The LSmAD Domain of Ataxin-2 Modulates the Structure and RNA Binding of Its Preceding LSm Domain
<p>Design, expression, and purification of the recombinant domains of Atx2 for biochemical analyses. (<b>A</b>) Domain architecture of Atx2. Atx2 contains a polyQ tract at its N-terminus, the LSm and LSmAD domains, and a PAM2 domain flanked by IDRs. The polyQ, LSm, LSmAD, and PAM2 domains of Atx2 are shown in khaki, blue, red, and green, respectively. GB1 and SUMO fusion tags are represented in purple and orange, respectively. The numbers are given for the start and end residues of structural regions. (<b>B</b>) Expression and purification of LSmAD: lane 1, molecular weight marker; lane 2, cell lysates (induced); lane 3, precipitate; lane 4, supernatant; lane 5, protein sample eluted with 20 mM imidazole; lane 6, protein sample eluted with 250 mM imidazole; lane 7, purified sample by SEC-FPLC. (<b>C</b>) Preparation of LSm and the M2 mutant of LSm-LSmAD: lane 1, protein marker; lane 2, LSm; lane 3, M2. The arrow represents the target protein of interest.</p> "> Figure 2
<p>Structural and functional analysis of LSmAD. (<b>A</b>) CD spectrum of LSmAD. (<b>B</b>) HSQC spectrum of LSmAD. (<b>C</b>) Kratky plot of LSmAD. (<b>D</b>) EMSA for characterizing the interaction of LSmAD with AC-rich and AU-rich RNA. Left, EMSA for characterizing the interaction of LSmAD with AC-rich RNA; right, EMSA for characterizing the interaction of LSmAD with AU-rich RNA. The top black graph illustrates the gradual increase in protein dose. Lanes 1–7 represent the molar protein/RNA molar ratio of 0, 0.25, 0.5, 1, 2, 4, and 6, respectively.</p> "> Figure 3
<p>(<b>A</b>) SEC-FPLC analysis of the interaction of LSm with AU-rich and AC-rich RNA sequences, respectively. The right graph shows the normalized curves. (<b>B</b>) EMSA analysis of M2 with the AU-rich RNA sequence. The numbers 1–4 represent the M2 to RNA molar ratios of 0, 5, 10, and 20. (<b>C</b>) Kratky plot of LSm (black) and M2 (red).</p> "> Figure 4
<p>The LSm domain of Atx2 recognizes the U-rich sequences. The color bars represent reduced SHAPE reactivity. The residues are indicated on the <span class="html-italic">X</span>-axis, while the CA-rich, GU-rich, AU-rich, and CU-rich sequences of RNA are labeled in grey, blue, orange, and green, respectively. The height of the bar graph indicates signal strength. Colored upper bars of RNA only represent reduced SHAPE reactivity. Downward bars in the RNA + protein row indicate the degree of base protection after the addition of protein. (<b>A</b>) Control for SHAPE analysis. (<b>B</b>) SHAPE analysis was carried out for RE1: LSm binding to RE1 (row1) and M2 binding to RE1 (row2). (<b>C</b>) SHAPE analysis was executed for RE2: LSm binding to RE2 (row1) and M2 binding to RE2 (row2). (<b>D</b>) SHAPE analysis was performed for RE5: LSm binding to RE5 (row1) and M2 binding to RE5 (row2).</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Preparation
2.1.1. Sequence Analysis and Preparation of Expression Constructs
2.1.2. Protein Expression and Purification
2.1.3. In Vitro Transcription and RNA Purification
2.2. Size-Exclusion Chromatography
2.3. Circular Dichroism Spectroscopy
2.4. NMR HSQC Data Collection and Analysis
2.5. Electrophoretic Mobility Shift Assay (EMSA)
2.6. SAXS Data Collection and Analysis
2.7. SHAPE (Selective 2′-Hydroxyl Acylation Analyzed by Protection from Exoribonuclease) Probing Analysis
3. Results
3.1. Expression and Purification of Recombinant Proteins
3.2. The Flexible Structure of LSmAD Lacks RNA Binding
3.3. LSmAD Assists LSm Folding and Facilitates Its Binding with AU-Rich RNA
3.4. ATX2 Preferentially Binds to U-Rich Sequences but Not to CA-Rich Sequences
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
Atx2 | Ataxin-2 |
LSm | Sm-like |
LSmAD | LSm-associated domain |
RBD | RNA-binding domain |
EMSA | Electrophoretic mobility shift assay |
SHAPE | Selective 2′-hydroxyl acylation analyzed by protection from exoribonuclease |
SAXS | Small-angle X-ray scattering |
NMR | Nuclear magnetic resonance |
PAM2 | Poly(A)-binding protein-interacting motif |
IDRs | Intrinsically disordered regions |
SCA2 | Spinocerebellar ataxia type II |
ALS | Amyotrophic lateral sclerosis |
CD | Circular dichroism spectroscopy |
IVT | In vitro transcription |
SEC | Size-exclusion chromatography |
References
- Beggs, J.D. Lsm proteins and RNA processing. Biochem. Soc. Trans. 2005, 33, 433–438. [Google Scholar] [CrossRef]
- Fischer, S.; Benz, J.; Späth, B.; Maier, L.K.; Straub, J.; Granzow, M.; Raabe, M.; Urlaub, H.; Hoffmann, J.; Brutschy, B.; et al. The archaeal Lsm protein binds to small RNAs. J. Biol. Chem. 2010, 285, 34429–34438. [Google Scholar] [CrossRef] [PubMed]
- Scofield, D.G.; Lynch, M. Evolutionary diversification of the Sm family of RNA-associated proteins. Mol. Biol. Evol. 2008, 25, 2255–2267. [Google Scholar] [CrossRef] [PubMed]
- Lekontseva, N.V.; Stolboushkina, E.A.; Nikulin, A.D. Diversity of LSM Family Proteins: Similarities and Differences. Biochemistry 2021, 86, S38–S49. [Google Scholar] [CrossRef] [PubMed]
- He, W.; Parker, R. Functions of Lsm proteins in mRNA degradation and splicing. Curr. Opin. Cell Biol. 2000, 12, 346–350. [Google Scholar] [CrossRef]
- Wilusz, C.J.; Wilusz, J. Lsm proteins and Hfq: Life at the 3′ end. RNA Biol. 2013, 10, 592–601. [Google Scholar] [CrossRef]
- Kovach, A.R.; Hoff, K.E.; Canty, J.T.; Orans, J.; Brennan, R.G. Recognition of U-rich RNA by Hfq from the Gram-positive pathogen Listeria monocytogenes. RNA 2014, 20, 1548–1559. [Google Scholar] [CrossRef]
- Yokoshi, M.; Li, Q.; Yamamoto, M.; Okada, H.; Suzuki, Y.; Kawahara, Y. Direct binding of Ataxin-2 to distinct elements in 3′ UTRs promotes mRNA stability and protein expression. Mol. Cell 2014, 55, 186–198. [Google Scholar] [CrossRef]
- Albrecht, M.; Golatta, M.; Wüllner, U.; Lengauer, T. Structural and functional analysis of ataxin-2 and ataxin-3. Eur. J. Biochem. 2004, 271, 3155–3170. [Google Scholar] [CrossRef]
- Petrauskas, A.; Fortunati, D.L.; Kandi, A.R.; Pothapragada, S.S.; Agrawal, K.; Singh, A.; Huelsmeier, J.; Hillebrand, J.; Brown, G.; Chaturvedi, D.; et al. Structured and disordered regions of Ataxin-2 contribute differently to the specificity and efficiency of mRNP granule formation. PLoS Genet. 2024, 20, e1011251. [Google Scholar] [CrossRef]
- Bakthavachalu, B.; Huelsmeier, J.; Sudhakaran, I.P.; Hillebrand, J.; Singh, A.; Petrauskas, A.; Thiagarajan, D.; Sankaranarayanan, M.; Mizoue, L.; Anderson, E.N.; et al. RNP-Granule Assembly via Ataxin-2 Disordered Domains Is Required for Long-Term Memory and Neurodegeneration. Neuron 2018, 98, 754–766.e754. [Google Scholar] [CrossRef] [PubMed]
- Tharun, S. Roles of eukaryotic Lsm proteins in the regulation of mRNA function. Int. Rev. Cell Mol. Biol. 2009, 272, 149–189. [Google Scholar] [CrossRef] [PubMed]
- Neuwald, A.F.; Koonin, E.V. Ataxin-2, global regulators of bacterial gene expression, and spliceosomal snRNP proteins share a conserved domain. J. Mol. Med. 1998, 76, 3–5. [Google Scholar] [CrossRef] [PubMed]
- Ostrowski, L.A.; Hall, A.C.; Mekhail, K. Ataxin-2: From RNA Control to Human Health and Disease. Genes 2017, 8, 157. [Google Scholar] [CrossRef]
- Apponi, L.H.; Corbett, A.H.; Pavlath, G.K. RNA-binding proteins and gene regulation in myogenesis. Trends Pharmacol. Sci. 2011, 32, 652–658. [Google Scholar] [CrossRef]
- Schuschel, K.; Helwig, M.; Hüttelmaier, S.; Heckl, D.; Klusmann, J.H.; Hoell, J.I. RNA-Binding Proteins in Acute Leukemias. Int. J. Mol. Sci. 2020, 21, 3409. [Google Scholar] [CrossRef]
- Nonhoff, U.; Ralser, M.; Welzel, F.; Piccini, I.; Balzereit, D.; Yaspo, M.L.; Lehrach, H.; Krobitsch, S. Ataxin-2 interacts with the DEAD/H-box RNA helicase DDX6 and interferes with P-bodies and stress granules. Mol. Biol. Cell 2007, 18, 1385–1396. [Google Scholar] [CrossRef]
- Kaehler, C.; Isensee, J.; Nonhoff, U.; Terrey, M.; Hucho, T.; Lehrach, H.; Krobitsch, S. Ataxin-2-like is a regulator of stress granules and processing bodies. PLoS ONE 2012, 7, e50134. [Google Scholar] [CrossRef]
- Elden, A.C.; Kim, H.J.; Hart, M.P.; Chen-Plotkin, A.S.; Johnson, B.S.; Fang, X.; Armakola, M.; Geser, F.; Greene, R.; Lu, M.M.; et al. Ataxin-2 intermediate-length polyglutamine expansions are associated with increased risk for ALS. Nature 2010, 466, 1069–1075. [Google Scholar] [CrossRef]
- Becker, L.A.; Huang, B.; Bieri, G.; Ma, R.; Knowles, D.A.; Jafar-Nejad, P.; Messing, J.; Kim, H.J.; Soriano, A.; Auburger, G.; et al. Therapeutic reduction of ataxin-2 extends lifespan and reduces pathology in TDP-43 mice. Nature 2017, 544, 367–371. [Google Scholar] [CrossRef]
- Bäumer, D.; East, S.Z.; Tseu, B.; Zeman, A.; Hilton, D.; Talbot, K.; Ansorge, O. FTLD-ALS of TDP-43 type and SCA2 in a family with a full ataxin-2 polyglutamine expansion. Acta Neuropathol. 2014, 128, 597–604. [Google Scholar] [CrossRef]
- Lebedeva, S.; Jens, M.; Theil, K.; Schwanhäusser, B.; Selbach, M.; Landthaler, M.; Rajewsky, N. Transcriptome-wide analysis of regulatory interactions of the RNA-binding protein HuR. Mol. Cell 2011, 43, 340–352. [Google Scholar] [CrossRef] [PubMed]
- Ralser, M.; Albrecht, M.; Nonhoff, U.; Lengauer, T.; Lehrach, H.; Krobitsch, S. An integrative approach to gain insights into the cellular function of human ataxin-2. J. Mol. Biol. 2005, 346, 203–214. [Google Scholar] [CrossRef]
- Shibata, H.; Huynh, D.P.; Pulst, S.M. A novel protein with RNA-binding motifs interacts with ataxin-2. Hum. Mol. Genet. 2000, 9, 1303–1313. [Google Scholar] [CrossRef] [PubMed]
- Laffita-Mesa, J.M.; Rodríguez Pupo, J.M.; Moreno Sera, R.; Vázquez Mojena, Y.; Kourí, V.; Laguna-Salvia, L.; Martínez-Godales, M.; Valdevila Figueira, J.A.; Bauer, P.O.; Rodríguez-Labrada, R.; et al. De novo mutations in ataxin-2 gene and ALS risk. PLoS ONE 2013, 8, e70560. [Google Scholar] [CrossRef] [PubMed]
- Vieira de Sá, R.; Sudria-Lopez, E.; Cañizares Luna, M.; Harschnitz, O.; van den Heuvel, D.M.A.; Kling, S.; Vonk, D.; Westeneng, H.J.; Karst, H.; Bloemenkamp, L.; et al. ATAXIN-2 intermediate-length polyglutamine expansions elicit ALS-associated metabolic and immune phenotypes. Nat. Commun. 2024, 15, 7484. [Google Scholar] [CrossRef]
- Rodriguez, C.M.; Bechek, S.C.; Jones, G.L.; Nakayama, L.; Akiyama, T.; Kim, G.; Solow-Cordero, D.E.; Strittmatter, S.M.; Gitler, A.D. Targeting RTN4/NoGo-Receptor reduces levels of ALS protein ataxin-2. Cell Rep. 2022, 41, 111505. [Google Scholar] [CrossRef]
- Koppenol, R.; Conceição, A.; Afonso, I.T.; Afonso-Reis, R.; Costa, R.G.; Tomé, S.; Teixeira, D.; da Silva, J.P.; Côdesso, J.M.; Brito, D.V.C.; et al. The stress granule protein G3BP1 alleviates spinocerebellar ataxia-associated deficits. Brain 2023, 146, 2346–2363. [Google Scholar] [CrossRef]
- Lee, J.; Kim, M.; Itoh, T.Q.; Lim, C. Ataxin-2: A versatile posttranscriptional regulator and its implication in neural function. Wiley Interdiscip. Rev. RNA 2018, 9, e1488. [Google Scholar] [CrossRef]
- Scoles, D.R.; Pflieger, L.T.; Thai, K.K.; Hansen, S.T.; Dansithong, W.; Pulst, S.M. ETS1 regulates the expression of ATXN2. Hum. Mol. Genet. 2012, 21, 5048–5065. [Google Scholar] [CrossRef]
- van den Heuvel, D.M.; Harschnitz, O.; van den Berg, L.H.; Pasterkamp, R.J. Taking a risk: A therapeutic focus on ataxin-2 in amyotrophic lateral sclerosis? Trends Mol. Med. 2014, 20, 25–35. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Wang, M.; Huang, L.; Zheng, X.; Wang, L.; Miao, H. Ataxin-2: A powerful RNA-binding protein. Discov. Oncol. 2024, 15, 298. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.S.; Kato, M.; Wu, X.; Litsios, A.; Sutter, B.M.; Wang, Y.; Hsu, C.H.; Wood, N.E.; Lemoff, A.; Mirzaei, H.; et al. Yeast Ataxin-2 Forms an Intracellular Condensate Required for the Inhibition of TORC1 Signaling during Respiratory Growth. Cell 2019, 177, 697–710.e617. [Google Scholar] [CrossRef] [PubMed]
- Kaiser, B.K.; Yim, D.; Chow, I.T.; Gonzalez, S.; Dai, Z.; Mann, H.H.; Strong, R.K.; Groh, V.; Spies, T. Disulphide-isomerase-enabled shedding of tumour-associated NKG2D ligands. Nature 2007, 447, 482–486. [Google Scholar] [CrossRef]
- Lastres-Becker, I.; Nonis, D.; Eich, F.; Klinkenberg, M.; Gorospe, M.; Kötter, P.; Klein, F.A.; Kedersha, N.; Auburger, G. Mammalian ataxin-2 modulates translation control at the pre-initiation complex via PI3K/mTOR and is induced by starvation. Biochim. Biophys. Acta 2016, 1862, 1558–1569. [Google Scholar] [CrossRef]
- Sahba, S.; Nechiporuk, A.; Figueroa, K.P.; Nechiporuk, T.; Pulst, S.M. Genomic structure of the human gene for spinocerebellar ataxia type 2 (SCA2) on chromosome 12q24.1. Genomics 1998, 47, 359–364. [Google Scholar] [CrossRef]
- Liu, Y.J.; Wang, J.Y.; Zhang, X.L.; Jiang, L.L.; Hu, H.Y. Ataxin-2 sequesters Raptor into aggregates and impairs cellular mTORC1 signaling. FEBS J. 2024, 291, 1795–1812. [Google Scholar] [CrossRef]
- Carmo-Silva, S.; Nobrega, C.; Pereira de Almeida, L.; Cavadas, C. Unraveling the Role of Ataxin-2 in Metabolism. Trends Endocrinol. Metab. 2017, 28, 309–318. [Google Scholar] [CrossRef]
- Wang, J.Y.; Liu, Y.J.; Zhang, X.L.; Liu, Y.H.; Jiang, L.L.; Hu, H.Y. PolyQ-expanded ataxin-2 aggregation impairs cellular processing-body homeostasis via sequestering the RNA helicase DDX6. J. Biol. Chem. 2024, 300, 107413. [Google Scholar] [CrossRef]
- Nalavade, R.; Griesche, N.; Ryan, D.P.; Hildebrand, S.; Krauss, S. Mechanisms of RNA-induced toxicity in CAG repeat disorders. Cell Death Dis. 2013, 4, e752. [Google Scholar] [CrossRef]
- Jiménez-López, D.; Guzmán, P. Insights into the evolution and domain structure of Ataxin-2 proteins across eukaryotes. BMC Res. Notes 2014, 7, 453. [Google Scholar] [CrossRef] [PubMed]
- Park, S.; Park, S.K.; Watanabe, N.; Hashimoto, T.; Iwatsubo, T.; Shelkovnikova, T.A.; Liebman, S.W. Calcium-responsive transactivator (CREST) toxicity is rescued by loss of PBP1/ATXN2 function in a novel yeast proteinopathy model and in transgenic flies. PLoS Genet. 2019, 15, e1008308. [Google Scholar] [CrossRef] [PubMed]
- Huynh, D.P.; Yang, H.T.; Vakharia, H.; Nguyen, D.; Pulst, S.M. Expansion of the polyQ repeat in ataxin-2 alters its Golgi localization, disrupts the Golgi complex and causes cell death. Hum. Mol. Genet. 2003, 12, 1485–1496. [Google Scholar] [CrossRef] [PubMed]
- Costa, R.G.; Conceição, A.; Matos, C.A.; Nóbrega, C. The polyglutamine protein ATXN2: From its molecular functions to its involvement in disease. Cell Death Dis. 2024, 15, 415. [Google Scholar] [CrossRef]
- Khusial, P.; Plaag, R.; Zieve, G.W. LSm proteins form heptameric rings that bind to RNA via repeating motifs. Trends Biochem. Sci. 2005, 30, 522–528. [Google Scholar] [CrossRef] [PubMed]
- Wilusz, C.J.; Wilusz, J. Eukaryotic Lsm proteins: Lessons from bacteria. Nat. Struct. Mol. Biol. 2005, 12, 1031–1036. [Google Scholar] [CrossRef]
- Zhao, W.; Blagev, D.; Pollack, J.L.; Erle, D.J. Toward a systematic understanding of mRNA 3′ untranslated regions. Proc. Am. Thorac. Soc. 2011, 8, 163–166. [Google Scholar] [CrossRef]
- Tants, J.N.; Becker, L.M.; McNicoll, F.; Müller-McNicoll, M.; Schlundt, A. NMR-derived secondary structure of the full-length Ox40 mRNA 3′UTR and its multivalent binding to the immunoregulatory RBP Roquin. Nucleic Acids Res. 2022, 50, 4083–4099. [Google Scholar] [CrossRef]
- Shaw, G.; Kamen, R. A conserved AU sequence from the 3′ untranslated region of GM-CSF mRNA mediates selective mRNA degradation. Cell 1986, 46, 659–667. [Google Scholar] [CrossRef]
- Cha, I.J.; Lee, D.; Park, S.S.; Chung, C.G.; Kim, S.Y.; Jo, M.G.; Kim, S.Y.; Lee, B.H.; Lee, Y.S.; Lee, S.B. Ataxin-2 Dysregulation Triggers a Compensatory Fragile X Mental Retardation Protein Decrease in Drosophila C4da Neurons. Mol. Cells 2020, 43, 870–879. [Google Scholar] [CrossRef]
- Laffita-Mesa, J.M.; Paucar, M.; Svenningsson, P. Ataxin-2 gene: A powerful modulator of neurological disorders. Curr. Opin. Neurol. 2021, 34, 578–588. [Google Scholar] [CrossRef]
- Chitre, M.; Emery, P. ATXN2 is a target of N-terminal proteolysis. PLoS ONE 2023, 18, e0296085. [Google Scholar] [CrossRef] [PubMed]
- Hellman, L.M.; Fried, M.G. Electrophoretic mobility shift assay (EMSA) for detecting protein-nucleic acid interactions. Nat. Protoc. 2007, 2, 1849–1861. [Google Scholar] [CrossRef] [PubMed]
- Luger, K.; Rechsteiner, T.J.; Richmond, T.J. Preparation of nucleosome core particle from recombinant histones. Methods Enzymol. 1999, 304, 3–19. [Google Scholar] [CrossRef] [PubMed]
- Ghanim, G.E.; Fountain, A.J.; van Roon, A.M.; Rangan, R.; Das, R.; Collins, K.; Nguyen, T.H.D. Structure of human telomerase holoenzyme with bound telomeric DNA. Nature 2021, 593, 449–453. [Google Scholar] [CrossRef]
- Mayr, C. Regulation by 3′-Untranslated Regions. Annu. Rev. Genet. 2017, 51, 171–194. [Google Scholar] [CrossRef]
- Brennan, C.M.; Steitz, J.A. HuR and mRNA stability. Cell Mol. Life Sci. 2001, 58, 266–277. [Google Scholar] [CrossRef]
- Liu-Yesucevitz, L.; Bassell, G.J.; Gitler, A.D.; Hart, A.C.; Klann, E.; Richter, J.D.; Warren, S.T.; Wolozin, B. Local RNA translation at the synapse and in disease. J. Neurosci. 2011, 31, 16086–16093. [Google Scholar] [CrossRef]
- Qin, H.; Ni, H.; Liu, Y.; Yuan, Y.; Xi, T.; Li, X.; Zheng, L. RNA-binding proteins in tumor progression. J. Hematol. Oncol. 2020, 13, 90. [Google Scholar] [CrossRef]
- Chen, C.Y.; Shyu, A.B. AU-rich elements: Characterization and importance in mRNA degradation. Trends Biochem. Sci. 1995, 20, 465–470. [Google Scholar] [CrossRef]
- Zubiaga, A.M.; Belasco, J.G.; Greenberg, M.E. The nonamer UUAUUUAUU is the key AU-rich sequence motif that mediates mRNA degradation. Mol. Cell Biol. 1995, 15, 2219–2230. [Google Scholar] [CrossRef] [PubMed]
- Hui, J.; Reither, G.; Bindereif, A. Novel functional role of CA repeats and hnRNP L in RNA stability. RNA 2003, 9, 931–936. [Google Scholar] [CrossRef]
- Vlasova, I.A.; Tahoe, N.M.; Fan, D.; Larsson, O.; Rattenbacher, B.; Sternjohn, J.R.; Vasdewani, J.; Karypis, G.; Reilly, C.S.; Bitterman, P.B.; et al. Conserved GU-rich elements mediate mRNA decay by binding to CUG-binding protein 1. Mol. Cell 2008, 29, 263–270. [Google Scholar] [CrossRef] [PubMed]
- Miles, A.J.; Janes, R.W.; Wallace, B.A. Tools and methods for circular dichroism spectroscopy of proteins: A tutorial review. Chem. Soc. Rev. 2021, 50, 8400–8413. [Google Scholar] [CrossRef] [PubMed]
- Dyson, H.J.; Wright, P.E. Unfolded Proteins and Protein Folding Studied by NMR. Chem. Rev. 2004, 104, 3607–3622. [Google Scholar] [CrossRef]
- Dyson, H.J.; Wright, P.E. Insights into protein folding from NMR. Annu. Rev. Phys. Chem. 1996, 47, 369–395. [Google Scholar] [CrossRef]
- Mansouri-Noori, F.; Bayfield, M.A. Electrophoretic mobility shift assays (EMSAs) for in vitro detection of protein-nucleic acid interactions. STAR Protoc. 2024, 5, 103128. [Google Scholar] [CrossRef]
- Koti, J.S.; Morais, M.C.; Rajagopal, R.; Owen, B.A.; McMurray, C.T.; Anderson, D.L. DNA packaging motor assembly intermediate of bacteriophage phi29. J. Mol. Biol. 2008, 381, 1114–1132. [Google Scholar] [CrossRef]
- Cai, R.; Price, I.R.; Ding, F.; Wu, F.; Chen, T.; Zhang, Y.; Liu, G.; Jardine, P.J.; Lu, C.; Ke, A. ATP/ADP modulates gp16-pRNA conformational change in the Phi29 DNA packaging motor. Nucleic Acids Res. 2019, 47, 9818–9828. [Google Scholar] [CrossRef]
- Kikhney, A.G.; Svergun, D.I. A practical guide to small angle X-ray scattering (SAXS) of flexible and intrinsically disordered proteins. FEBS Lett. 2015, 589, 2570–2577. [Google Scholar] [CrossRef]
- Hopkins, J.B.; Gillilan, R.E.; Skou, S. BioXTAS RAW: Improvements to a free open-source program for small-angle X-ray scattering data reduction and analysis. J. Appl. Crystallogr. 2017, 50, 1545–1553. [Google Scholar] [CrossRef] [PubMed]
- Wilkinson, K.A.; Merino, E.J.; Weeks, K.M. Selective 2′-hydroxyl acylation analyzed by primer extension (SHAPE): Quantitative RNA structure analysis at single nucleotide resolution. Nat. Protoc. 2006, 1, 1610–1616. [Google Scholar] [CrossRef] [PubMed]
- Burrill, C.P.; Andino, R. RNA structure analysis of viruses using SHAPE. Curr. Protoc. Microbiol. 2013, 30, 15h.13.11–15h.13.12. [Google Scholar] [CrossRef] [PubMed]
- Mortimer, S.A.; Weeks, K.M. A fast-acting reagent for accurate analysis of RNA secondary and tertiary structure by SHAPE chemistry. J. Am. Chem. Soc. 2007, 129, 4144–4145. [Google Scholar] [CrossRef]
- Vasa, S.M.; Guex, N.; Wilkinson, K.A.; Weeks, K.M.; Giddings, M.C. ShapeFinder: A software system for high-throughput quantitative analysis of nucleic acid reactivity information resolved by capillary electrophoresis. RNA 2008, 14, 1979–1990. [Google Scholar] [CrossRef]
- Sauter, C.; Basquin, J.; Suck, D. Sm-like proteins in Eubacteria: The crystal structure of the Hfq protein from Escherichia coli. Nucleic Acids Res. 2003, 31, 4091–4098. [Google Scholar] [CrossRef]
- Zhou, L.; Zhou, Y.; Hang, J.; Wan, R.; Lu, G.; Yan, C.; Shi, Y. Crystal structure and biochemical analysis of the heptameric Lsm1-7 complex. Cell Res. 2014, 24, 497–500. [Google Scholar] [CrossRef]
- Montemayor, E.J.; Virta, J.M.; Hayes, S.M.; Nomura, Y.; Brow, D.A.; Butcher, S.E. Molecular basis for the distinct cellular functions of the Lsm1-7 and Lsm2-8 complexes. RNA 2020, 26, 1400–1413. [Google Scholar] [CrossRef]
- Mura, C.; Cascio, D.; Sawaya, M.R.; Eisenberg, D.S. The crystal structure of a heptameric archaeal Sm protein: Implications for the eukaryotic snRNP core. Proc. Natl. Acad. Sci. USA 2001, 98, 5532–5537. [Google Scholar] [CrossRef]
- Pillai, R.S.; Grimmler, M.; Meister, G.; Will, C.L.; Lührmann, R.; Fischer, U.; Schümperli, D. Unique Sm core structure of U7 snRNPs: Assembly by a specialized SMN complex and the role of a new component, Lsm11, in histone RNA processing. Genes. Dev. 2003, 17, 2321–2333. [Google Scholar] [CrossRef]
- Micsonai, A.; Wien, F.; Kernya, L.; Lee, Y.H.; Goto, Y.; Réfrégiers, M.; Kardos, J. Accurate secondary structure prediction and fold recognition for circular dichroism spectroscopy. Proc. Natl. Acad. Sci. USA 2015, 112, E3095–E3103. [Google Scholar] [CrossRef] [PubMed]
- Kawahara, Y.; Mieda-Sato, A. TDP-43 promotes microRNA biogenesis as a component of the Drosha and Dicer complexes. Proc. Natl. Acad. Sci. USA 2012, 109, 3347–3352. [Google Scholar] [CrossRef] [PubMed]
- Asnani, M.; Pestova, T.V.; Hellen, C.U. PCBP2 enables the cadicivirus IRES to exploit the function of a conserved GRNA tetraloop to enhance ribosomal initiation complex formation. Nucleic Acids Res. 2016, 44, 9902–9917. [Google Scholar] [CrossRef] [PubMed]
- Yamagishi, R.; Inagaki, H.; Suzuki, J.; Hosoda, N.; Sugiyama, H.; Tomita, K.; Hotta, T.; Hoshino, S.I. Concerted action of ataxin-2 and PABPC1-bound mRNA poly(A) tail in the formation of stress granules. Nucleic Acids Res. 2024, 52, 9193–9209. [Google Scholar] [CrossRef] [PubMed]
- Huynh, D.P.; Figueroa, K.; Hoang, N.; Pulst, S.M. Nuclear localization or inclusion body formation of ataxin-2 are not necessary for SCA2 pathogenesis in mouse or human. Nat. Genet. 2000, 26, 44–50. [Google Scholar] [CrossRef]
- Afonso, I.T.; Lima, P.; Conceição, A.; Matos, C.A.; Nóbrega, C. Mutant Ataxin-2 Expression in Aged Animals Aggravates Neuropathological Features Associated with Spinocerebellar Ataxia Type 2. Int. J. Mol. Sci. 2022, 23, 11896. [Google Scholar] [CrossRef]
- Gruber, A.R.; Fallmann, J.; Kratochvill, F.; Kovarik, P.; Hofacker, I.L. AREsite: A database for the comprehensive investigation of AU-rich elements. Nucleic Acids Res. 2011, 39, D66–D69. [Google Scholar] [CrossRef]
- Barreau, C.; Paillard, L.; Osborne, H.B. AU-rich elements and associated factors: Are there unifying principles? Nucleic Acids Res. 2005, 33, 7138–7150. [Google Scholar] [CrossRef]
- Singh, A.; Hulsmeier, J.; Kandi, A.R.; Pothapragada, S.S.; Hillebrand, J.; Petrauskas, A.; Agrawal, K.; Rt, K.; Thiagarajan, D.; Jayaprakashappa, D.; et al. Antagonistic roles for Ataxin-2 structured and disordered domains in RNP condensation. eLife 2021, 10, e60326. [Google Scholar] [CrossRef]
- Lee, J.; Yoo, E.; Lee, H.; Park, K.; Hur, J.H.; Lim, C. LSM12 and ME31B/DDX6 Define Distinct Modes of Posttranscriptional Regulation by ATAXIN-2 Protein Complex in Drosophila Circadian Pacemaker Neurons. Mol. Cell 2017, 66, 129–140.e127. [Google Scholar] [CrossRef]
- Ripin, N.; Boudet, J.; Duszczyk, M.M.; Hinniger, A.; Faller, M.; Krepl, M.; Gadi, A.; Schneider, R.J.; Šponer, J.; Meisner-Kober, N.C.; et al. Molecular basis for AU-rich element recognition and dimerization by the HuR C-terminal RRM. Proc. Natl. Acad. Sci. USA 2019, 116, 2935–2944. [Google Scholar] [CrossRef] [PubMed]
RNA Name | Sequence |
---|---|
AU-rich | UAAUACGACUCACUAUAGGCCUUCGGGCCAAAUUU UUAUUUUUAUUUUUAUUUUUAUUUUUUCGAUCCGG UUCGCCGGAUCCAAAUCGGGCUUCGGUCCGGUUC |
AC-rich | UAAUACGACUCACUAUAGGCCUUCGGGCCAAACCC CCACCCCCACCCCCACCCCCACCCCCUCGAUCCGG UUCGCCGGAUCCAAAUCGGGCUUCGGUCCGGUUC |
RNA Name | Sequence |
---|---|
RE1 | UAAUACGACUCACUAUAGGCCUUCGGGCCAAAUUUAUUUAUUUAUUUA UUUAGCUGACGAUCCACACACACAGGAAUCGACUCUGUUUGUUUGUGU UUGUUUGUACUGAAUUGGCACUUUUCCCCUUUUCCCUUUCUGGACUGG CAUCGAUCCGGUUCGCCGGAUCCAAAUCGGGCUUCGGUCCGGUUC |
RE2 | UAAUACGACUCACUAUAGGCCUUCGGGCCAAAUUUAUUUAUUUAUUUA GCGAGAAGUUGUUUGUUUGUGUUUGACGUCUGUGUGGACGUCACACAC AGGAUGCAUCGGACCUUUUCCCCUUUUCCCUUUUCGAUCCGGUUCGCCG GAUCCAAAUCGGGCUUCGGUCCGGUUC |
RE5 | UAAUACGACUCACUAUAGGCCUUCGGGCCAAACCGUACACACACACAUG GCUAGACGGUAUGUUUGUUUGUUGUUUGUUUGUUGUUUGUUUGUGUUU GACGUAGGAAUUUAAUUUAAUUUAAUUUAAUUUAAUUUAAUUUACAGG CUACGUAGGCCAGGACCCCUCUUUUCUCCCCAGGACCCCUCUUUUCUCC CCAUUCACCCUCCCUUCUCCAGAGCGAUUCGAUCCGGUUCGCCGGAUCC AAAUCGGGCUUCGGUCCGGUUC |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, S.; Zhang, Y.; Chen, T.; Hu, H.-Y.; Lu, C. The LSmAD Domain of Ataxin-2 Modulates the Structure and RNA Binding of Its Preceding LSm Domain. Cells 2025, 14, 383. https://doi.org/10.3390/cells14050383
Zhang S, Zhang Y, Chen T, Hu H-Y, Lu C. The LSmAD Domain of Ataxin-2 Modulates the Structure and RNA Binding of Its Preceding LSm Domain. Cells. 2025; 14(5):383. https://doi.org/10.3390/cells14050383
Chicago/Turabian StyleZhang, Shengping, Yunlong Zhang, Ting Chen, Hong-Yu Hu, and Changrui Lu. 2025. "The LSmAD Domain of Ataxin-2 Modulates the Structure and RNA Binding of Its Preceding LSm Domain" Cells 14, no. 5: 383. https://doi.org/10.3390/cells14050383
APA StyleZhang, S., Zhang, Y., Chen, T., Hu, H.-Y., & Lu, C. (2025). The LSmAD Domain of Ataxin-2 Modulates the Structure and RNA Binding of Its Preceding LSm Domain. Cells, 14(5), 383. https://doi.org/10.3390/cells14050383