A Novel Multi-Modality Image Simultaneous Denoising and Fusion Method Based on Sparse Representation
"> Figure 1
<p>The Proposed Fusion Framework.</p> "> Figure 2
<p>The Proposed Fusion Framework. (<b>a</b>) a noisy image, (<b>b</b>) cartoon components, and (<b>c</b>) texture components.</p> "> Figure 3
<p>Parts of Used Representative source images. (<b>a</b>–<b>l</b>) are selected source images.</p> "> Figure 4
<p>Simultaneous denoising and fusion results of noisy multi-focus image pairs -1. (<b>a</b>–<b>h</b>) are source multi-focus images with additional noise <math display="inline"><semantics> <mrow> <mi>σ</mi> <mo>=</mo> <mn>0</mn> <mo>,</mo> <mn>10</mn> <mo>,</mo> <mn>20</mn> <mo>,</mo> <mn>50</mn> </mrow> </semantics></math> respectively; (<b>i</b>–<b>t</b>) are simultaneous denoising and fusion results of source images with additional noise <math display="inline"><semantics> <mrow> <mi>σ</mi> <mo>=</mo> <mn>0</mn> <mo>,</mo> <mn>10</mn> <mo>,</mo> <mn>20</mn> <mo>,</mo> <mn>50</mn> </mrow> </semantics></math> by FDESD, FDS and proposed method respectively.</p> "> Figure 5
<p>Simultaneous denoising and fusion results of noisy multi-focus image pairs -2. (<b>a</b>–<b>h</b>) are source multi-focus images with additional noise <math display="inline"><semantics> <mrow> <mi>σ</mi> <mo>=</mo> <mn>0</mn> <mo>,</mo> <mn>10</mn> <mo>,</mo> <mn>20</mn> <mo>,</mo> <mn>50</mn> </mrow> </semantics></math> respectively; (<b>i</b>–<b>t</b>) are simultaneous denoising and fusion results of source images with additional noise <math display="inline"><semantics> <mrow> <mi>σ</mi> <mo>=</mo> <mn>0</mn> <mo>,</mo> <mn>10</mn> <mo>,</mo> <mn>20</mn> <mo>,</mo> <mn>50</mn> </mrow> </semantics></math> by FDESD, FDS and proposed method respectively.</p> "> Figure 6
<p>Simultaneous denoising and fusion results of FDESD, FDS and the proposed method for noisy multi-modality medical image pairs -1. (<b>a</b>–<b>h</b>) are source multi-modality medical images with additional noise <math display="inline"><semantics> <mrow> <mi>σ</mi> <mo>=</mo> <mn>0</mn> <mo>,</mo> <mn>10</mn> <mo>,</mo> <mn>20</mn> <mo>,</mo> <mn>50</mn> </mrow> </semantics></math> respectively; (<b>i</b>–<b>t</b>) are simultaneous denoising and fusion results of source images with additional noise <math display="inline"><semantics> <mrow> <mi>σ</mi> <mo>=</mo> <mn>0</mn> <mo>,</mo> <mn>10</mn> <mo>,</mo> <mn>20</mn> <mo>,</mo> <mn>50</mn> </mrow> </semantics></math> by FDESD, FDS and proposed method respectively.</p> "> Figure 7
<p>Simultaneous denoising and fusion results of FDESD, FDS and the proposed method for noisy multi-modality medical image pairs -2. (<b>a</b>–<b>h</b>) are source multi-modality medical images with additional noise <math display="inline"><semantics> <mrow> <mi>σ</mi> <mo>=</mo> <mn>0</mn> <mo>,</mo> <mn>10</mn> <mo>,</mo> <mn>20</mn> <mo>,</mo> <mn>50</mn> </mrow> </semantics></math> respectively; (<b>i</b>–<b>t</b>) are simultaneous denoising and fusion results of source images with additional noise <math display="inline"><semantics> <mrow> <mi>σ</mi> <mo>=</mo> <mn>0</mn> <mo>,</mo> <mn>10</mn> <mo>,</mo> <mn>20</mn> <mo>,</mo> <mn>50</mn> </mrow> </semantics></math> by FDESD, FDS and proposed method respectively.</p> "> Figure 8
<p>Simultaneous denoising and fusion results of FDESD, FDS and the proposed method for noisy infrared-visible image pairs. (<b>a</b>–<b>h</b>) are source infrared-visible images with additional noise <math display="inline"><semantics> <mrow> <mi>σ</mi> <mo>=</mo> <mn>0</mn> <mo>,</mo> <mn>10</mn> <mo>,</mo> <mn>20</mn> <mo>,</mo> <mn>50</mn> </mrow> </semantics></math> respectively; (<b>i</b>–<b>t</b>) are simultaneous denoising and fusion results of source images with additional noise <math display="inline"><semantics> <mrow> <mi>σ</mi> <mo>=</mo> <mn>0</mn> <mo>,</mo> <mn>10</mn> <mo>,</mo> <mn>20</mn> <mo>,</mo> <mn>50</mn> </mrow> </semantics></math> by FDESD, FDS and proposed method respectively.</p> "> Figure 9
<p>Simultaneous denoising and fusion results of FDESD, FDS and the proposed method for noisy infrared-visible image pairs -2. (<b>a</b>–<b>h</b>) are source infrared-visible images with additional noise <math display="inline"><semantics> <mrow> <mi>σ</mi> <mo>=</mo> <mn>0</mn> <mo>,</mo> <mn>10</mn> <mo>,</mo> <mn>20</mn> <mo>,</mo> <mn>50</mn> </mrow> </semantics></math> respectively; (<b>i</b>–<b>t</b>) are simultaneous denoising and fusion results of source images with additional noise <math display="inline"><semantics> <mrow> <mi>σ</mi> <mo>=</mo> <mn>0</mn> <mo>,</mo> <mn>10</mn> <mo>,</mo> <mn>20</mn> <mo>,</mo> <mn>50</mn> </mrow> </semantics></math> by FDESD, FDS and proposed method respectively.</p> "> Figure 10
<p>Comparison of separate and simultaneous image denoising and fusion results. (<b>a</b>–<b>d</b>) and (<b>m</b>–<b>p</b>) are denoising and fusion results of multi-focus image with additional noise <math display="inline"><semantics> <mrow> <mi>σ</mi> <mo>=</mo> <mn>0</mn> <mo>,</mo> <mn>10</mn> <mo>,</mo> <mn>20</mn> <mo>,</mo> <mn>50</mn> </mrow> </semantics></math> by SDF and proposed method respectively. (<b>e</b>–<b>h</b>) and (<b>q</b>–<b>t</b>) are denoising and fusion results of malti-modality medical image with additional noise <math display="inline"><semantics> <mrow> <mi>σ</mi> <mo>=</mo> <mn>0</mn> <mo>,</mo> <mn>10</mn> <mo>,</mo> <mn>20</mn> <mo>,</mo> <mn>50</mn> </mrow> </semantics></math> by SDF and proposed method respectively. (<b>i</b>–<b>l</b>) and (<b>u</b>–<b>x</b>) are denoising and fusion results of infrared-visible image with additional noise <math display="inline"><semantics> <mrow> <mi>σ</mi> <mo>=</mo> <mn>0</mn> <mo>,</mo> <mn>10</mn> <mo>,</mo> <mn>20</mn> <mo>,</mo> <mn>50</mn> </mrow> </semantics></math> by SDF and proposed method respectively.</p> ">
Abstract
:1. Introduction
- This paper proposes an image denoising and fusion framework, that can fuse and denoise multi-modality images simultaneously. In the proposed framework, image noise is decomposed into texture components, which are fused and denoised simultaneously according to an SR-based method. For the cartoon components, a proper spatial domain fusion rule is implemented. The denoised and fused image can be obtained by integrating fused texture and cartoon components.
- This paper proposes a cartoon-texture decomposition based method to separate image noise and detailed information. In the proposed method, source images are decomposed into cartoon and texture components, where noisy components are decomposed into texture components. Therefore, only the texture components are needed for denoising, this can retain the structure information of cartoon components. Additionally, the detailed and structure information of source images is also decomposed in this step.
- This paper proposes a GSM-based SR model for simultaneous denoising and fusion of texture components. According to a GSM model, SR can remove the noise of texture components, and preserve the image texture information. During the denoising process, sparse coefficients without noisy information can be obtained for fusion.
2. Related Work
2.1. Sparse Representation in Image Denoising
2.2. Dictionary Construction and Image Decomposition
2.3. Simultaneous Image Denoising and Fusion Method
3. The Proposed Simultaneous Denoising and Fusion Framework
3.1. Image Cartoon-Texture Decomposition
3.2. GSM-Based SR Model for the Denoising and Sparse Representation of Texture Components
3.3. Details of Fusion Process
4. Experiments and Analyses
4.1. Experiment Setup
4.2. Comparison of Simultaneous Fusion and Denoising Methods
4.2.1. Multi-Focus Image Fusion
4.2.2. Multi-Modality Medical Image Fusion
4.2.3. Infrared-Visible Image Fusion
4.2.4. Comparison of Computational Efficiency
4.3. The Proposed Method Compares with Conventional Image Fusion and Denoising Method
4.3.1. Comparison of Processing Results
4.3.2. Comparison of Computational Efficiency
5. Conclusions and Future Work
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Algorithm A1 Cartoon Components Denoising and Fusion |
Input: n noisy multi-modality images , the maximum iterative number k and j for outer loop and inner loop, respectively. Output: Fused image
|
References
- Zhang, J.; Hirakawa, K. Improved Denoising via Poisson Mixture Modeling of Image Sensor Noise. IEEE Trans. Image Process. 2017, 26, 1565–1579. [Google Scholar] [CrossRef]
- Zhu, Z.; Wei, H.; Hu, G.; Li, Y.; Qi, G.; Mazur, N. A Novel Fast Single Image Dehazing Algorithm Based on Artificial Multiexposure Image Fusion. IEEE Trans. Instrum. Meas. 2021, 70, 1–23. [Google Scholar]
- Zheng, M.; Qi, G.; Zhu, Z.; Li, Y.; Wei, H.; Liu, Y. Image Dehazing by an Artificial Image Fusion Method Based on Adaptive Structure Decomposition. IEEE Sens. J. 2020, 20, 8062–8072. [Google Scholar] [CrossRef]
- Li, H.; Li, X.; Yu, Z.; Mao, C. Multifocus image fusion by combining with mixed-order structure tensors and multiscale neighborhood. Inf. Sci. 2016, 349, 25–49. [Google Scholar] [CrossRef]
- Wang, K.; Zheng, M.; Wei, H.; Qi, G.; Li, Y. Multi-Modality Medical Image Fusion Using Convolutional Neural Network and Contrast Pyramid. Sensors 2020, 20, 2169. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Sun, Y.; Huang, X.; Qi, G.; Zheng, M.; Zhu, Z. An Image Fusion Method Based on Sparse Representation and Sum Modified-Laplacian in NSCT Domain. Entropy 2018, 20, 522. [Google Scholar] [CrossRef] [Green Version]
- Li, S.; Kang, X.; Fang, L.; Hu, J.; Yin, H. Pixel-level image fusion: A survey of the state of the art. Inf. Fusion 2017, 33, 100–112. [Google Scholar] [CrossRef]
- Li, H.; Qiu, H.; Yu, Z.; Zhang, Y. Infrared and visible image fusion scheme based on NSCT and low-level visual features. Infrared Phys. Technol. 2016, 76, 174–184. [Google Scholar] [CrossRef]
- Zhu, Z.; Zheng, M.; Qi, G.; Wang, D.; Xiang, Y. A Phase Congruency and Local Laplacian Energy Based Multi-Modality Medical Image Fusion Method in NSCT Domain. IEEE Access 2019, 7, 20811–20824. [Google Scholar] [CrossRef]
- Li, S.; Yin, H.; Fang, L. Group-Sparse Representation With Dictionary Learning for Medical Image Denoising and Fusion. IEEE Trans. Biomed. Eng. 2012, 59, 3450–3459. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Z.; Luo, Y.; Qi, G.; Meng, J.; Li, Y.; Mazur, N. Remote Sensing Image Defogging Networks Based on Dual Self-Attention Boost Residual Octave Convolution. Remote Sens. 2021, 13, 3104. [Google Scholar] [CrossRef]
- Zhu, Z.; Luo, Y.; Wei, H.; Li, Y.; Qi, G.; Mazur, N.; Li, Y.; Li, P. Atmospheric Light Estimation Based Remote Sensing Image Dehazing. Remote Sens. 2021, 13, 2432. [Google Scholar] [CrossRef]
- Jain, P.; Tyagi, V. LAPB: Locally adaptive patch-based wavelet domain edge-preserving image denoising. Inf. Sci. 2015, 294, 164–181. [Google Scholar] [CrossRef]
- Li, H.; Qiu, H.; Yu, Z.; Li, B. Multifocus image fusion via fixed window technique of multiscale images and non-local means filtering. Signal Process. 2017, 138, 71–85. [Google Scholar] [CrossRef]
- Li, H.; Liu, X.; Yu, Z.; Zhang, Y. Performance improvement scheme of multifocus image fusion derived by difference images. Signal Process. 2016, 128, 474–493. [Google Scholar] [CrossRef]
- Tropp, J.A. Greed is Good: Algorithmic Results for Sparse Approximation. IEEE Trans. Inf. Theory 2004, 50, 2231–2242. [Google Scholar] [CrossRef] [Green Version]
- Donoho, D.L.; Elad, M. Optimally sparse representation in general nonorthogonal dictionaries via l − 1 minimization. Proc. Natl. Acad. Sci. USA 2003, 100, 2197–2202. [Google Scholar] [CrossRef] [Green Version]
- Liu, H.; Liu, Y.; Sun, F. Robust Exemplar Extraction Using Structured Sparse Coding. IEEE Trans. Neural Netw. Learn. Syst. 2015, 26, 1816–1821. [Google Scholar] [CrossRef]
- Zhao, Y.Q.; Yang, J. Hyperspectral Image Denoising via Sparse Representation and Low-Rank Constraint. IEEE Trans. Geosci. Remote Sens. 2015, 53, 296–308. [Google Scholar] [CrossRef]
- Shekhar, S.; Patel, V.M.; Nasrabadi, N.M.; Chellappa, R. Joint Sparse Representation for Robust Multimodal Biometrics Recognition. IEEE Trans. Pattern Anal. Mach. Intell. 2014, 36, 113. [Google Scholar] [CrossRef]
- An, L.; Chen, X.; Yang, S.; Bhanu, B. Sparse representation matching for person re-identification. Inf. Sci. 2016, 355–356, 74–89. [Google Scholar] [CrossRef] [Green Version]
- Liu, H.; Guo, D.; Sun, F. Object Recognition Using Tactile Measurements: Kernel Sparse Coding Methods. IEEE Trans. Instrum. Meas. 2016, 65, 656–665. [Google Scholar] [CrossRef]
- Aharon, M.; Elad, M.; Bruckstein, A. K-SVD: An Algorithm for Designing Overcomplete Dictionaries for Sparse Representation. IEEE Trans. Signal Process. 2006, 54, 4311–4322. [Google Scholar] [CrossRef]
- Ophir, B.; Lustig, M.; Elad, M. Multi-Scale Dictionary Learning Using Wavelets. IEEE J. Sel. Top. Signal Process. 2011, 5, 1014–1024. [Google Scholar] [CrossRef]
- Mairal, J.; Bach, F.; Ponce, J.; Sapiro, G. Online dictionary learning for sparse coding. In Proceedings of the International Conference on Machine Learning, ICML 2009, Montreal, QC, Canada, 14–18 June 2009; pp. 689–696. [Google Scholar]
- Zoran, D.; Weiss, Y. From learning models of natural image patches to whole image restoration. In Proceedings of the International Conference on Computer Vision, Barcelona, Spain, 6–13 November 2011; pp. 479–486. [Google Scholar]
- Ji, S.; Xue, Y.; Carin, L. Bayesian Compressive Sensing. IEEE Trans. Signal Process. 2008, 56, 2346–2356. [Google Scholar] [CrossRef]
- Dong, W.; Shi, G.; Li, X. Nonlocal image restoration with bilateral variance estimation: A low-rank approach. IEEE Trans. Image Process. A Publ. IEEE Signal Process. Soc. 2013, 22, 700. [Google Scholar] [CrossRef]
- Liu, Y.; Liu, S.; Wang, Z. A general framework for image fusion based on multi-scale transform and sparse representation. Inf. Fusion 2015, 24, 147–164. [Google Scholar] [CrossRef]
- Yang, B.; Li, S. Multifocus Image Fusion and Restoration With Sparse Representation. IEEE Trans. Instrum. Meas. 2010, 59, 884–892. [Google Scholar] [CrossRef]
- Yin, M.; Duan, P.; Liu, W.; Liang, X. A novel infrared and visible image fusion algorithm based on shift-invariant dual-tree complex shearlet transform and sparse representation. Neurocomputing 2017, 226, 182–191. [Google Scholar] [CrossRef]
- Yin, H.; Li, Y.; Chai, Y.; Liu, Z.; Zhu, Z. A novel sparse-representation-based multi-focus image fusion approach. Neurocomputing 2016, 216, 216–229. [Google Scholar] [CrossRef]
- Zhu, Z.; Yin, H.; Chai, Y.; Li, Y.; Qi, G. A novel multi-modality image fusion method based on image decomposition and sparse representation. Inf. Sci. 2018, 432, 516–529. [Google Scholar] [CrossRef]
- Kim, M.; Han, D.K.; Ko, H. Joint patch clustering-based dictionary learning for multimodal image fusion. Inf. Fusion 2015, 27, 198–214. [Google Scholar] [CrossRef]
- Zhu, Z.; Qi, G.; Chai, Y.; Li, P. A Geometric Dictionary Learning Based Approach for Fluorescence Spectroscopy Image Fusion. Appl. Sci. 2017, 7, 161. [Google Scholar] [CrossRef]
- Wang, K.; Qi, G.; Zhu, Z.; Chai, Y. A Novel Geometric Dictionary Construction Approach for Sparse Representation Based Image Fusion. Entropy 2017, 19, 306. [Google Scholar] [CrossRef] [Green Version]
- Liu, Z.; Chai, Y.; Yin, H.; Zhou, J.; Zhu, Z. A novel multi-focus image fusion approach based on image decomposition. Inf. Fusion 2017, 35, 102–116. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, Z. Simultaneous image fusion and denoising with adaptive sparse representation. Iet Image Process. 2015, 9, 347–357. [Google Scholar] [CrossRef] [Green Version]
- Li, H.; He, X.; Tao, D.; Tang, Y.; Wang, R. Joint medical image fusion, denoising and enhancement via discriminative low-rank sparse dictionaries learning. Pattern Recognit. 2018, 79, 130–146. [Google Scholar] [CrossRef]
- Li, X.; Zhou, F.; Tan, H. Joint image fusion and denoising via three-layer decomposition and sparse representation. Knowl.-Based Syst. 2021, 224, 107087. [Google Scholar] [CrossRef]
- Mei, J.J.; Dong, Y.; Huang, T.Z. Simultaneous image fusion and denoising by using fractional-order gradient information. J. Comput. Appl. Math. 2019, 351, 212–227. [Google Scholar] [CrossRef]
- Su, H.; Jung, C.; Yu, L. Multi-Spectral Fusion and Denoising of Color and Near-Infrared Images Using Multi-Scale Wavelet Analysis. Sensors 2021, 21, 3610. [Google Scholar] [CrossRef]
- Wang, W.; Zhang, C.; Ng, M.K. Variational model for simultaneously image denoising and contrast enhancement. Opt. Express 2020, 28, 18751–18777. [Google Scholar] [CrossRef]
- Yang, F.; Xu, S.; Li, C. Boosting of Denoising Effect with Fusion Strategy. Appl. Sci. 2020, 10, 3857. [Google Scholar] [CrossRef]
- Vese, L.A.; Osher, S. Image Denoising and Decomposition with Total Variation Minimization and Oscillatory Functions. J. Math. Imaging Vis. 2004, 20, 7–18. [Google Scholar] [CrossRef] [Green Version]
- Dong, W.; Shi, G.; Ma, Y.; Li, X. Image Restoration via Simultaneous Sparse Coding: Where Structured Sparsity Meets Gaussian Scale Mixture. Int. J. Comput. Vis. 2015, 114, 217–232. [Google Scholar] [CrossRef]
- Cvejic, N.; Canagarajah, C.N.; Bull, D.R. Image fusion metric based on mutual information and Tsallis entropy. Electron. Lett. 2006, 42, 626–627. [Google Scholar] [CrossRef]
- Liu, Z.; Blasch, E.; Xue, Z.; Zhao, J.; Laganiere, R.; Wu, W. Objective Assessment of Multiresolution Image Fusion Algorithms for Context Enhancement in Night Vision: A Comparative Study. IEEE Trans. Pattern Anal. Mach. Intell. 2011, 34, 94–109. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Shen, Y.; Jin, J. 19—Performance evaluation of image fusion techniques. Image Fusion 2008, 469–492. [Google Scholar] [CrossRef]
- Petrovic, V.S. Subjective tests for image fusion evaluation and objective metric validation. Inf. Fusion 2007, 8, 208–216. [Google Scholar] [CrossRef]
- Liu, Z.; Forsyth, D.S.; Laganière, R. A feature-based metric for the quantitative evaluation of pixel-level image fusion. Comput. Vis. Image Underst. 2008, 109, 56–68. [Google Scholar] [CrossRef]
- Wang, Q.; Shen, Y.; Zhang, Y.; Zhang, J.Q. Fast quantitative correlation analysis and information deviation analysis for evaluating the performances of image fusion techniques. IEEE Trans. Instrum. Meas. 2004, 53, 1441–1447. [Google Scholar] [CrossRef]
- Qi, G.; Chang, L.; Luo, Y.; Chen, Y.; Zhu, Z.; Wang, S. A Precise Multi-Exposure Image Fusion Method Based on Low-level Features. Sensors 2020, 20, 1597. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, C.; Zhang, J.Q.; Wang, X.R.; Liu, X. A novel similarity based quality metric for image fusion. Inf. Fusion 2008, 9, 156–160. [Google Scholar] [CrossRef]
- Chen, Y.; Blum, R.S. A new automated quality assessment algorithm for image fusion. Image Vis. Comput. 2009, 27, 1421–1432. [Google Scholar] [CrossRef]
- Sheikh, H.R.; Bovik, A.C. Image information and visual quality. IEEE Trans. Image Process. 2006, 15, 430–444. [Google Scholar] [CrossRef]
- Huang, X.; Qi, G.; Wei, H.; Chai, Y.; Sim, J. A Novel Infrared and Visible Image Information Fusion Method Based on Phase Congruency and Image Entropy. Entropy 2019, 21, 1135. [Google Scholar] [CrossRef] [Green Version]
- Zuo, W.; Zhang, L.; Song, C.; Zhang, D.; Gao, H. Gradient Histogram Estimation and Preservation for Texture Enhanced Image Denoising. IEEE Trans. Image Process. A Publ. IEEE Signal Process. Soc. 2014, 23, 2459–2472. [Google Scholar]
VIFF | ||||||||
FDESD | 0.6685 | 0.8160 | 0.7287 | 0.7539 | 1.7420 | 0.8963 | 0.6444 | 0.6257 |
FDS | 0.7529 | 0.8190 | 0.7479 | 0.8387 | 1.9337 | 0.9248 | 0.7228 | 0.6770 |
proposed | 0.9163 | 0.8251 | 0.7305 | 0.8499 | 2.3450 | 0.9657 | 0.7569 | 0.6962 |
VIFF | ||||||||
FDESD | 0.6056 | 0.8106 | 0.5614 | 0.5689 | 1.5623 | 0.7404 | 0.6132 | 0.6009 |
FDS | 0.6446 | 0.8152 | 0.5745 | 0.6821 | 1.6617 | 0.7765 | 0.6745 | 0.6346 |
proposed | 0.6527 | 0.8156 | 0.5857 | 0.6992 | 1.8871 | 0.7825 | 0.6804 | 0.6450 |
VIFF | ||||||||
FDESD | 0.5563 | 0.8122 | 0.4459 | 0.4078 | 1.4352 | 0.6336 | 0.5728 | 0.5549 |
FDS | 0.6053 | 0.8140 | 0.4787 | 0.5188 | 1.5570 | 0.6713 | 0.6245 | 0.5578 |
proposed | 0.6102 | 0.8142 | 0.4873 | 0.5538 | 1.5672 | 0.6933 | 0.6371 | 0.5777 |
VIFF | ||||||||
FDESD | 0.4511 | 0.8100 | 0.2633 | 0.1726 | 1.1615 | 0.4413 | 0.4928 | 0.4257 |
FDS | 0.5369 | 0.8119 | 0.2619 | 0.2352 | 1.3656 | 0.4568 | 0.4696 | 0.4268 |
proposed | 0.5472 | 0.8122 | 0.3014 | 0.3055 | 1.3852 | 0.5030 | 0.5276 | 0.4340 |
VIFF | ||||||||
FDESD | 0.6752 | 0.8098 | 0.7279 | 0.7692 | 1.7583 | 0.9034 | 0.6579 | 0.6372 |
FDS | 0.7682 | 0.8197 | 0.7392 | 0.8393 | 1.9872 | 0.9244 | 0.7382 | 0.6804 |
proposed | 0.9192 | 0.8317 | 0.7408 | 0.8503 | 2.3581 | 0.9694 | 0.7593 | 0.6985 |
VIFF | ||||||||
FDESD | 0.6193 | 0.8132 | 0.5687 | 0.5793 | 1.5736 | 0.7534 | 0.6328 | 0.6196 |
FDS | 0.6487 | 0.8157 | 0.5783 | 0.6894 | 1.6689 | 0.7793 | 0.6784 | 0.6372 |
proposed | 0.6576 | 0.8186 | 0.5873 | 0.6998 | 1.8903 | 0.7896 | 0.6864 | 0.6497 |
VIFF | ||||||||
FDESD | 0.5604 | 0.8146 | 0.4494 | 0.4184 | 1.4423 | 0.6406 | 0.5804 | 0.5569 |
FDS | 0.6085 | 0.8195 | 0.4808 | 0.5268 | 1.5596 | 0.6792 | 0.6294 | 0.5608 |
proposed | 0.6181 | 0.8237 | 0.4906 | 0.5587 | 1.5693 | 0.6987 | 0.6395 | 0.5788 |
VIFF | ||||||||
FDESD | 0.4595 | 0.8187 | 0.2693 | 0.1774 | 1.1709 | 0.4473 | 0.4989 | 0.4267 |
FDS | 0.5409 | 0.8121 | 0.2746 | 0.2429 | 1.3726 | 0.4589 | 0.4785 | 0.4326 |
proposed | 0.5503 | 0.8173 | 0.3068 | 0.3094 | 1.3873 | 0.5096 | 0.5316 | 0.4389 |
VIFF | ||||||||
FDESD | 0.6749 | 0.8096 | 0.7277 | 0.7689 | 1.7580 | 0.9031 | 0.6576 | 0.6369 |
FDS | 0.7678 | 0.8194 | 0.7388 | 0.8392 | 1.9867 | 0.9242 | 0.7380 | 0.6801 |
proposed | 0.9187 | 0.8314 | 0.7404 | 0.8598 | 2.3579 | 0.9690 | 0.7590 | 0.6981 |
VIFF | ||||||||
FDESD | 0.6189 | 0.8127 | 0.5684 | 0.5789 | 1.5732 | 0.7531 | 0.6325 | 0.6192 |
FDS | 0.6482 | 0.8153 | 0.5780 | 0.6889 | 1.6685 | 0.7790 | 0.6781 | 0.6369 |
proposed | 0.6572 | 0.8183 | 0.5870 | 0.6994 | 1.8900 | 0.7893 | 0.6861 | 0.6493 |
VIFF | ||||||||
FDESD | 0.5601 | 0.8142 | 0.4490 | 0.4181 | 1.4421 | 0.6402 | 0.5899 | 0.5564 |
FDS | 0.6081 | 0.8192 | 0.4803 | 0.5264 | 1.5592 | 0.6788 | 0.6291 | 0.5602 |
proposed | 0.6177 | 0.8233 | 0.4902 | 0.5583 | 1.5689 | 0.6983 | 0.6391 | 0.5782 |
VIFF | ||||||||
FDESD | 0.4591 | 0.8182 | 0.2690 | 0.1772 | 1.1703 | 0.4470 | 0.4986 | 0.4264 |
FDS | 0.5407 | 0.8118 | 0.2742 | 0.2426 | 1.3723 | 0.4584 | 0.4781 | 0.4323 |
proposed | 0.5500 | 0.8171 | 0.3065 | 0.3092 | 1.3869 | 0.5094 | 0.5313 | 0.4386 |
VIFF | ||||||||
FDESD | 0.5571 | 0.8071 | 0.4010 | 0.4271 | 0.9989 | 0.4717 | 0.4252 | 0.3337 |
FDS | 0.5677 | 0.8072 | 0.4837 | 0.5333 | 1.0068 | 0.5626 | 0.4686 | 0.3601 |
proposed | 0.6537 | 0.8099 | 0.6583 | 0.5371 | 1.2223 | 0.7150 | 0.4698 | 0.4362 |
VIFF | ||||||||
FDESD | 0.4870 | 0.8064 | 0.3067 | 0.2584 | 0.9256 | 0.3998 | 0.3338 | 0.3075 |
FDS | 0.5367 | 0.8069 | 0.3355 | 0.3852 | 0.9758 | 0.4635 | 0.3461 | 0.3167 |
proposed | 0.5600 | 0.8077 | 0.4082 | 0.3938 | 1.0551 | 0.5408 | 0.3778 | 0.3729 |
VIFF | ||||||||
FDESD | 0.4331 | 0.8057 | 0.2661 | 0.1702 | 0.8386 | 0.3546 | 0.3349 | 0.2880 |
FDS | 0.5099 | 0.8066 | 0.2815 | 0.2908 | 0.9459 | 0.3891 | 0.3245 | 0.2908 |
proposed | 0.4871 | 0.8067 | 0.3221 | 0.2989 | 0.9477 | 0.4269 | 0.3594 | 0.3904 |
VIFF | ||||||||
FDESD | 0.2975 | 0.8041 | 0.1517 | 0.0663 | 0.5883 | 0.2200 | 0.2901 | 0.2360 |
FDS | 0.4542 | 0.8058 | 0.1852 | 0.1548 | 0.8593 | 0.2744 | 0.2338 | 0.2402 |
proposed | 0.4875 | 0.8064 | 0.2554 | 0.1903 | 0.9326 | 0.3472 | 0.2994 | 0.3013 |
VIFF | ||||||||
FDESD | 0.5582 | 0.8077 | 0.4047 | 0.4306 | 0.9997 | 0.4773 | 0.4302 | 0.3371 |
FDS | 0.5691 | 0.8085 | 0.4869 | 0.5361 | 1.0103 | 0.5689 | 0.4690 | 0.3634 |
proposed | 0.6575 | 0.8112 | 0.6599 | 0.5389 | 1.2286 | 0.7183 | 0.4708 | 0.4397 |
VIFF | ||||||||
FDESD | 0.4887 | 0.8077 | 0.3093 | 0.2604 | 0.9296 | 0.4063 | 0.3359 | 0.3096 |
FDS | 0.5384 | 0.8098 | 0.3392 | 0.3887 | 0.9791 | 0.4663 | 0.3486 | 0.3191 |
proposed | 0.5641 | 0.8103 | 0.4094 | 0.3974 | 1.0588 | 0.5437 | 0.3792 | 0.3764 |
VIFF | ||||||||
FDESD | 0.4362 | 0.8079 | 0.2686 | 0.1747 | 0.8406 | 0.3583 | 0.3385 | 0.2901 |
FDS | 0.5102 | 0.8081 | 0.2855 | 0.2934 | 0.9481 | 0.3906 | 0.3273 | 0.2975 |
proposed | 0.5132 | 0.8091 | 0.3234 | 0.2996 | 0.9497 | 0.4284 | 0.3606 | 0.3937 |
VIFF | ||||||||
FDESD | 0.2994 | 0.8080 | 0.1542 | 0.0676 | 0.5897 | 0.2221 | 0.2932 | 0.2393 |
FDS | 0.4576 | 0.8087 | 0.1891 | 0.1586 | 0.8612 | 0.2786 | 0.2367 | 0.2435 |
proposed | 0.4902 | 0.8093 | 0.2577 | 0.1938 | 0.9361 | 0.3496 | 0.3008 | 0.3037 |
VIFF | ||||||||
FDESD | 0.5580 | 0.8075 | 0.4043 | 0.4302 | 0.9994 | 0.4771 | 0.4300 | 0.3369 |
FDS | 0.5688 | 0.8082 | 0.4866 | 0.5357 | 1.0101 | 0.5685 | 0.4686 | 0.3631 |
proposed | 0.6572 | 0.8108 | 0.6595 | 0.5386 | 1.2282 | 0.7180 | 0.4702 | 0.4393 |
VIFF | ||||||||
FDESD | 0.4883 | 0.8074 | 0.3090 | 0.2601 | 0.9293 | 0.4059 | 0.3355 | 0.3092 |
FDS | 0.5381 | 0.8095 | 0.3388 | 0.3882 | 0.9787 | 0.4660 | 0.3482 | 0.3187 |
proposed | 0.5635 | 0.8100 | 0.4091 | 0.3971 | 1.0585 | 0.5433 | 0.3786 | 0.3761 |
VIFF | ||||||||
FDESD | 0.4359 | 0.8076 | 0.2684 | 0.1744 | 0.8404 | 0.3581 | 0.3382 | 0.2987 |
FDS | 0.5198 | 0.8077 | 0.2851 | 0.2932 | 0.9476 | 0.3902 | 0.3270 | 0.2971 |
proposed | 0.5129 | 0.8087 | 0.3231 | 0.2992 | 0.9493 | 0.4281 | 0.3602 | 0.3933 |
VIFF | ||||||||
FDESD | 0.2991 | 0.8078 | 0.1538 | 0.0672 | 0.5893 | 0.2217 | 0.2928 | 0.2390 |
FDS | 0.4572 | 0.8083 | 0.1887 | 0.1582 | 0.8607 | 0.2782 | 0.2362 | 0.2431 |
proposed | 0.4897 | 0.8090 | 0.2572 | 0.1934 | 0.9358 | 0.3492 | 0.3005 | 0.3033 |
VIFF | ||||||||
FDESD | 0.2891 | 0.8040 | 0.5818 | 0.3201 | 0.6301 | 0.6924 | 0.4884 | 0.2814 |
FDS | 0.2989 | 0.8043 | 0.6229 | 0.4378 | 0.6638 | 0.7774 | 0.5425 | 0.3122 |
proposed | 0.3582 | 0.8059 | 0.6543 | 0.5000 | 0.8173 | 0.8785 | 0.5434 | 0.3975 |
VIFF | ||||||||
FDESD | 0.2949 | 0.8041 | 0.3473 | 0.1734 | 0.6460 | 0.4862 | 0.4878 | 0.2870 |
FDS | 0.2948 | 0.8041 | 0.4259 | 0.2773 | 0.6531 | 0.5748 | 0.5085 | 0.3011 |
proposed | 0.3185 | 0.8048 | 0.4514 | 0.3049 | 0.7232 | 0.6580 | 0.5111 | 0.3727 |
VIFF | ||||||||
FDESD | 0.2808 | 0.8031 | 0.3204 | 0.1188 | 0.6253 | 0.4873 | 0.4561 | 0.2835 |
FDS | 0.2928 | 0.8031 | 0.3314 | 0.2081 | 0.6455 | 0.4660 | 0.4624 | 0.2706 |
proposed | 0.3217 | 0.8050 | 0.3862 | 0.2355 | 0.7309 | 0.5704 | 0.4641 | 0.3429 |
VIFF | ||||||||
FDESD | 0.2114 | 0.8031 | 0.2259 | 0.0534 | 0.4697 | 0.3914 | 0.4380 | 0.2038 |
FDS | 0.2606 | 0.8035 | 0.1894 | 0.1079 | 0.5614 | 0.3176 | 0.3946 | 0.2065 |
proposed | 0.2933 | 0.8041 | 0.2378 | 0.1324 | 0.6522 | 0.3856 | 0.3771 | 0.2356 |
VIFF | ||||||||
FDESD | 0.2906 | 0.8043 | 0.5843 | 0.3236 | 0.6341 | 0.6952 | 0.4897 | 0.2846 |
FDS | 0.3006 | 0.8049 | 0.6251 | 0.4398 | 0.6658 | 0.7793 | 0.5449 | 0.3141 |
proposed | 0.3593 | 0.8063 | 0.6561 | 0.5011 | 0.8189 | 0.8793 | 0.5452 | 0.3996 |
VIFF | ||||||||
FDESD | 0.2961 | 0.8051 | 0.3488 | 0.1749 | 0.6473 | 0.4881 | 0.4890 | 0.2887 |
FDS | 0.2964 | 0.8059 | 0.4268 | 0.2782 | 0.6562 | 0.5767 | 0.5097 | 0.3038 |
proposed | 0.3194 | 0.8062 | 0.4539 | 0.3077 | 0.7261 | 0.6595 | 0.5133 | 0.3752 |
VIFF | ||||||||
FDESD | 0.2821 | 0.8052 | 0.3228 | 0.1201 | 0.6275 | 0.4888 | 0.4579 | 0.2851 |
FDS | 0.2942 | 0.8050 | 0.3336 | 0.2101 | 0.6473 | 0.4687 | 0.4653 | 0.2728 |
proposed | 0.3234 | 0.8068 | 0.3879 | 0.2371 | 0.7327 | 0.5721 | 0.4663 | 0.3447 |
VIFF | ||||||||
FDESD | 0.2135 | 0.8049 | 0.2280 | 0.0553 | 0.4707 | 0.3946 | 0.4399 | 0.2060 |
FDS | 0.2631 | 0.8051 | 0.1910 | 0.1097 | 0.5633 | 0.3196 | 0.3971 | 0.2082 |
proposed | 0.2946 | 0.8056 | 0.2391 | 0.1340 | 0.6537 | 0.3872 | 0.3787 | 0.2369 |
VIFF | ||||||||
FDESD | 0.2903 | 0.8041 | 0.5840 | 0.3234 | 0.6340 | 0.6959 | 0.4892 | 0.2842 |
FDS | 0.3003 | 0.8045 | 0.6247 | 0.4395 | 0.6654 | 0.7790 | 0.5445 | 0.3137 |
proposed | 0.3590 | 0.8059 | 0.6558 | 0.5008 | 0.8185 | 0.8790 | 0.5448 | 0.3991 |
VIFF | ||||||||
FDESD | 0.2957 | 0.8048 | 0.3483 | 0.1745 | 0.6471 | 0.4877 | 0.4886 | 0.2884 |
FDS | 0.2961 | 0.8054 | 0.4266 | 0.2777 | 0.6557 | 0.5763 | 0.5092 | 0.3034 |
proposed | 0.3191 | 0.8057 | 0.4535 | 0.3074 | 0.7256 | 0.6591 | 0.5130 | 0.3748 |
VIFF | ||||||||
FDESD | 0.2818 | 0.8047 | 0.3223 | 0.1197 | 0.6272 | 0.4885 | 0.4577 | 0.2848 |
FDS | 0.2940 | 0.8046 | 0.3332 | 0.2096 | 0.6470 | 0.4681 | 0.4650 | 0.2722 |
proposed | 0.3231 | 0.8062 | 0.3877 | 0.2366 | 0.7323 | 0.5717 | 0.4659 | 0.3444 |
VIFF | ||||||||
FDESD | 0.2131 | 0.8043 | 0.2275 | 0.0548 | 0.4702 | 0.3943 | 0.4395 | 0.2057 |
FDS | 0.2627 | 0.8047 | 0.1905 | 0.1093 | 0.5630 | 0.3192 | 0.3966 | 0.2078 |
proposed | 0.2942 | 0.8053 | 0.2386 | 0.1335 | 0.6533 | 0.3868 | 0.3785 | 0.235 |
Resolution | ||
---|---|---|
FDESD | 36.82 s | 46.53 s |
FDS | 20.71 s | 24.56 s |
Proposed | 21.55 s | 26.71 s |
VIFF | ||||||||
SDF | 0.7158 | 0.8189 | 0.6975 | 0.8337 | 1.9508 | 0.8560 | 0.7154 | 0.6665 |
proposed | 0.9163 | 0.8251 | 0.7305 | 0.8499 | 2.3450 | 0.9657 | 0.7569 | 0.6962 |
VIFF | ||||||||
SDF | 0.6650 | 0.8171 | 0.4871 | 0.6259 | 1.7849 | 0.7047 | 0.6647 | 0.6326 |
proposed | 0.6527 | 0.8156 | 0.5857 | 0.6992 | 1.8871 | 0.7825 | 0.6804 | 0.6450 |
VIFF | ||||||||
SDF | 0.6045 | 0.8134 | 0.3771 | 0.5575 | 1.6920 | 0.6060 | 0.6361 | 0.5696 |
proposed | 0.6102 | 0.8142 | 0.4873 | 0.5538 | 1.5672 | 0.6933 | 0.6371 | 0.5777 |
VIFF | ||||||||
SDF | 0.5183 | 0.8150 | 0.2662 | 0.3792 | 1.2276 | 0.4690 | 0.4570 | 0.4154 |
proposed | 0.5472 | 0.8122 | 0.3014 | 0.3055 | 1.3852 | 0.5030 | 0.5276 | 0.4340 |
VIFF | ||||||||
SDF | 0.6438 | 0.8092 | 0.4780 | 0.4423 | 1.2116 | 0.7236 | 0.5301 | 0.4440 |
proposed | 0.6537 | 0.8099 | 0.6583 | 0.5371 | 1.2223 | 0.7150 | 0.4698 | 0.4362 |
VIFF | ||||||||
SDF | 0.4505 | 0.8055 | 0.2155 | 0.2314 | 0.7749 | 0.3289 | 0.4240 | 0.2797 |
proposed | 0.5600 | 0.8077 | 0.4082 | 0.3938 | 1.0551 | 0.5408 | 0.3778 | 0.3729 |
VIFF | ||||||||
SDF | 0.4530 | 0.8055 | 0.1845 | 0.1833 | 0.7530 | 0.3245 | 0.3710 | 0.2725 |
proposed | 0.4871 | 0.8067 | 0.3221 | 0.2689 | 0.9477 | 0.4269 | 0.3594 | 0.3904 |
VIFF | ||||||||
SDF | 0.4443 | 0.8055 | 0.1348 | 0.1240 | 0.7440 | 0.2724 | 0.3188 | 0.2510 |
proposed | 0.4875 | 0.8064 | 0.2554 | 0.1903 | 0.9326 | 0.3472 | 0.2994 | 0.3013 |
VIFF | ||||||||
SDF | 0.3867 | 0.8070 | 0.6435 | 0.5897 | 0.7985 | 0.7908 | 0.4808 | 0.3042 |
proposed | 0.3582 | 0.8059 | 0.6543 | 0.5000 | 0.8173 | 0.8785 | 0.5434 | 0.3975 |
VIFF | ||||||||
SDF | 0.3383 | 0.8064 | 0.4510 | 0.2406 | 0.7029 | 0.6174 | 0.5279 | 0.2820 |
proposed | 0.3185 | 0.8048 | 0.4514 | 0.3049 | 0.7232 | 0.6580 | 0.5111 | 0.3727 |
VIFF | ||||||||
SDF | 0.3095 | 0.8051 | 0.3602 | 0.1283 | 0.6554 | 0.5401 | 0.4515 | 0.2540 |
proposed | 0.3217 | 0.8050 | 0.3862 | 0.2355 | 0.7309 | 0.5704 | 0.4641 | 0.3429 |
VIFF | ||||||||
SDF | 0.2744 | 0.8054 | 0.2235 | 0.0909 | 0.6228 | 0.3038 | 0.3233 | 0.1893 |
proposed | 0.2933 | 0.8041 | 0.2378 | 0.1324 | 0.6522 | 0.3856 | 0.3771 | 0.2356 |
VIFF | ||||||||
SDF | 0.7165 | 0.8194 | 0.6979 | 0.8343 | 1.9513 | 0.8564 | 0.7159 | 0.6668 |
proposed | 0.9166 | 0.8255 | 0.7308 | 0.8503 | 2.3454 | 0.9662 | 0.7574 | 0.6968 |
VIFF | ||||||||
SDF | 0.6655 | 0.8174 | 0.4876 | 0.6265 | 1.7855 | 0.7050 | 0.6653 | 0.6330 |
proposed | 0.6532 | 0.8160 | 0.5863 | 0.6999 | 1.8877 | 0.7829 | 0.6808 | 0.6455 |
VIFF | ||||||||
SDF | 0.6048 | 0.8138 | 0.3776 | 0.5579 | 1.6924 | 0.6063 | 0.6367 | 0.5699 |
proposed | 0.6106 | 0.8149 | 0.4878 | 0.5542 | 1.5677 | 0.6938 | 0.6375 | 0.5782 |
VIFF | ||||||||
SDF | 0.5188 | 0.8155 | 0.2668 | 0.3798 | 1.2281 | 0.4696 | 0.4575 | 0.4159 |
proposed | 0.5477 | 0.8125 | 0.3018 | 0.3059 | 1.3857 | 0.5035 | 0.5280 | 0.4346 |
VIFF | ||||||||
SDF | 0.6443 | 0.8098 | 0.4787 | 0.4428 | 1.2120 | 0.7242 | 0.5307 | 0.4448 |
proposed | 0.6546 | 0.8105 | 0.6589 | 0.5378 | 1.2227 | 0.7155 | 0.4704 | 0.4370 |
VIFF | ||||||||
SDF | 0.4511 | 0.8062 | 0.2164 | 0.2319 | 0.7753 | 0.3294 | 0.4248 | 0.2804 |
proposed | 0.5606 | 0.8083 | 0.4087 | 0.3945 | 1.0558 | 0.5415 | 0.3784 | 0.3735 |
VIFF | ||||||||
SDF | 0.4534 | 0.8061 | 0.1852 | 0.1838 | 0.7536 | 0.3249 | 0.3716 | 0.2731 |
proposed | 0.4876 | 0.8072 | 0.3226 | 0.2696 | 0.9484 | 0.4275 | 0.3599 | 0.3911 |
VIFF | ||||||||
SDF | 0.4448 | 0.8062 | 0.1354 | 0.1248 | 0.7447 | 0.2729 | 0.3193 | 0.2517 |
proposed | 0.4879 | 0.8068 | 0.2560 | 0.1908 | 0.9333 | 0.3478 | 0.3001 | 0.3019 |
VIFF | ||||||||
SDF | 0.3873 | 0.8076 | 0.6440 | 0.5905 | 0.7992 | 0.7914 | 0.4813 | 0.3048 |
proposed | 0.3590 | 0.8064 | 0.6547 | 0.5006 | 0.8176 | 0.8791 | 0.5439 | 0.3978 |
VIFF | ||||||||
SDF | 0.3389 | 0.8067 | 0.4515 | 0.2412 | 0.7036 | 0.6179 | 0.5286 | 0.2827 |
proposed | 0.3189 | 0.8054 | 0.4519 | 0.3056 | 0.7239 | 0.6586 | 0.5119 | 0.3735 |
VIFF | ||||||||
SDF | 0.3102 | 0.8058 | 0.3608 | 0.1289 | 0.6562 | 0.5409 | 0.4522 | 0.2546 |
proposed | 0.3223 | 0.8057 | 0.3868 | 0.2362 | 0.7317 | 0.5710 | 0.4648 | 0.3434 |
VIFF | ||||||||
SDF | 0.2750 | 0.8059 | 0.2241 | 0.0916 | 0.6234 | 0.3045 | 0.3238 | 0.1899 |
proposed | 0.2938 | 0.8046 | 0.2383 | 0.1328 | 0.6529 | 0.3860 | 0.3778 | 0.2363 |
Noisy Image Fusion Computational Efficiency of Images | |||
Processing Time of SDF | Total Processing Time of Proposed Method | ||
Image Denoising and Fusion | |||
Denoising | Fusion | Total | |
41.77 s | 28.61 s | 70.38 s | 21.73 s |
Noisy Image Fusion Computational Efficiency of Images | |||
Processing Time of SDF | Total Processing Time of Proposed Method | ||
Image Denoising and Fusion | |||
Denoising | Fusion | Total | |
48.72 s | 34.69 s | 83.41 s | 26.83 s |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qi, G.; Hu, G.; Mazur, N.; Liang, H.; Haner, M. A Novel Multi-Modality Image Simultaneous Denoising and Fusion Method Based on Sparse Representation. Computers 2021, 10, 129. https://doi.org/10.3390/computers10100129
Qi G, Hu G, Mazur N, Liang H, Haner M. A Novel Multi-Modality Image Simultaneous Denoising and Fusion Method Based on Sparse Representation. Computers. 2021; 10(10):129. https://doi.org/10.3390/computers10100129
Chicago/Turabian StyleQi, Guanqiu, Gang Hu, Neal Mazur, Huahua Liang, and Matthew Haner. 2021. "A Novel Multi-Modality Image Simultaneous Denoising and Fusion Method Based on Sparse Representation" Computers 10, no. 10: 129. https://doi.org/10.3390/computers10100129
APA StyleQi, G., Hu, G., Mazur, N., Liang, H., & Haner, M. (2021). A Novel Multi-Modality Image Simultaneous Denoising and Fusion Method Based on Sparse Representation. Computers, 10(10), 129. https://doi.org/10.3390/computers10100129