS. Water 2019, 11, 435. [Google Scholar] [CrossRef] [Green Version]
- Shivhare, N.; Dikshit, P.K.S.; Dwivedi, S.B. A Comparison of SWAT Model Calibration Techniques for Hydrological Modeling in the Ganga River Watershed. Engineering 2018, 4, 643–652. [Google Scholar] [CrossRef]
- Abbaspour, K.C.; Vejdani, M.; Haghighat, S. SWAT-CUP calibration and uncertainty programs for SWAT. Modsim Int. Congr. Model. Simul. Land Water Environ. Manag. Integr. Syst. Sustain. 2007, 364, 1603–1609. [Google Scholar]
Name | ID | Latitude | Longitude | Elevation | Variables |
---|---|---|---|---|---|
Ampangan Muda | 41638 | 6.12 | 100.85 | 110.00 | Pcp, Tmax, Tmin |
Ampangan Pedu | 41619 | 6.25 | 100.77 | 58.60 | Pcp |
Badenoch Estate | 41526 | 5.55 | 100.76 | 51.00 | Pcp |
Butterworth | 48602 | 5.47 | 100.40 | 2.80 | Pcp, Tmax, Tmin |
Felda Sungai Tiang | 41559 | 5.99 | 100.60 | 38.00 | Pcp |
Hospital Baling | 41545 | 5.68 | 100.93 | 52.00 | Pcp |
Hospital Sungai Petani | 41543 | 5.65 | 100.50 | 8.00 | Pcp |
Pusat Pertanian Charok Padang | 41548 | 5.80 | 100.72 | 31.00 | Pcp, Tmax, Tmin |
Pusat Pertanian Batu Seketol | 41549 | 5.97 | 100.80 | 71.00 | Pcp |
Name | Formula | Value Range | Ideal Value |
---|---|---|---|
Correlation Coefficient (CC) | −1 to 1 | 1 | |
Root Mean Square Error (RMSE) | 0 to ∞ | 0 | |
Relative Bias (RB) | −∞ to ∞ | 0 | |
Probability of Detection (POD) | 0 to 1 | 1 | |
False Alarm Ratio (FAR) | 0 to 1 | 0 | |
Critical Success Index (CSI) | 0 to 1 | 1 | |
Coefficient of Determination (R2) | 0 to 1 | 1 | |
Nash-Sutcliffe Efficiency (NSE) | 0 to 1 | 1 |
Statistic Metric | Very Good | Good | Satisfactory | Not Satisfactory |
---|---|---|---|---|
R2 | >0.85 | 0.75 ≤ R2 ≤ 0.85 | 0.60 < R2 < 0.75 | ≤0.60 |
NSE | >0.80 | 0.65 ≤ NSE ≤ 0.80 | 0.40 < NSE < 0.65 | ≤0.40 |
RB | >±5.00 | ±5.00 ≤ RB ≤ ±10.00 | ±10.00 < RB < ±15.00 | >±15.00 |
No | Parameter | Name | Gauge | NCEP-CFSR | CMADS |
---|---|---|---|---|---|
1 | R__SOL_BD(..).sol | Moist bulk density | 4 | 3 | 5 |
2 | V__ESCO.hru | Soil evaporation compensation factor | 2 | 2 | 2 |
3 | R__SOL_K(..).sol | Saturated hydraulic conductivity | 10 | 8 | 4 |
4 | R__SOL_AWC(..).sol | Available water capacity of the soil layer | 11 | 10 | 12 |
5 | V__CANMX.hru | Maximum canopy storage | 9 | 9 | 8 |
6 | V__RCHRG_DP.gw | Deep aquifer percolation fraction. | 8 | 4 | 6 |
7 | V__GW_DELAY.gw | Groundwater delay (days) | 12 | 13 | 10 |
8 | R__HRU_SLP.hru | Average slope steepness | 7 | 6 | 3 |
9 | R__SLSUBBSN.hru | Average slope length | 5 | 5 | 9 |
10 | R__SOL_Z(..).sol | Depth from soil surface to bottom of layer | 6 | 7 | 11 |
11 | R__CN2.mgt | SCS runoff curve number f | 1 | 1 | 1 |
12 | V__CH_N2.rte | Manning’s “n” value for the main channel | 13 | 11 | 7 |
13 | V__GW_REVAP.gw | Groundwater “revap” coefficient | 3 | 12 | 13 |
Fitted Value | ||||||
---|---|---|---|---|---|---|
Parameters | Min | Max | Gauge | NCEP-CFSR | CMADS | |
1 | R__SOL_BD(..).sol | −0.5 | 0.5 | 0.40 | −0.39 | 0.47 |
2 | V__ESCO.hru | 0 | 1 | 0.15 | 0.08 | 0.98 |
3 | R__SOL_K(..).sol | −0.5 | 0.5 | 0.48 | 0.07 | −0.01 |
4 | R__SOL_AWC(..).sol | −0.5 | 0.5 | 0.33 | 0.34 | −0.40 |
5 | V__CANMX.hru | 0 | 10 | 9.51 | 4.39 | 9.49 |
6 | V__RCHRG_DP.gw | 0 | 1 | 0.76 | 0.21 | 0.67 |
7 | V__GW_DELAY.gw | 0 | 500 | 37.50 | 487.50 | 122.50 |
8 | R__HRU_SLP.hru | −0.5 | 0.5 | 0.41 | 0.20 | −0.24 |
9 | R__SLSUBBSN.hru | −0.5 | 0.5 | 0.33 | −0.34 | 0.10 |
10 | R__SOL_Z(..).sol | −0.5 | 0.5 | 0.15 | 0.30 | −0.50 |
11 | R__CN2.mgt | −0.5 | 0.5 | −0.11 | −0.03 | 0.11 |
12 | V__CH_N2.rte | 0 | 0.3 | 0.17 | 0.21 | 0.29 |
13 | V__GW_REVAP.gw | 0.02 | 0.2 | 0.03 | 0.14 | 0.08 |
Calibration (January 2009–December 2011) | Validation (January 2012–July 2014) | |||||
---|---|---|---|---|---|---|
R2 | NSE | RB (%) | R2 | NSE | RB (%) | |
Gauge | 0.82 | 0.81 | 3.6 | 0.89 | 0.89 | 4.3 |
NCEP-CFSR | 0.58 | 0.21 | 40 | 0.48 | −0.23 | 44.7 |
CMADS | 0.6 | 0.59 | −3.7 | 0.39 | 0.21 | −13.1 |
Reference | Region | Calibration | Validation | ||||
---|---|---|---|---|---|---|---|
R2 | NSE | RB (%) | R2 | NSE | RB (%) | ||
This Study | Muda River Basin, Malaysia | 0.60 | 0.59 | −3.7 | 0.39 | 0.21 | −13.1 |
Zhang et al. [30] | Hunhe River Basin, China | 0.88–0.97 | 0.86–0.94 | - | 0.73–0.96 | 0.54–0.95 | - |
Wang et al. [53] | Jing River and Bo River Basins, China | 0.88–0.94 | 0.79–0.87 | - | 0.91–0.93 | 0.82–0.87 | - |
Lu et al. [22] | Fuhe River Basin, China | 0.84 | 0.80 | −2.57 | 0.87 | 0.82 | −20.34 |
Zhang et al. [55] | Hun River Basin, China | 0.80–0.94 | 0.78–0.92 | 13.02–21.62 | 0.69–0.94 | 0.67–0.89 | 16.75–23.72 |
Li et al. [57] | Jing and Bortala River Basin, China | 0.92–0.94 | 0.93 | - | 0.66–0.90 | 0.91–0.94 | - |
Liu et al. [31] | Yellow River Source Basin, China | 0.91 | 0.78 | - | 0.86 | 0.68 | - |
Gao et al. [32] | Xiang River Basin, China | - | 0.92 | −12.06 | - | 0.80 | 2.17 |
Cao et al. [54] | Lijiang River Basin, China | 0.96 | 0.96 | 7.70 | −0.96 | 0.95 | 7.80 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, D.; Tan, M.L.; Dawood, S.R.S.; Samat, N.; Chang, C.K.; Roy, R.; Tew, Y.L.; Mahamud, M.A. Comparison of NCEP-CFSR and CMADS for Hydrological Modelling Using SWAT in the Muda River Basin, Malaysia. Water 2020, 12, 3288. https://doi.org/10.3390/w12113288
Zhang D, Tan ML, Dawood SRS, Samat N, Chang CK, Roy R, Tew YL, Mahamud MA. Comparison of NCEP-CFSR and CMADS for Hydrological Modelling Using SWAT in the Muda River Basin, Malaysia. Water. 2020; 12(11):3288. https://doi.org/10.3390/w12113288
Chicago/Turabian StyleZhang, Dandan, Mou Leong Tan, Sharifah Rohayah Sheikh Dawood, Narimah Samat, Chun Kiat Chang, Ranjan Roy, Yi Lin Tew, and Mohd Amirul Mahamud. 2020. "Comparison of NCEP-CFSR and CMADS for Hydrological Modelling Using SWAT in the Muda River Basin, Malaysia" Water 12, no. 11: 3288. https://doi.org/10.3390/w12113288
APA StyleZhang, D., Tan, M. L., Dawood, S. R. S., Samat, N., Chang, C. K., Roy, R., Tew, Y. L., & Mahamud, M. A. (2020). Comparison of NCEP-CFSR and CMADS for Hydrological Modelling Using SWAT in the Muda River Basin, Malaysia. Water, 12(11), 3288. https://doi.org/10.3390/w12113288