Functional Deficiency of Interneurons and Negative BOLD fMRI Response
<p>The effect of picrotoxin (PTX) on resting state neuronal activity. An example of multi-unit neuronal activity is shown before the PTX injection (<b>A</b>),after the injection of a small concentration (50 μM) of PTX (<b>B</b>), which did not cause visible resting state neuronal hypersynchronization, and larger PTX concentrations: 166 μM—(<b>C</b>), 248 μM—(<b>D</b>), and 331 μM—(<b>E</b>), which caused resting state neuronal hypersynchronization. We used the smaller 50 μM PTX concentration and two thresholds to detect changes in neuronal activity (30% and 10% changes after injection relative to the baseline before injection). After the injection of 50 μM PTX, neuronal activity experienced both an increase and decrease for both thresholds (<b>F</b>,<b>G</b>) where increases were more common. For the control experiments, changes above 30% were not observed after the injection of artificial cerebrospinal fluid (<b>H</b>) but some changes above 10% were recorded (<b>I</b>). GABA-agonist muscimol (MSC), in contrast, decreased the activity of all neurons. (<b>J</b>,<b>K</b>). Examples of peri-event histograms are shown (<b>L</b>–<b>O</b>), where PTX decreased (<b>L</b>), did not change (<b>M</b>), or increased the activity of single neurons. MSC always decreased the activity of a single neuron (<b>O</b>). Arrows indicate the time of injection.</p> "> Figure 2
<p>The effect of picrotoxin (PTX) on stimulus-evoked BOLD responses. Before the 50 μM PTX injection (<b>A</b>) a robust positive BOLD response was observed which extended through the depth of the cortex. After the injection of PTX, the BOLD response was negative (<b>B</b>). For control experiments with vehicle injection, the BOLD response was positive before (<b>C</b>) and after (<b>D</b>) injection. The averaged temporal profile from a region corresponding to the post-injection area exhibited a strong positive temporal profile before injection, which became negative after the injection of PTX (<b>E</b>,<b>F</b>). Both standard error bars (<b>E</b>) and 95% confidence intervals (<b>F</b>) are shown for better visibility. The average temporal profile from a region corresponding to the post-injection area exhibited a strong positive temporal profile before injection, which did not change after the control vehicle injection (<b>G</b>,<b>H</b>). Both standard error bars (<b>G</b>) and confidence intervals (<b>H</b>) are shown for the control vehicle injection. The blue bars indicate the timing of the stimulus presentation. The color bar indicates the correlation in each voxel on top of the support vector machine mask.</p> "> Figure 3
<p>Responses of single neurons to stimulation. The typical effect of PTX was an increase in spiking activity in response to stimulation (<b>A</b>). Sometimes other behaviors were observed: a decrease in the response (<b>B</b>), or a consistent inhibitory response (<b>C</b>). Examples of a newly acquired response after the PTX injection (<b>D</b>) and abolishing the response (<b>E</b>) were associated with interneurons. The histogram (<b>F</b>) shows that the relative (to 100% baseline) magnitude of excitatory neuronal responses increased after the PTX injection but did not change after vehicle injection. The blue bars indicate the timing of the stimulus presentation. Asterisk indicates significance (<span class="html-italic">p</span> < 0.05).</p> "> Figure 4
<p>Brain tissue oxygen (PO<sub>2</sub>) changes after GABA-antagonist picrotoxin (PTX) injection. The baseline of PO<sub>2</sub> did not change after PTX (<b>A</b>) as well as PO<sub>2</sub> response to whisker stimulation after control vehicle injection (<b>B</b>). However, PO<sub>2</sub> response after PTX injection was nearly abolished (grey line), and sometimes transient below-baseline PO<sub>2</sub> responses were observed (<b>C</b>). An example of this transient below-baseline response is shown by the dashed line (“after neg”). The statistics for PO<sub>2</sub> responses are shown on (<b>D</b>): “after” includes trials with only above-baseline responses and “after + neg” includes trials with both above- and below-baseline responses. The data on (<b>D</b>) are normalized to the 100% baseline (before stimulus). The grey bar indicates the stimulus presentation. Asterisk indicates significance (<span class="html-italic">p</span> < 0.05), and two asterisks indicate <span class="html-italic">p</span> < 0.01.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Animal Preparation
2.2. fMRI Data Collection and Analysis
2.3. Stimulus Preparation
2.4. Electrophysiological Recording and Microinjections
2.5. Statistical Analysis
3. Results
3.1. Baseline Resting Neuronal Activity
3.2. BOLD fMRI Responses to Whisker Stimulation
3.3. Electrophysiological Responses to Whisker Stimulation
3.4. PO2 Responses to Whisker Stimulation
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Gascoigne, D.A.; Serdyukova, N.A.; Aksenov, D.P. Early Development of the GABAergic System and the Associated Risks of Neonatal Anesthesia. Int. J. Mol. Sci. 2021, 22, 12951. [Google Scholar] [CrossRef]
- Abbah, J.; Vacher, C.-M.; Goldstein, E.; Li, Z.; Kundu, S.; Talbot, B.; Bhattacharya, S.; Hashimoto-Torii, K.; Wang, L.; Banerjee, P.; et al. Oxidative Stress-Induced Damage to the Developing Hippocampus Is Mediated by GSK3beta. J. Neurosci. 2022, 42, 4812–4827. [Google Scholar] [CrossRef]
- Abbah, J.; Vacher, C.-M.; Goldstein, E.; Li, Z.; Kundu, S.; Talbot, B.; Bhattacharya, S.; Hashimoto-Torii, K.; Wang, L.; Banerjee, P.; et al. Severe intraventricular hemorrhage causes long-lasting structural damage in a preterm rabbit pup model. Pediatr. Res. 2022, 92, 403–414. [Google Scholar]
- Ardalan, M.; Svedin, P.; Baburamani, A.; Supramaniam, V.; Ek, J.; Hagberg, H.; Mallard, C. Dysmaturation of Somatostatin Interneurons Following Umbilical Cord Occlusion in Preterm Fetal Sheep. Front. Physiol. 2019, 10, 563. [Google Scholar] [CrossRef] [Green Version]
- Gascoigne, D.A.; Minhaj, M.M.; Aksenov, D.P. Neonatal Anesthesia and Oxidative Stress. Antioxidants 2022, 11, 787. [Google Scholar] [CrossRef]
- Kaeser, P.S.; Regehr, W.G. Molecular mechanisms for synchronous, asynchronous, and spontaneous neurotransmitter release. Annu. Rev. Physiol. 2014, 76, 333–363. [Google Scholar] [CrossRef] [Green Version]
- Rubenstein, J.L.; Merzenich, M.M. Model of autism: Increased ratio of excitation/inhibition in key neural systems. Genes Brain Behav. 2003, 2, 255–267. [Google Scholar] [CrossRef]
- Calvin, O.L.; Redish, A.D. Global disruption in excitation-inhibition balance can cause localized network dysfunction and Schizophrenia-like context-integration deficits. PLoS Comput. Biol. 2021, 17, e1008985. [Google Scholar] [CrossRef]
- Berg, A.T. Epilepsy, cognition, and behavior: The clinical picture. Epilepsia 2011, 52 (Suppl. S1), 7–12. [Google Scholar] [CrossRef] [Green Version]
- Vaucher, E.; Tong, X.K.; Cholet, N.; Lantin, S.; Hamel, E. GABA neurons provide a rich input to microvessels but not nitric oxide neurons in the rat cerebral cortex: A means for direct regulation of local cerebral blood flow. J. Comp. Neurol. 2000, 421, 161–171. [Google Scholar] [CrossRef]
- Fergus, A.; Lee, K.S. GABAergic regulation of cerebral microvascular tone in the rat. J. Cereb. Blood Flow Metab. 1997, 17, 992–1003. [Google Scholar] [CrossRef] [Green Version]
- Tremblay, R.; Lee, S.; Rudy, B. GABAergic Interneurons in the Neocortex: From Cellular Properties to Circuits. Neuron 2016, 91, 260–292. [Google Scholar] [CrossRef] [Green Version]
- Cauli, B.; Tong, X.K.; Rancillac, A.; Serluca, N.; Lambolez, B.; Rossier, J.; Hamel, E. Cortical GABA interneurons in neurovascular coupling: Relays for subcortical vasoactive pathways. J. Neurosci. 2004, 24, 8940–8949. [Google Scholar] [CrossRef] [Green Version]
- Aksenov, D.P.; Li, L.; Miller, M.J.; Wyrwicz, A.M. Role of the inhibitory system in shaping the BOLD fMRI response. Neuroimage 2019, 201, 116034. [Google Scholar] [CrossRef]
- Wyrwicz, A.M.; Chen, N.-K.; Li, L.; Weiss, C.; Disterhoft, J.F. fMRI of visual system activation in the conscious rabbit. Magn. Res. Med. 2000, 44, 474–478. [Google Scholar] [CrossRef]
- Yoo, T.S.; Ackerman, M.J.; Lorensen, W.E.; Schroeder, W.; Chalana, V.; Aylward, S.; Metaxas, D.; Whitaker, R. Engineering and algorithm design for an image processing Api: A technical report on ITK-the Insight Toolkit. Stud. Health Technol. Inf. 2002, 85, 586–592. [Google Scholar]
- Song, X.; Wyrwicz, A.M. Unsupervised spatiotemporal fMRI data analysis using support vector machines. Neuroimage 2009, 47, 204–212. [Google Scholar] [CrossRef] [Green Version]
- Li, L.; Weiss, C.; Talk, A.C.; Disterhoft, J.F.; Wyrwicz, A.M. A MRI-compatible system for whisker stimulation. J. Neurosci. Methods 2012, 205, 305–311. [Google Scholar] [CrossRef] [Green Version]
- Pratt, W. Morphological Image Processing, 2nd ed.; Wiley-Interscience: New York, NY, USA, 1991. [Google Scholar]
- Quiroga, R.Q.; Nadasdy, Z.; Ben-Shaul, Y. Unsupervised spike detection and sorting with wavelets and superparamagnetic clustering. Neural Comput. 2004, 16, 1661–1687. [Google Scholar] [CrossRef] [Green Version]
- Swadlow, H. Efferent neurons and suspected interneurons in S-1 vibrissa cortex of the awake rabbit: Receptive fields and axonal properties. J. Neurophysiol. 1989, 62, 288–308. [Google Scholar] [CrossRef]
- Aksenov, D.P.; Miller, M.J.; Dixon, C.J.; Wyrwicz, A.M. The effect of sevoflurane and isoflurane anesthesia on single unit and local field potentials. Exp. Brain Res. 2019, 237, 1521–1529. [Google Scholar] [CrossRef]
- Aksenov, D.P.; Doubovikov, E.D.; Serdyukova, N.A.; Gascoigne, D.A.; Linsenmeier, R.A.; Drobyshevsky, A. Brain tissue oxygen dynamics while mimicking the functional deficiency of interneurons. Front. Cell Neurosci. 2022, 16, 983298. [Google Scholar] [CrossRef]
- Aksenov, D.P.; Li, L.; Iordanescu, G.; Miller, M.J.; Wyrwicz, A.M. Volume effect of localized injection in functional MRI and electrophysiology. Magn. Reson Med. 2014, 72, 1170–1175. [Google Scholar] [CrossRef]
- Hablitz, J.J. Picrotoxin-induced epileptiform activity in hippocampus: Role of endogenous versus synaptic factors. J. Neurophysiol. 1984, 51, 1011–1027. [Google Scholar] [CrossRef]
- Goense, J.; Merkle, H.; Logothetis, N.K. High-resolution fMRI reveals laminar differences in neurovascular coupling between positive and negative BOLD responses. Neuron 2012, 76, 629–639. [Google Scholar] [CrossRef] [Green Version]
- Moraschi, M.; DiNuzzo, M.; Giove, F. On the origin of sustained negative BOLD response. J. Neurophysiol. 2012, 108, 2339–2342. [Google Scholar] [CrossRef] [Green Version]
- Fracasso, A.; Gaglianese, A.; Vansteensel, M.J.; Aarnoutse, E.J.; Ramsey, N.F.; Dumoulin, S.O.; Petridou, N. FMRI and intra-cranial electrocorticography recordings in the same human subjects reveals negative BOLD signal coupled with silenced neuronal activity. Brain Struct. Funct. 2022, 227, 1371–1384. [Google Scholar] [CrossRef]
- Sten, S.; Lundengård, K.; Witt, S.T.; Cedersund, G.; Elinder, F.; Engström, M. Neural inhibition can explain negative BOLD responses: A mechanistic modelling and fMRI study. Neuroimage 2017, 158, 219–231. [Google Scholar] [CrossRef]
- Mullinger, K.J.; Mayhew, S.D.; Bagshaw, A.P.; Bowtell, R.; Francis, S.T. Evidence that the negative BOLD response is neuronal in origin: A simultaneous EEG-BOLD-CBF study in humans. Neuroimage 2014, 94, 263–274. [Google Scholar] [CrossRef]
- Shmuel, A.; Augath, M.; Oeltermann, A.; Logothetis, N.K. Negative functional MRI response correlates with decreases in neuronal activity in monkey visual area V1. Nat. Neurosci. 2006, 9, 569–577. [Google Scholar] [CrossRef]
- Boorman, L.; Kennerley, A.J.; Johnston, D.; Jones, M.; Zheng, Y.; Redgrave, P.; Berwick, J. Negative blood oxygen level dependence in the rat: A model for investigating the role of suppression in neurovascular coupling. J. Neurosci. 2010, 30, 4285–4294. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Harrison, R.V.; Harel, N.; Panesar, J.; Mount, R.J. Blood capillary distribution correlates with hemodynamic-based functional imaging in cerebral cortex. Cereb. Cortex 2002, 12, 225–233. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bianciardi, M.; Fukunaga, M.; van Gelderen, P.; de Zwart, J.A.; Duyn, J.H. Negative BOLD-fMRI signals in large cerebral veins. J. Cereb. Blood Flow Metab. 2011, 31, 401–412. [Google Scholar] [CrossRef] [PubMed]
- Thomas, B.P.; Liu, P.; Aslan, S.; King, K.S.; van Osch, M.J.; Lu, H. Physiologic underpinnings of negative BOLD cerebrovascular reactivity in brain ventricles. Neuroimage 2013, 83, 505–512. [Google Scholar] [CrossRef] [Green Version]
- Shih, Y.Y.; Chen, C.C.; Shyu, B.C.; Lin, Z.J.; Chiang, Y.C.; Jaw, F.S.; Chen, Y.Y.; Chang, C. A new scenario for negative functional magnetic resonance imaging signals: Endogenous neurotransmission. J. Neurosci. 2009, 29, 3036–3044. [Google Scholar] [CrossRef] [Green Version]
- Nakata, H.; Domoto, R.; Mizuguchi, N.; Sakamoto, K.; Kanosue, K. Negative BOLD responses during hand and foot movements: An fMRI study. PLoS ONE 2019, 14, e0215736. [Google Scholar] [CrossRef]
- Devor, A.; Tian, P.; Nishimura, N.; Teng, I.C.; Hillman, E.M.; Narayanan, S.N.; Ulbert, I.; Boas, D.A.; Kleinfeld, D.; Dale, A.M. Suppressed neuronal activity and concurrent arteriolar vasoconstriction may explain negative blood oxygenation level-dependent signal. J. Neurosci. 2007, 27, 4452–4459. [Google Scholar] [CrossRef] [Green Version]
- Ogawa, S.; Lee, T.M.; Kay, A.R.; Tank, D.W. Brain magnetic resonance imaging with contrast dependent on blood oxygenation. Proc. Natl. Acad. Sci. USA 1990, 87, 9868–9872. [Google Scholar] [CrossRef] [Green Version]
- Hillman, E.M. Coupling mechanism and significance of the BOLD signal: A status report. Annu. Rev. Neurosci. 2014, 37, 161–181. [Google Scholar] [CrossRef] [Green Version]
- Marx, M.; Haas, C.A.; Haussler, U. Differential vulnerability of interneurons in the epileptic hippocampus. Front. Cell Neurosci. 2013, 7, 167. [Google Scholar] [CrossRef] [Green Version]
- Schridde, U.; Khubchandani, M.; Motelow, J.E.; Sanganahalli, B.G.; Hyder, F.; Blumenfeld, H. Negative BOLD with large increases in neuronal activity. Cereb. Cortex 2008, 18, 1814–1827. [Google Scholar] [CrossRef]
- Suarez, A.; Valdés-Hernández, P.A.; Bernal, B.; Dunoyer, C.; Khoo, H.M.; Bosch-Bayard, J.; Riera, J.J. Identification of Negative BOLD Responses in Epilepsy Using Windkessel Models. Front. Neurol. 2021, 12, 659081. [Google Scholar] [CrossRef]
- Wang, Y.; Wei, P.; Yan, F.; Luo, Y.; Zhao, G. Animal Models of Epilepsy: A Phenotype-oriented Review. Aging Dis. 2022, 13, 215–231. [Google Scholar] [CrossRef] [PubMed]
- Airaksinen, A.M.; Niskanen, J.P.; Chamberlain, R.; Huttunen, J.K.; Nissinen, J.; Garwood, M.; Pitkanen, A.; Grohn, O. Simultaneous fMRI and local field potential measurements during epileptic seizures in medetomidine-sedated rats using raser pulse sequence. Magn. Reson. Med. 2010, 64, 1191–1199. [Google Scholar] [CrossRef] [Green Version]
- Lee, L.; Boorman, L.; Glendenning, E.; Christmas, C.; Sharp, P.; Redgrave, P.; Shabir, O.; Bracci, E.; Berwick, J.; Howarth, C. Key Aspects of Neurovascular Control Mediated by Specific Populations of Inhibitory Cortical Interneurons. Cereb. Cortex 2020, 30, 2452–2464. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gagliano, G.; Monteverdi, A.; Casali, S.; Laforenza, U.; Gandini Wheeler-Kingshott, C.A.M.; D’Angelo, E.; Mapelli, L. Non-Linear Frequency Dependence of Neurovascular Coupling in the Cerebellar Cortex Implies Vasodilation-Vasoconstriction Competition. Cells 2022, 11, 1047. [Google Scholar] [CrossRef] [PubMed]
- Mapelli, L.; Gagliano, G.; Soda, T.; Laforenza, U.; Moccia, F.; D’Angelo, E.U. Granular Layer Neurons Control Cerebellar Neurovascular Coupling Through an NMDA Receptor/NO-Dependent System. J. Neurosci. 2017, 37, 1340–1351. [Google Scholar] [CrossRef] [Green Version]
- Huo, B.X.; Smith, J.B.; Drew, P.J. Neurovascular coupling and decoupling in the cortex during voluntary locomotion. J. Neurosci. 2014, 34, 10975–10981. [Google Scholar] [CrossRef] [Green Version]
- Nippert, A.R.; Biesecker, K.R.; Newman, E.A. Mechanisms Mediating Functional Hyperemia in the Brain. Neuroscientist 2018, 24, 73–83. [Google Scholar] [CrossRef] [Green Version]
- Girouard, H.; Iadecola, C. Neurovascular coupling in the normal brain and in hypertension, stroke, and Alzheimer disease. J. Appl. Physiol. 2006, 100, 328–335. [Google Scholar] [CrossRef]
- Tarantini, S.; Hertelendy, P.; Tucsek, Z.; Valcarcel-Ares, M.N.; Smith, N.; Menyhart, A.; Farkas, E.; Hodges, E.L.; Towner, R.; Deak, F.; et al. Pharmacologically-induced neurovascular uncoupling is associated with cognitive impairment in mice. J. Cereb. Blood Flow Metab. 2015, 35, 1871–1881. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aksenov, D.P.; Li, L.; Serdyukova, N.A.; Gascoigne, D.A.; Doubovikov, E.D.; Drobyshevsky, A. Functional Deficiency of Interneurons and Negative BOLD fMRI Response. Cells 2023, 12, 811. https://doi.org/10.3390/cells12050811
Aksenov DP, Li L, Serdyukova NA, Gascoigne DA, Doubovikov ED, Drobyshevsky A. Functional Deficiency of Interneurons and Negative BOLD fMRI Response. Cells. 2023; 12(5):811. https://doi.org/10.3390/cells12050811
Chicago/Turabian StyleAksenov, Daniil P., Limin Li, Natalya A. Serdyukova, David A. Gascoigne, Evan D. Doubovikov, and Alexander Drobyshevsky. 2023. "Functional Deficiency of Interneurons and Negative BOLD fMRI Response" Cells 12, no. 5: 811. https://doi.org/10.3390/cells12050811
APA StyleAksenov, D. P., Li, L., Serdyukova, N. A., Gascoigne, D. A., Doubovikov, E. D., & Drobyshevsky, A. (2023). Functional Deficiency of Interneurons and Negative BOLD fMRI Response. Cells, 12(5), 811. https://doi.org/10.3390/cells12050811