Development of a Fast Positioning Platform with a Large Stroke Based on a Piezoelectric Actuator for Precision Machining
<p>Conceptual design and moving principle of FPP.</p> "> Figure 2
<p>Equivalent mechanical model of FPP.</p> "> Figure 3
<p>Equivalent driving circuit of the PZT.</p> "> Figure 4
<p>The working range of the PZT and PZT driver.</p> "> Figure 5
<p>The working range of the FPP.</p> "> Figure 6
<p>The displacement of the flexible hinges under force <span class="html-italic">F<sub>pzt</sub></span>.</p> "> Figure 7
<p>Finite element model of FPP.</p> "> Figure 8
<p>The deformation under 7000 N load is about 54 μm.</p> "> Figure 9
<p>The relationship between force and displacement.</p> "> Figure 10
<p>Stress distribution of flexible hinges at 55 μm displacement.</p> "> Figure 11
<p>Modal FEA simulation resonant frequency: 1429.6 Hz.</p> "> Figure 12
<p>Experimental setup for modal analysis.</p> "> Figure 13
<p>Result of the modal analysis.</p> "> Figure 14
<p>Experimental principle and experimental setup.</p> "> Figure 15
<p>Maximum output displacement of FPP in static state.</p> "> Figure 16
<p>Step response results of FPP.</p> "> Figure 17
<p>Test results of motion resolution for FPP.</p> "> Figure 18
<p>Signal tracking results at different frequencies: Output displacement is 50 μm.</p> "> Figure 19
<p>Experimental setup for cutting experiments.</p> "> Figure 20
<p>Surface morphology of processed workpieces.</p> "> Figure 21
<p>Surface roughness of processed workpieces.</p> "> Figure 22
<p>Surface roughness change with Controlled.</p> ">
Abstract
:1. Introduction
2. Conceptual Design and Analysis of the FPP Mechanism
2.1. Conceptual Design
2.2. Input and Output Characteristic of FPP
2.3. Structural Design of Flexible Hinges
3. Finite Element Analysis of FPP
3.1. Static Structure Analysis
3.2. Modal Analysis
4. Performance Testing Experiments
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Fang, F.Z.; Zhang, X.D.; Weckenmann, A.; Zhang, G.X.; Evans, C. Manufacturing and measurement of freeform optics. CIRP Ann. 2013, 62, 823–846. [Google Scholar] [CrossRef]
- Dow, T.A.; Miller, M.H.; Falter, P.J. Application of a fast tool servo for diamond turning of nonrotationally symmetric surfaces. Precis. Eng. 1991, 13, 243–250. [Google Scholar] [CrossRef]
- Patterson, S.; Magrab, E. Design and testing of a fast tool servo for diamond turning. Precis. Eng. 1985, 7, 123–128. [Google Scholar] [CrossRef]
- Ku, S.-S.; Larsen, G.; Cetinkunt, S. Fast tool servo control for ultra-precision machining at extremely low feed rates. Mechatronics 1998, 8, 381–393. [Google Scholar] [CrossRef]
- Kim, H.-S.; Lee, K.-I.; Lee, K.-M.; Bang, Y.-B. Fabrication of free-form surfaces using a long-stroke fast tool servo and corrective figuring with on-machine measurement. Int. J. Mach. Tools Manuf. 2009, 49, 991–997. [Google Scholar] [CrossRef]
- Bhokare, S.G.; Behera, B. Motion improvised miniaturized dual focus lens module based on piezoelectric actuator for the medical applications. Ferroelectrics 2022, 598, 68–78. [Google Scholar] [CrossRef]
- Delibas, B.; Koc, B.; Thielager, J.; Stiebel, C. A novel drive and control method for piezoelectric motors in microscopy stages. In Proceedings of the Euspen’s 21st International Conference & Exhibition, Copenhagen, Denmark, 7–10 June 2021. [Google Scholar]
- Mohith, S.; Upadhya, A.R.; Navin, K.P.; Kulkarni, S.; Rao, M. Recent trends in piezoelectric actuators for precision motion and their applications: A review. Smart Mater. Struct. 2020, 30, 013002. [Google Scholar] [CrossRef]
- Yuan, Y.; Zhang, D.; Jing, X.; Ehmann, K.F. Freeform surface fabrication on hardened steel by double frequency vibration cutting. J. Mater. Process. Technol. 2020, 275, 116369. [Google Scholar] [CrossRef]
- Brinksmeier, E.; Riemer, O.; Gläbe, R.; Lünemann, B.; Kopylow, C.; Dankwart, C.; Meier, A. Submicron functional surfaces generated by diamond machining. CIRP Ann. 2010, 59, 535–538. [Google Scholar] [CrossRef]
- Gao, W.; Aoki, J.; Ju, B.-F.; Kiyono, S. Surface profile measurement of a sinusoidal grid using an atomic force microscope on a diamond turning machine. Precis. Eng. 2007, 31, 304–309. [Google Scholar] [CrossRef]
- Gan, S.; Lim, H.; Rahman, M. A high precision piezoelectric fine tool servo system for diamond turning. In Proceedings of the 1st International Conference on Nanomanufacturing, Singapore, 15–31 March 2008. [Google Scholar]
- Zhu, Z.; Zhou, X.; Liu, Q.; Zhao, S. Multi-objective optimum design of fast tool servo based on improved differential evolution algorithm. J. Mech. Sci. Technol. 2011, 25, 3141–3149. [Google Scholar] [CrossRef]
- Das, T.K.; Shirinzadeh, B.; Al-Jodah, A.; Ghafarian, M.; Pinskier, J. A novel compliant piezoelectric actuated symmetric microgripper for the parasitic motion compensation. Mech. Mach. Theory 2021, 155, 104069. [Google Scholar]
- Wang, F.; Zhao, X.; Huo, Z.; Shi, B.; Liang, C.; Tian, Y.; Zhang, D. A 2-DOF nano-positioning scanner with novel compound decoupling-guiding mechanism. Mech. Mach. Theory 2021, 155, 104066. [Google Scholar] [CrossRef]
- Ding, B.; Li, Y. Design and analysis of a decoupled XY micro compliant parallel manipulator. In Proceedings of the 2014 IEEE International Conference on Robotics and Biomimetics (ROBIO 2014), Bali, Indonesia, 5–10 December 2014; pp. 1898–1903. [Google Scholar]
- Tian, Y.; Lu, K.; Wang, F.; Zhou, C.; Ma, Y.; Jing, X.; Yang, C.; Zhang, D. A Spatial Deployable Three-DOF Compliant Nano-Positioner with a Three-Stage Motion Amplification Mechanism. IEEE/ASME Trans. Mechatron. 2020, 25, 1322–1334. [Google Scholar] [CrossRef]
- Tang, H.; Gao, J.; Chen, X.; Yu, K.-M.; To, S.; He, Y.; Chen, X.; Zeng, Z.; He, S.; Chen, C. Development and repetitive-compensated PID control of a nanopositioning stage with large-stroke and decoupling property. IEEE Trans. Ind. Electron. 2017, 65, 3995–4005. [Google Scholar] [CrossRef]
- Gere, J.M.; Goodno, B.J. Mechanics of Materials, 5th ed.; Brooks Cole: Pacific Grove, CA, USA, 2001; Volume 780. [Google Scholar]
- Zhou, X.; Zuo, C.; Liu, Q.; Wang, R.; Lin, J. Development of a double-frequency elliptical vibration cutting apparatus for freeform surface diamond machining. Int. J. Adv. Manuf. Technol. 2016, 87, 2099–2111. [Google Scholar] [CrossRef]
Stiffness (N/μm) | Maximum Displacement (μm) | Maximum Driving Force (N) | Maximum Voltage (V) | Capacitance Value (nF) |
---|---|---|---|---|
130 | 120 | 16,000 | 1000 | 3400 |
Material | Density (kg/m3) | Young’s Modulus (GPa) | Poisson’s Ratio |
---|---|---|---|
2A12 | 2730 | 69 | 0.35 |
Cutting Material | Aluminum Alloy | |
---|---|---|
Cutting conditions | Processing method | End face turning |
Spindle speed | 500 r/min | |
Feed speed | 5 mm/min | |
Cutting depth | (a) 5 μm Uncontrolled | |
(b) 5 μm Controlled | ||
(c) 10 μm Uncontrolled | ||
(d) 10 μm Controlled | ||
Cutting tool (MCD) | Nose radius | 0.5 mm |
Clearance angle | 10° |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hu, G.; Xin, W.; Zhang, M.; Chen, G.; Man, J.; Tian, Y. Development of a Fast Positioning Platform with a Large Stroke Based on a Piezoelectric Actuator for Precision Machining. Micromachines 2024, 15, 1050. https://doi.org/10.3390/mi15081050
Hu G, Xin W, Zhang M, Chen G, Man J, Tian Y. Development of a Fast Positioning Platform with a Large Stroke Based on a Piezoelectric Actuator for Precision Machining. Micromachines. 2024; 15(8):1050. https://doi.org/10.3390/mi15081050
Chicago/Turabian StyleHu, Gaofeng, Wendong Xin, Min Zhang, Guangjun Chen, Jia Man, and Yanling Tian. 2024. "Development of a Fast Positioning Platform with a Large Stroke Based on a Piezoelectric Actuator for Precision Machining" Micromachines 15, no. 8: 1050. https://doi.org/10.3390/mi15081050
APA StyleHu, G., Xin, W., Zhang, M., Chen, G., Man, J., & Tian, Y. (2024). Development of a Fast Positioning Platform with a Large Stroke Based on a Piezoelectric Actuator for Precision Machining. Micromachines, 15(8), 1050. https://doi.org/10.3390/mi15081050