A Review of Phase-Change Materials and Their Potential for Reconfigurable Intelligent Surfaces
<p>Resistivity ranges and transition temperatures for all reviewed PCMs in this work. Silicon, gold, and copper are also shown as guidelines.</p> "> Figure 2
<p>Representation of the crystal structure of VO<sub>2</sub> and how it changes from a monoclinic to rutile structure during MIT. The associated resistance drop and hysteresis can also be seen above.</p> "> Figure 3
<p>(<b>a</b>) Reflectarray unit cell using VO<sub>2</sub> and an addressable heating matrix. (<b>b</b>) Reflection phase curve and (<b>c</b>) loss curve of the simulated structure for 32 GHz [<a href="#B1-micromachines-14-01259" class="html-bibr">1</a>].</p> "> Figure 4
<p>(<b>a</b>) Sketch representation of reprogrammable VO<sub>2</sub>-based coding metasurface controlled by an FPGA platform. Different spatial coding patterns can be encoded onto the structure simultaneously through a computer-programmed biasing network at distinct moments of t<sub>1</sub>, t<sub>2</sub>, t<sub>3</sub>… [<a href="#B4-micromachines-14-01259" class="html-bibr">4</a>]. (<b>b</b>) (Top) Schematic of the switchable metasurface, consisting of periodic square-shaped VO<sub>2</sub>, SiO<sub>2</sub> spacer, gold strip, VO<sub>2</sub> film, SiO<sub>2</sub> spacer, and the bottom gold film. (Bottom) Calculated absorptance of the designed absorber with (red solid line) and without (blue dashed line) the VO<sub>2</sub> patch when the thicknesses of VO<sub>2</sub> and SiO<sub>2</sub> are 0.08 and 41 μm, respectively [<a href="#B5-micromachines-14-01259" class="html-bibr">5</a>]. (<b>c</b>) (Top) Three-dimensional schematic of the switchable metamaterial consisting of square gold ring, gold cross, SiO<sub>2</sub> spacer, and VO<sub>2</sub> film on Si substrate; (bottom left) the simulated results of absorptance when VO<sub>2</sub> is in the conducting state; (bottom right) the simulated transmittance with (red line) and without (blue line) the metallic ring when VO<sub>2</sub> is in the insulating state [<a href="#B6-micromachines-14-01259" class="html-bibr">6</a>]. (<b>d</b>) (Top) Three-dimensional diagram of the bifunctional metamaterial absorber based on graphene and VO<sub>2</sub>, using polysilicon, a Topas spacer, and VO<sub>2</sub> and gold films; (bottom) the absorptance spectra of different VO<sub>2</sub> state. Blue solid line (red dash line) denotes the result when VO<sub>2</sub> is in the conducting (insulating) state [<a href="#B7-micromachines-14-01259" class="html-bibr">7</a>].</p> "> Figure 5
<p>(<b>a</b>) (Top) Schematics of the proposed DSF-VO<sub>2</sub> bifunctional terahertz metamaterial; (middle panel) transmission coefficients of linearly polarized waves in (left) backward (−z) and (right) forward (+z) directions; (lower panel) the calculated absorptance spectra for x- and y-polarized waves incident along the (left) backward and (right) forward directions [<a href="#B8-micromachines-14-01259" class="html-bibr">8</a>]. (<b>b</b>) (Top left) Schematic of the quadruple-state dynamic color display. Al<sub>2</sub>O<sub>3</sub>/Al nanodisks with different diameter (D) and interparticle gap (g) reside on a VO<sub>2</sub>/Au mirror substrate; (top right) overview SEM image of a palette square. Inset: enlarged tilted view of the SEM image. Scale bar: 200 nm. (Bottom) Experimental and simulated reflectance spectra of the selected color squares at the four different states [<a href="#B9-micromachines-14-01259" class="html-bibr">9</a>].</p> "> Figure 6
<p>(<b>a</b>) Temperature dependence of resistivity for Ti<sub>2</sub>O<sub>3</sub> films. The blue and purple lines indicate the a-axis in Ti<sub>2</sub>O<sub>3</sub> films measured along I ⊥ c and I//c directions, respectively. The red line indicates the c-axis in Ti<sub>2</sub>O<sub>3</sub> films. The bulk Ti<sub>2</sub>O<sub>3</sub> data are also shown for comparison. The black and gray lines indicate the measurement directions along I//c and I ⊥ c directions, respectively [<a href="#B100-micromachines-14-01259" class="html-bibr">100</a>]. (<b>b</b>) Thermal dependence of resistance of TiO<sub>2</sub> single crystals treated with different conditions. The blue curve is the untreated reference, the black curve is oxidized TiO<sub>2</sub> (p<sub>O2</sub> = 200 mbar, 200 °C), the green curve is slightly reduced TiO<sub>2</sub> (p<sub>O2</sub> = 10<sup>−9</sup> mbar, 500 °C), and the red curve is strongly reduced TiO<sub>2</sub> (p<sub>O2</sub> = 10<sup>−12</sup> mbar, 1000 °C) exhibiting metallic conductivity. [<a href="#B101-micromachines-14-01259" class="html-bibr">101</a>]. (<b>c</b>) Temperature dependence of the electrical resistivity of Ti<sub>3</sub>O<sub>5</sub> [<a href="#B102-micromachines-14-01259" class="html-bibr">102</a>].</p> "> Figure 7
<p>Devices and metasurfaces using TiO-based materials. (<b>a</b>) Schematics of a metasurface based on Ti<sub>2</sub>O<sub>3</sub> being tuned under sunlight illumination to modulate THz waves [<a href="#B11-micromachines-14-01259" class="html-bibr">11</a>]. (<b>b</b>) Schematic of memristor structures on kern-type substrate using a multilayer TiO<sub>2</sub> and TiO<sub>x</sub> metafilm [<a href="#B13-micromachines-14-01259" class="html-bibr">13</a>].</p> "> Figure 8
<p>Cubic inverse spinel structure of Fe<sub>3</sub>O<sub>4</sub> with tetrahedral and octahedral sites above T<sub>V</sub> (<b>a</b>) and distorted monoclinic crystal structure below T<sub>V</sub> (<b>b</b>). The double and super-exchange interaction mechanisms (<b>c</b>). Sketch of the localized structure of the spins at tetrahedral and octahedral sites (<b>d</b>). The density of states occupied by electrons of Fe<sup>2+</sup> ions at octahedral sites (<b>e</b>) [<a href="#B108-micromachines-14-01259" class="html-bibr">108</a>].</p> "> Figure 9
<p>Structure of LaCoO<sub>3</sub> before transition. Only one CoO<sub>6</sub> polyhedron is shown for clarity. As the temperature increases, the CoO<sub>6</sub> rotates and the distances between Co-Co and Co-O-Co shorten.</p> "> Figure 10
<p>Low-temperature BCT and high-temperature rutile crystal structures of NbO<sub>2</sub> [<a href="#B112-micromachines-14-01259" class="html-bibr">112</a>]. Reprinted figure with permission from [<a href="#B112-micromachines-14-01259" class="html-bibr">112</a>], Copyright 2019 by the American Physical Society.</p> "> Figure 11
<p>(<b>a</b>) Schematic showcasing bond disproportionation in NNO bilayer structures with NdAlO<sub>3</sub> [<a href="#B126-micromachines-14-01259" class="html-bibr">126</a>]. (<b>b</b>) Schematic of electronic and structural disproportionation in the insulating state in rare-earth nickelates: NiO<sub>6</sub> octahedra electronically and structurally disproportionate in a checkerboard pattern [<a href="#B127-micromachines-14-01259" class="html-bibr">127</a>].</p> "> Figure 12
<p>Devices and metasurfaces using rare-earth nickelates (RNiO<sub>3</sub>). (<b>a</b>) XRD 2θ−θ patterns of as-grown, 24 h fluorinated, and oxygen-annealed (450 °C for 5 h) NdNiO<sub>3</sub> films [<a href="#B21-micromachines-14-01259" class="html-bibr">21</a>]. (<b>b</b>) Cross-sectional HAADF-STEM and the corresponding EDX mappings of Ni and Nd elements. The CSD-NNO/LAO thin film is porous, while the other two are dense [<a href="#B22-micromachines-14-01259" class="html-bibr">22</a>]. (<b>c</b>) SEM micrographs of the fracture surface of La<sub>2-x</sub>Sr<sub>x</sub>NiO<sub>4</sub> ceramics [<a href="#B23-micromachines-14-01259" class="html-bibr">23</a>]. (<b>d</b>) Schematic representation of SNO structure with random oxygen vacancies, which act as impurity centers. The unperturbed CDW mode gets entangled with this impurity-mediated Friedel oscillation (FO), centered at the impurity, and the phase mismatch between FO and CDW can be witnessed by the newly modulated lattice arrangement [<a href="#B24-micromachines-14-01259" class="html-bibr">24</a>]. (<b>a</b>) Reprinted with permission from [<a href="#B21-micromachines-14-01259" class="html-bibr">21</a>]. Copyright 2017 American Chemical Society. (<b>b</b>) Reprinted with permission from [<a href="#B22-micromachines-14-01259" class="html-bibr">22</a>]. Copyright 2021 American Chemical Society. (<b>d</b>) Reprinted with permission from [<a href="#B24-micromachines-14-01259" class="html-bibr">24</a>], Copyright 2020 by the American Physical Society.</p> "> Figure 13
<p>Representation of the phase change that occurs in chalcogenide materials. Thermal pulses either crystallize or amorphize the material to ‘set’ or ‘reset’ its high and low resistance phases.</p> "> Figure 14
<p>Devices and metasurfaces using chalcogenide materials. (<b>a</b>) Spectral plots of the 2D pillar array metasurface optimized as an angle- and polarization-independent switchable mirror using Φ data [<a href="#B28-micromachines-14-01259" class="html-bibr">28</a>]. (<b>b</b>) SEM scan of the fabricated crystalline-GSST metasurface, with an enlarged image of an individual meta-atom. Simulated and measured (FTIR) transmittance of the GSST metasurface [<a href="#B31-micromachines-14-01259" class="html-bibr">31</a>]. (<b>c</b>) Silicon photonic MMI. Scale bar: 10 µm. Illustration of MMI with thin Sb<sub>2</sub>Se<sub>3</sub> PCM patch and optical writing of pixel patterns onto the device using a microscope. Illustration of the geometry of 500 nm wide silicon rib waveguides without PCM patch and with Sb<sub>2</sub>Se<sub>3</sub> patch in amorphous and crystalline states [<a href="#B32-micromachines-14-01259" class="html-bibr">32</a>]. (<b>d</b>) Schematic of the rewritable device consisting of antimony trisulfide PCM switched between crystalline (C-PCM) and amorphous (A-PCM) states. The thin film consists of Si<sub>3</sub>N<sub>4</sub> (5 nm)/Sb<sub>2</sub>S<sub>3</sub> (t nm)/Si<sub>3</sub>N<sub>4</sub> (5 nm)/Al (100 nm) [<a href="#B33-micromachines-14-01259" class="html-bibr">33</a>].</p> ">
Abstract
:1. Introduction
2. Phase-Change Materials of Interest and Applications
2.1. Volatile PCMs
2.1.1. Vanadium Dioxide
2.1.2. Titanium Oxide
2.1.3. Iron Oxides
2.1.4. Lanthanum Cobaltite
2.1.5. Niobium Dioxide
2.1.6. Rare-Earth Nickelates
2.2. Non-Volatile PCMs
Chalcogenides
3. Perspectives and Outlook
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Matos, R.; Pala, N. VO2-based ultra-reconfigurable intelligent reflective surface for 5G applications. Sci. Rep. 2022, 12, 4497. [Google Scholar] [CrossRef]
- Matos, R.; Kaddour, A.-S.; Georgakopoulos, S.V.; Pala, N. VO2-based Ultra-Reconfigurable Ka-Band Reflectarrays for Next-Generation Communication and Radar Systems. In Proceedings of the 2021 IEEE International Symposium on Antennas and Propagation and North American Radio Science Meeting, APS/URSI 2021-Proceedings, Singapore, 4–10 December 2021. [Google Scholar] [CrossRef]
- Matos, R.; Kaddour, A.-S.; Georgakopoulos, S.V.; Pala, N. Reflectarrays with Ultra-Reconfigurable VO2 Unit-Cells for Next-Generation Communication Systems. In Proceedings of the 2021 IEEE Texas Symposium on Wireless and Microwave Circuits and Systems: Making Waves in Texas, WMCS 2021, Virtual, 18–20 May 2021. [Google Scholar] [CrossRef]
- Shabanpour, J.; Beyraghi, S.; Cheldavi, A. Ultrafast reprogrammable multifunctional vanadium-dioxide-assisted metasurface for dynamic THz wavefront engineering. Sci. Rep. 2020, 10, 8950. [Google Scholar] [CrossRef]
- Song, Z.; Zhang, J. Achieving broadband absorption and polarization conversion with a vanadium dioxide metasurface in the same terahertz frequencies. Opt. Express 2020, 28, 12487–12497. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Song, Z. Simultaneous realizations of absorber and transparent conducting metal in a single metamaterial. Opt. Express 2020, 28, 6565–6571. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.; Song, Z. Terahertz bifunctional absorber based on a graphene-spacer-vanadium dioxide-spacer-metal configuration. Opt. Express 2020, 28, 11780–11788. [Google Scholar] [CrossRef] [PubMed]
- Luo, X.; Hu, F.; Li, G. Broadband switchable terahertz half-/quarter-wave plate based on VO2-metal hybrid metasurface with over/underdamped transition. J. Phys. D Appl. Phys. 2021, 54, 505111. [Google Scholar] [CrossRef]
- Duan, X.; White, S.; Cui, Y.; Neubrech, F.; Gao, Y.; Haglund, R.; Liu, N. Reconfigurable Multistate Optical Systems Enabled by VO2Phase Transitions. ACS Photonics 2020, 7, 2958–2965. [Google Scholar] [CrossRef]
- Ndjiongue, A.R.; Ngatched, T.M.N.; Dobre, O.A.; Haas, H. Toward the Use of Re-configurable Intelligent Surfaces in VLC Systems: Beam Steering. IEEE Wirel. Commun. 2021, 28, 156–162. [Google Scholar] [CrossRef]
- Cai, Y.; Zhu, H.; Shi, Q.; Cheng, Y.; Chang, L.; Huang, W. Photothermal conversion of Ti2O3 film for tuning terahertz waves. iScience 2022, 25, 103661. [Google Scholar] [CrossRef]
- Fu, X.; Chen, W.; Hao, X.; Zhang, Z.; Tang, R.; Yang, B.; Zhao, X.; Zuo, L. Preparing high purity λ-Ti3O5 and Li/λ-Ti3O5 as high-performance electromagnetic wave absorbers. J. Mater. Chem. C 2021, 9, 7976–7981. [Google Scholar] [CrossRef]
- Zhidik, E.V.; Troyan, P.E.; Sakharov, Y.V.; Zhidik, Y.S.; Korzhenko, D.V. Study and production of thin-film memristors based on TiO2/TiOx layers. IOP Conf. Ser. Mater. Sci. Eng. 2019, 498, 12022. [Google Scholar] [CrossRef]
- Yun, X.; Wu, Q.; Feng, L.; Shen, J.; Chen, J.; Chu, P.; Liu, L.; Wu, X. Microwave absorption enhancement of e-Fe3O4@C microspheres by core surface modification. J. Alloys Compd. 2020, 835, 155307. [Google Scholar] [CrossRef]
- Guo, Z.; Ren, P.; Fu, B.; Ren, F.; Jin, Y.; Sun, Z. Multi-layered graphene-Fe3O4/poly (vinylidene fluoride) hybrid composite films for high-efficient electromagnetic shielding. Polym. Test. 2020, 89, 106652. [Google Scholar] [CrossRef]
- Chen, H.; Huang, Z.; Huang, Y.; Zhang, Y.; Ge, Z.; Ma, W.; Zhang, T.; Wu, M.; Xu, S.; Fan, F.; et al. Consecutively Strong Absorption from Gigahertz to Terahertz Bands of a Monolithic Three-Dimensional Fe3O4/Graphene Material. ACS Appl. Mater. Interfaces 2019, 11, 1274–1282. [Google Scholar] [CrossRef] [PubMed]
- Sun, J.; Yan, G.; Hassan, A.; Mehrez, S.; Anqi, A.; Mahariq, I.; Fayed, M. Optimizing the microwave absorption feature of LaCoO3/Bi2S3 nanocomposite by regulating the filler loading content tested via waveguide and free-space methods. Ceram. Int. 2023, 49, 5437–5445. [Google Scholar] [CrossRef]
- Yuan, W.; Cheng, L.; Xia, T.; Chen, Y.; Long, Q.; Yao, Q.; Pan, S.; Hu, C. Effect of Fe doping on the lattice structure, microscopic morphology and microwave absorption properties of LaCo1-xFexO3. J. Alloys Compd. 2022, 926, 166839. [Google Scholar] [CrossRef]
- Novodvorsky, O.; Parshina, L.; Khramova, O.; Gusev, D.; Polyakov, A.; Cherebilo, E. Laser synthesis of volatile memristors based on niobium oxide thin films. Surf. Interfaces 2022, 30, 101891. [Google Scholar] [CrossRef]
- Shimabukuro, A.E.; Ishii, A.; Takamura, H.; Ohuchi, F.S. Fabrication of absorbing Nb-Ti suboxide anti-reflective thin film stacks. Results Phys. 2019, 15, 102558. [Google Scholar] [CrossRef]
- Onozuka, T.; Chikamatsu, A.; Katayama, T.; Hirose, Y.; Harayama, I.; Sekiba, D.; Ikenaga, E.; Minohara, M.; Kumigashira, H.; Hasegawa, T. Reversible Changes in Resistance of Perovskite Nickelate NdNiO3 Thin Films Induced by Fluorine Substitution. ACS Appl. Mater. Interfaces 2017, 9, 10882–10887. [Google Scholar] [CrossRef]
- Sun, Y.; Wang, Q.; Park, T.; Gage, T.; Zhang, Z.; Wang, X.; Zhang, D.; Sun, X.; He, J.; Zhou, H.; et al. Electrochromic Properties of Perovskite NdNiO3 Thin Films for Smart Windows. ACS Appl. Electron. Mater. 2021, 3, 1719–1731. [Google Scholar] [CrossRef]
- Liu, S.; Cheng, Y.; He, J.; Yan, S.; Luo, H.; Deng, L. Enhanced Microwave Absorption Performance in Sr-Modified La2NiO4 ± δ Nickelate with High Dielectric Loss. Front. Mater. 2020, 7, 271. [Google Scholar] [CrossRef]
- Das, S.; Prajapati, G.L.; Rana, D.S. Pinned and bound modes of charge density wave type collective excitation in SmNiO3 as revealed by terahertz spectroscopy. Phys. Rev. B 2020, 102, 214403. [Google Scholar] [CrossRef]
- Zhong, Q.; Deng, X.; Lin, L.; Song, H.; Zheng, Y.; Cheng, Y.; Xiang, P.; Zhong, N.; Qi, R.; Duan, C.; et al. Revealing a high-density three-dimensional Ruddlesden–Popper-type fault network in an SmNiO3 thin film. J. Mater. Res. 2021, 36, 1637–1645. [Google Scholar] [CrossRef]
- Sakai, E.; Yoshimatsu, K.; Tamamitsu, M.; Horiba, K.; Fujimori, A.; Oshima, M.; Kumigashira, H. Bandwidth-controlled metal-insulator transition in epitaxial PrNiO3 ultrathin films induced by dimensional crossover. Appl. Phys. Lett. 2014, 104, 171609. [Google Scholar] [CrossRef]
- Andrea Mroginski, M.; Massa, N.E.; Salva, H.; Antonio Alonso, J.; Jesús Martínez-Lope, M. Metal-insulator phase transitions of SmNiO3 and PrNiO3: Electrons in a polaronic medium. Phys. Rev. B 1999, 60, 5304. [Google Scholar] [CrossRef]
- Thompson, J.R.; Burrow, J.; Shah, P.; Slagle, J.; Harper, E.; Rynbach, A.; Agha, I.; Mills, M. Artificial neural network discovery of a switchable metasurface reflector. Opt. Express 2020, 28, 24629–24656. [Google Scholar] [CrossRef]
- Wang, Y.; Landreman, P.; Schoen, D.; Okabe, K.; Marshall, A.; Celano, U.; Wong, H.; Park, J.; Brongersma, M. Electrical tuning of phase-change antennas and metasurfaces. Nat. Nanotechnol. 2021, 16, 667–672. [Google Scholar] [CrossRef]
- Zhang, Y.; Fowler, C.; Liang, J.; Azhar, B.; Shalaginov, M.; Deckoff-Jones, S.; An, S.; Chou, J.; Roberts, C.; Liberman, V.; et al. Electrically reconfigurable non-volatile metasurface using low-loss optical phase-change material. Nat. Nanotechnol. 2021, 16, 661–666. [Google Scholar] [CrossRef]
- Yue, F.; Piccoli, R.; Shalaginov, M.; Gu, T.; Richardson, K.; Morandotti, R.; Hu, J.; Razzari, L. Nonlinear Mid-Infrared Metasurface based on a Phase-Change Material. Laser Photon Rev. 2021, 15, 2000373. [Google Scholar] [CrossRef]
- Delaney, M.; Zeimpekis, I.; Du, H.; Yan, X.; Banakar, M.; Thomson, D.; Hewak, D.; Muskens, O. Nonvolatile programmable silicon photonics using an ultralow-loss Sb2Se3 phase change material. Sci. Adv. 2021, 7, eabg3500. [Google Scholar] [CrossRef]
- Liu, H.; Dong, W.; Wang, H.; Lu, L.; Ruan, Q.; Tan, Y.; Simpson, R.; Yang, J. Rewritable color nanoprints in antimony trisulfide films. Sci. Adv. 2020, 6, eabb7171. [Google Scholar] [CrossRef]
- Wang, H.; Zhang, Z.; Zhu, B.; Dang, J.; Wu, L.; Wang, L.; Zhang, K.; Zhang, Y. Performance of Wireless Optical Communication with Reconfigurable Intelligent Surfaces and Random Obstacles. arXiv 2020. [Google Scholar] [CrossRef]
- Gong, S.; Lu, X.; Hoang, D.; Niyato, D.; Shu, L.; Kim, D.; Liang, Y. Toward Smart Wireless Communications via Intelligent Reflecting Surfaces: A Contemporary Survey. IEEE Commun. Surv. Tutor. 2020, 22, 2283–2314. [Google Scholar] [CrossRef]
- Yamagata, M.R.; Wakita, Y.; Tsuruda, Y.; Miyata, K. Feasibility study of low-temperature operable electric power supply for CubeSats using passive thermal control with VO2-based solid–solid phase change material. Therm. Sci. Eng. Prog. 2023, 37, 101601. [Google Scholar] [CrossRef]
- Kakiuchida, H.; Jin, P.; Nakao, S.; Tazawa, M. Optical properties of vanadium dioxide film during semiconductive-metallic phase transition. Jpn. J. Appl. Phys. Part 2 Lett. 2007, 46, L113–L116. [Google Scholar] [CrossRef]
- Xu, Z.; Chen, C.; Wang, Z.; Wu, K.; Chong, H.; Ye, H. Optical constants acquisition and phase change properties of Ge2Sb2Te5 thin films based on spectroscopy. RSC Adv. 2018, 8, 21040–21046. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Q.; Zhang, Y.; Li, J.; Soref, R.; Gu, T.; Hu, J. Broadband nonvolatile photonic switching based on optical phase change materials: Beyond the classical figure-of-merit. Opt. Lett. 2018, 43, 94. [Google Scholar] [CrossRef] [PubMed]
- El-Shair, H.; Ibrahim, A.; Abd El-Wahabb, E.; Afify, M.; Abd El-Salam, F. Optical properties of Sb2Se3 thin films. Vacuum 1991, 42, 911–914. [Google Scholar] [CrossRef]
- Ghosh, C.; Varma, B.P. Optical properties of amorphous and crystalline Sb2S3 thin films. Thin Solid Films 1979, 60, 61–65. [Google Scholar] [CrossRef]
- Won, D.J.; Wang, C.H.; Jang, H.K.; Choi, D.J. Effects of thermally induced anatase-to-rutile phase transition in MOCVD-grown TiO2 films on structural and optical properties. Appl. Phys. A Mater. Sci. Process 2001, 73, 595–600. [Google Scholar] [CrossRef]
- Lahneman, D.J.; Kim, H.; Jiang, H.; Mathews, S.; Lock, E.; Prestigiacomo, J.; Qazilbash, M.; Rohde, C.; Piqué, A. Electronic and optical properties of strain-locked metallic Ti2O3 films. Curr. Appl. Phys. 2023, 47, 9–14. [Google Scholar] [CrossRef]
- Liu, R.; Shang, J.X.; Wang, F.H. Electronic, magnetic and optical properties of β-Ti3O5 and λ-Ti3O5: A density functional study. Comput. Mater. Sci. 2014, 81, 158–162. [Google Scholar] [CrossRef]
- Chen, Q.; Wang, X.; Zhang, M.; Xu, Z.; Gong, J.; Rahman, A.; Fan, L.; Dai, R.; Wang, Z.; Zhang, Z. Temperature dependent optical properties of LaCoO3/SrTiO3 thin film studied by spectroscopic ellipsometry. AIP Adv. 2020, 10, 035117. [Google Scholar] [CrossRef] [Green Version]
- Stoever, J.; Boschker, J.; Bin Anooz, S.; Schmidbauer, M.; Petrik, P.; Schwarzkopf, J.; Albrecht, M.; Irmscher, K. Approaching the high intrinsic electrical resistivity of NbO2 in epitaxially grown films. Appl. Phys. Lett. 2020, 116, 182103. [Google Scholar] [CrossRef]
- Berini, B.; Keller, N.; Dumont, Y.; Popova, E.; Noun, W.; Guyot, M.; Vigneron, J.; Etcheberry, A.; Franco, N.; Da Silva, R. Reversible phase transformation of LaNiO3-x thin films studied in situ by spectroscopic ellipsometry. Phys. Rev. B 2007, 76, 205417. [Google Scholar] [CrossRef]
- Shahsafi, A.; Roney, P.; Zhou, Y.; Zhang, Z.; Xiao, Y.; Wan, C.; Wambold, R.; Salman, J.; Yu, Z.; Li, J.; et al. Temperature-independent thermal radiation. Proc. Natl. Acad. Sci. USA 2019, 116, 26402–26406. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, R.; Wu, Q.; di Renzo, M.; Yuan, Y. A Path to Smart Radio Environments: An Industrial Viewpoint on Reconfigurable Intelligent Surfaces. IEEE Wirel. Commun. 2022, 29, 202–208. [Google Scholar] [CrossRef]
- Singh, S.; Ziliotto, F.; Madhow, U.; Belding, E.; Rodwell, M. Blockage and directivity in 60 GHz wireless personal area networks: From cross-layer model to multihop MAC design. IEEE J. Sel. Areas Commun. 2009, 27, 1400–1413. [Google Scholar] [CrossRef] [Green Version]
- Basar, E.; Di Renzo, M.; De Rosny, J.; Debbah, M.; Alouini, M.-S.; Zhang, R. Wireless Communications Through Reconfigurable Intelligent Surfaces. IEEE Access 2019, 7, 116753–116773. [Google Scholar] [CrossRef]
- Subrt, L.; Pechac, P. Controlling propagation environments using Intelligent Walls. In Proceedings of the 2012 6th European Conference on Antennas and Propagation (EUCAP), Prague, Czech Republic, 26–30 March 2012; IEEE: Piscataway, NJ, USA, 2012; pp. 1–5. [Google Scholar] [CrossRef]
- Subrt, L.; Pechac, P. Intelligent walls as autonomous parts of smart indoor environments. IET Commun. 2012, 6, 1004. [Google Scholar] [CrossRef]
- Tan, X.; Sun, Z.; Jornet, J.M.; Pados, D. Increasing indoor spectrum sharing capacity using smart reflect-array. In Proceedings of the 2016 IEEE International Conference on Communications (ICC), Kuala Lumpur, Malaysia, 22–27 May 2016; IEEE: Piscataway, NJ, USA, 2016; pp. 1–6. [Google Scholar] [CrossRef] [Green Version]
- Abari, O.; Bharadia, D.; Duffield, A.; Katabi, D. Enabling High-Quality Untethered Virtual Reality. In Proceedings of the 14th USENIX Symposium on Networked Systems Design and Implementation (NSDI 17), Boston, MA, USA, March 27–29 2017; USENIX Association: Boston, MA, USA, 2017; pp. 531–544. Available online: https://www.usenix.org/conference/nsdi17/technical-sessions/presentation/abari (accessed on 1 August 2022).
- Tan, X.; Sun, Z.; Koutsonikolas, D.; Jornet, J.M. Enabling Indoor Mobile Millimeter-wave Networks Based on Smart Reflect-arrays. In Proceedings of the IEEE INFOCOM 2018-IEEE Conference on Computer Communications, Honolulu, HI, USA, 16–19 April 2018; pp. 270–278. [Google Scholar] [CrossRef]
- Liaskos, C.; Tsioliaridou, A.; Pitsillides, A.; Ioannidis, S.; Akyildiz, I. Using Any Surface to Realize a New Paradigm for Wireless Communications. Commun. ACM 2018, 61, 30–33. [Google Scholar] [CrossRef] [Green Version]
- Di Renzo, M.; Debbah, M.; Phan-Huy, D.; Zappone, A.; Alouini, M.; Yuen, C.; Sciancalepore, V.; Alexandropoulos, G.; Hoydis, J.; Gacanin, H.; et al. Smart radio environments empowered by reconfigurable AI meta-surfaces: An idea whose time has come. EURASIP J. Wirel. Commun. Netw. 2019, 2019, 129. [Google Scholar] [CrossRef] [Green Version]
- Liaskos, C.; Nie, S.; Tsioliaridou, A.; Pitsillides, A.; Ioannidis, S.; Akyildiz, I. Realizing Wireless Communication Through Software-Defined HyperSurface Environments. In Proceedings of the 2018 IEEE 19th International Symposium on “A World of Wireless, Mobile and Multimedia Networks” (WoWMoM), Chania, Greece, 12–15 June 2018; pp. 14–15. [Google Scholar] [CrossRef] [Green Version]
- Visser, H.J. Array and Phased Array Antenna Basics; Wiley: Hoboken, NJ, USA, 2006; Available online: https://books.google.com/books?id=qv9luhVAKAQC (accessed on 11 August 2022).
- Baladi, E.; Xu, M.Y.; Faria, N.; Nicholls, J.; Hum, S.V. Dual-Band Circularly Polarized Fully Reconfigurable Reflectarray Antenna for Satellite Applications in the Ku-Band. IEEE Trans. Antennas Propag. 2021, 69, 8387–8396. [Google Scholar] [CrossRef]
- Zhou, S.-G.; Zhao, G.; Xu, H.; Luo, C.; Sun, J.; Chen, G.; Jiao, Y. A Wideband 1-Bit Reconfigurable Reflectarray Antenna at Ku-Band. IEEE Antennas Wirel. Propag. Lett. 2022, 21, 566–570. [Google Scholar] [CrossRef]
- Wang, M.; Shan, K.; Luo, W.; Chen, Z. Design of A 2-Bit Dual Linearly Polarized Reconfigurable Reflectarray Element. In Proceedings of the 2021 International Symposium on Antennas and Propagation (ISAP), Taipei, Taiwan, 19–22 October 2021; pp. 1–2. [Google Scholar] [CrossRef]
- Baracco, J.-M.; Ratajczak, P.; Brachat, P.; Fargeas, J.-M.; Toso, G. Ka-Band Reconfigurable Reflectarrays Using Varactor Technology for Space Applications: A proposed design. IEEE Antennas Propag. Mag. 2022, 64, 27–38. [Google Scholar] [CrossRef]
- Gao, J.; Chen, B.; Lei, S.; Tian, J.; Wang, H.; Meng, F. Reconfigurable Reflectarray Unit Cell with Phase and Amplitude Controls. In Proceedings of the 2021 International Conference on Microwave and Millimeter Wave Technology (ICMMT), Nanjing, China, 23–26 May 2021; pp. 1–3. [Google Scholar] [CrossRef]
- Kim, H.; Kim, J.; Oh, J. Design and Implementation of an X-Band Liquid-Crystal-Based Active Reflectarray Antenna. J. Korean Inst. Electromagn. Eng. Sci. 2021, 32, 878–887. [Google Scholar] [CrossRef]
- Zhang, W.; Li, Y.; Zhang, Z. A Reconfigurable Reflectarray Antenna With an 8um-Thick Layer of Liquid Crystal. IEEE Trans. Antennas Propag. 2022, 70, 2770–2778. [Google Scholar] [CrossRef]
- Altynnikov, A.G.; Platonov, R.A.; Sosunov, A.M.; Ivanov, A.D.; Legkova, T.K. Electrically tunable reflector based on ferroelectric material for millimetre wavelength range. IOP Conf. Ser. Mater. Sci. Eng. 2021, 1117, 12015. [Google Scholar] [CrossRef]
- Theofanopoulos, P.C.; Trichopoulos, G.C. A Novel 2-Bit Graphene Reconfigurable Reflectarray. In Proceedings of the 2020 IEEE International Symposium on Antennas and Propagation and North American Radio Science Meeting, Montreal, QC, Canada, 5–10 July 2020; pp. 1701–1702. [Google Scholar] [CrossRef]
- Zhang, W.; Mazzarello, R.; Wuttig, M.; Ma, E. Designing crystallization in phase-change materials for universal memory and neuro-inspired computing. Nat. Rev. Mater. 2019, 4, 150–168. [Google Scholar] [CrossRef]
- Wang, J.; Wang, L.; Liu, J. Overview of Phase-Change Materials Based Photonic Devices. IEEE Access 2020, 8, 121211–121245. [Google Scholar] [CrossRef]
- Shen, M.; Lill, T.; Altieri, N.; Hoang, J.; Chiou, S.; Sims, J.; McKerrow, A.; Dylewicz, R.; Chen, E.; Razavi, H.; et al. Review on recent progress in patterning phase change materials. J. Vac. Sci. Technol. A 2020, 38, 060802. [Google Scholar] [CrossRef]
- Cooley, K.A.; Aldosari, H.M.; Yang, K.; Mohney, S.E. Review of electrical contacts to phase change materials and an unexpected trend between metal work function and contact resistance to germanium telluride. J. Vac. Sci. Technol. A 2020, 38, 050805. [Google Scholar] [CrossRef]
- Ali, H.M. Recent advancements in PV cooling and efficiency enhancement integrating phase change materials based systems—A comprehensive review. Solar Energy 2020, 197, 163–198. [Google Scholar] [CrossRef]
- Zhang, S.; Feng, D.; Shi, L.; Wang, L.; Jin, Y.; Tian, L.; Li, Z.; Wang, G.; Zhao, L.; Yan, Y. A review of phase change heat transfer in shape-stabilized phase change materials (ss-PCMs) based on porous supports for thermal energy storage. Renew. Sustain. Energy Rev. 2021, 135, 110127. [Google Scholar] [CrossRef]
- Kunkel, T.; Vorobyov, Y.; Smayev, M.; Lazarenko, P.; Kolobov, A.; Kozyukhin, S. Self-organized structures in thin films of phase-change material upon femtosecond laser excitation: From periodic ordering to ablation. Appl. Surf. Sci. 2023, 624, 157122. [Google Scholar] [CrossRef]
- Shvets, P.; Dikaya, O.; Maksimova, K.; Goikhman, A. A review of Raman spectroscopy of vanadium oxides. J. Raman Spectrosc. 2019, 50, 1226–1244. [Google Scholar] [CrossRef]
- Mott, N. Metal-Insulator Transitions, 2nd ed.; Taylor & Francis: London, UK, 2004; Available online: https://books.google.com/books?id=PUFZDwAAQBAJ (accessed on 11 August 2022).
- Wu, C.; Feng, F.; Xie, Y. Design of vanadium oxide structures with controllable electrical properties for energy applications. Chem. Soc. Rev. 2013, 42, 5157–5183. [Google Scholar] [CrossRef]
- Yang, D.-S.; Baum, P.; Zewail, A.H. Ultrafast electron crystallography of the cooperative reaction path in vanadium dioxide. Struct. Dyn. 2016, 3, 34304. [Google Scholar] [CrossRef] [Green Version]
- Park, J.H.; Coy, J.; Kasirga, T.; Huang, C.; Fei, Z.; Hunter, S.; Cobden, D. Measurement of a solid-state triple point at the metal–insulator transition in VO2. Nature 2013, 500, 431–434. [Google Scholar] [CrossRef] [Green Version]
- Choi, S.B.; Kyoung, J.; Kim, H.; Park, H.; Park, D.; Kim, B.; Ahn, Y.; Rotermund, F.; Kim, H.; Ahn, K.; et al. Nanopattern enabled terahertz all-optical switching on vanadium dioxide thin film. Appl. Phys. Lett. 2011, 98, 71105. [Google Scholar] [CrossRef]
- Crunteanu, A.; Fabert, M.; Cornette, J.; Colas, M.; Orlianges, J.; Bessaudou, A.; Cosset, F. Electric field-assisted metal insulator transition in vanadium dioxide (VO2) thin films: Optical switching behavior and anomalous far-infrared emissivity variation. In Oxide-Based Materials and Devices VI; Teherani, F.H., Look, D.C., Rogers, D.J., Eds.; SPIE: Washington, DC, USA, 2015; p. 93640J. [Google Scholar] [CrossRef] [Green Version]
- Hormoz, S.; Ramanathan, S. Limits on vanadium oxide Mott metal–insulator transition field-effect transistors. Solid State Electron. 2010, 54, 654–659. [Google Scholar] [CrossRef]
- Matos, R.; Pala, N. Ultra-reconfigurable VO2-based reflectarrays for 5G applications. In Proceedings of the 2020 Antenna Measurement Techniques Association Symposium, AMTA 2020, Virtual, 2–5 November 2020. [Google Scholar]
- Joushaghani, A.; Kruger, B.A.; Paradis, S.; Alain, D.; Aitchison, J.S.; Poon, J.K.S. Sub-volt broadband hybrid plasmonic-vanadium dioxide switches. Appl. Phys. Lett. 2013, 102, 61101. [Google Scholar] [CrossRef] [Green Version]
- Born, N.; Crunteanu, A.; Humbert, G.; Bessaudou, A.; Koch, M.; Fischer, B.M. Switchable THz Filter Based on a Vanadium Dioxide Layer Inside a Fabry–Pérot Cavity. IEEE Trans. Terahertz Sci. Technol. 2015, 5, 1035–1039. [Google Scholar] [CrossRef]
- Taylor, S.; Yang, Y.; Wang, L. Vanadium dioxide based Fabry-Perot emitter for dynamic radiative cooling applications. J. Quant. Spectrosc. Radiat. Transf. 2017, 197, 76–83. [Google Scholar] [CrossRef]
- Kim, M.; Jeong, J.; Poon, J.K.S.; Eleftheriades, G.V. Vanadium-dioxide-assisted digital optical metasurfaces for dynamic wavefront engineering. J. Opt. Soc. Am. B 2016, 33, 980–988. [Google Scholar] [CrossRef]
- Huitema, L.; Crunteanu, A.; Wong, H. Highly integrated VO2-based antenna for frequency tunability at millimeter-wave frequencies. In Proceedings of the 2016 International Workshop on Antenna Technology (iWAT), Cocoa Beach, FL, USA, 29 February–2 March 2016; pp. 40–43. [Google Scholar] [CrossRef]
- Gerislioglu, B.; Ahmadivand, A.; Karabiyik, M.; Sinha, R.; Pala, N. VO2-Based Reconfigurable Antenna Platform with Addressable Microheater Matrix. Adv. Electron. Mater. 2017, 3, 17000170. [Google Scholar] [CrossRef]
- Pala, N.; Gerislioglu, B.; Ahmadivand, A.; Karabiyik, M. Phase-Change Material Based Reconfigurable Antenna. U.S. Patent 9923267-B1, 20 March 2018. [Google Scholar]
- Matos, R.; Pala, N. Phase Change Material Based Reconfigurable Intelligent Reflective Surfaces. U.S. Patent 11133588-B1, 28 September 2021. [Google Scholar]
- Wu, R.Y.; Shi, C.B.; Liu, S.; Wu, W.; Cui, T.J. Addition Theorem for Digital Coding Metamaterials. Adv. Opt. Mater. 2018, 6, 1701236. [Google Scholar] [CrossRef]
- Liu, S.; Cui, T.; Zhang, L.; Xu, Q.; Wang, Q.; Wan, X.; Gu, J.; Tang, W.; Qing Qi, M.; Han, J.; et al. Convolution Operations on Coding Metasurface to Reach Flexible and Continuous Controls of Terahertz Beams. Adv. Sci. 2016, 3, 1600156. [Google Scholar] [CrossRef]
- Zhou, L.; Wen, W.; Chan, C.T.; Sheng, P. Electromagnetic-Wave Tunneling Through Negative-Permittivity Media with High Magnetic Fields. Phys. Rev. Lett. 2005, 94, 243905. [Google Scholar] [CrossRef] [Green Version]
- Duan, X.; Liu, N. Scanning Plasmonic Color Display. ACS Nano 2018, 12, 8817–8823. [Google Scholar] [CrossRef]
- Wentzcovitch, R.M.; Schulz, W.W.; Allen, P.B. VO2: Peierls or Mott-Hubbard? A view from band theory. Phys. Rev. Lett. 1994, 72, 3389–3392. [Google Scholar] [CrossRef]
- Manjunath, K.; Saraswat, A.; Samrat, D.; Rao, C.N.R. Atomic Layer Deposited Ti2O3 Thin Films. ChemPhysChem 2022, 23, e202100910. [Google Scholar] [CrossRef]
- Yoshimatsu, K.; Kurokawa, H.; Horiba, K.; Kumigashira, H.; Ohtomo, A. Large anisotropy in conductivity of Ti2O3 films. APL Mater. 2018, 6, 101101. [Google Scholar] [CrossRef] [Green Version]
- Szot, K.; Bihlmayer, G.; Speier, W. Chapter Four-Nature of the Resistive Switching Phenomena in TiO2 and SrTiO3: Origin of the Reversible Insulator–Metal Transition. In Solid State Physics; Camley, R.E., Stamps, R.L., Eds.; Academic Press: Cambridge, MA, USA, 2014; Volume 65, pp. 353–559. [Google Scholar] [CrossRef]
- Onoda, M. Phase Transitions of Ti3O5. J. Solid State Chem. 1998, 136, 67–73. [Google Scholar] [CrossRef]
- Jütten, S.; Bredow, T. First-Principles Investigation of Electronic Properties and Phase Transition of Ti3O5. J. Phys. Chem. C 2022, 126, 7809–7817. [Google Scholar] [CrossRef]
- Serway, R.A.; Jewett, J.W. Physics for Scientists and Engineers; Cengage Learning: Boston, MA, USA, 2018; Available online: https://books.google.com/books?id=CiQJzgEACAAJ (accessed on 11 August 2022).
- Gmelin, E.; Lenge, N.; Kronmüller, H. Specific heat of magnetite near the verwey transition is there more than one phase transition? Philos. Mag. B Phys. Condens. Matter; Stat. Mech. Electron. Opt. Magn. Prop. 1984, 50, 41–44. [Google Scholar] [CrossRef]
- Schmitz-Antoniak, C.; Schmitz, D.; Warland, A.; Svechkina, N.; Salamon, S.; Piamonteze, C.; Wende, H. Reversed ageing of Fe3O4 nanoparticles by hydrogen plasma. Sci. Rep. 2016, 6, 20897. [Google Scholar] [CrossRef] [Green Version]
- Huang, H.Y.; Chen, Z.; Wang, R.; De Groot, F.; Wu, W.; Okamoto, J.; Chainani, A.; Singh, A.; Li, Z.; Zhou, J.; et al. Jahn-Teller distortion driven magnetic polarons in magnetite. Nat. Commun. 2017, 8, 15929. [Google Scholar] [CrossRef]
- Bohra, M.; Agarwal, N.; Singh, V. A Short Review on Verwey Transition in Nanostructured Fe3O4 Materials. J. Nanomater. 2019, 2019, 8457383. [Google Scholar] [CrossRef] [Green Version]
- Imada, M.; Fujimori, A.; Tokura, Y. Metal-insulator transitions. Rev. Mod. Phys. 1998, 70, 1039. [Google Scholar] [CrossRef] [Green Version]
- Noskin, L.E. Study of the Metal-Insulator Transition LaCoO3-x Epitaxial Films. 2018. [Google Scholar]
- Thornton, G.; Tofield, B.C.; Hewat, A.W. A Neutron Diffraction Study of LaCoO3 in the Temperature Range 4.2 < T < 1248 K. Master’s Thesis, Cornell University, Ithaca, NY, USA, 1986. [Google Scholar]
- Wahila, M.J.; Paez, G.; Singh, C.; Regoutz, A.; Sallis, S.; Zuba, M.; Rana, J.; Tellekamp, M.; Boschker, J.; Markurt, T.; et al. Evidence of a second-order Peierls-driven metal-insulator transition in crystalline NbO2. Phys. Rev. Mater. 2019, 3, 074602. [Google Scholar] [CrossRef] [Green Version]
- Hossain, N.; Günes, O.; Zhang, C.; Koughia, C.; Li, Y.; Wen, S.; Wong, R.; Kasap, S.; Yang, Q. Structural and physical properties of NbO2 and Nb2O5 thin films prepared by magnetron sputtering. J. Mater. Sci. Mater. Electron. 2019, 30, 9822–9835. [Google Scholar] [CrossRef]
- Lacorre, P.; Torrance, J.B.; Pannetier, J.; Nazzal, A.I.; Wang, P.W.; Huang, T.C. Synthesis, crystal structure, and properties of metallic PrNiO3: Comparison with metallic NdNiO3 and semiconducting SmNiO3. J. Solid State Chem. 1991, 91, 225–237. [Google Scholar] [CrossRef]
- Torrance, J.B.; Lacorre, P.; Nazzal, A.I.; Ansaldo, E.J.; Niedermayer, C. Systematic study of insulator-metal transitions in perovskites RNiO3 (R=Pr,Nd,Sm,Eu) due to closing of charge-transfer gap. Phys. Rev. B 1992, 45, 8209–8212. [Google Scholar] [CrossRef] [Green Version]
- Medarde, M.L. Structural, magnetic and electronic properties of RNiO3 perovskites (R = rare earth). J. Phys. Condens. Matter 1997, 9, 1679–1707. [Google Scholar] [CrossRef]
- Zhou, J.-S.; Goodenough, J.B. Chemical bonding and electronic structure of RNiO3(R = rare earth). Phys. Rev. B 2004, 69, 153105. [Google Scholar] [CrossRef]
- Catalano, S.; Gibert, M.; Fowlie, J.; Íñiguez, J.; Triscone, J.-M.; Kreisel, J. Rare-earth nickelates RNiO3: Thin films and heterostructures. Rep. Prog. Phys. 2018, 81, 46501. [Google Scholar] [CrossRef] [Green Version]
- Scherwitzl, R.; Zubko, P.; Lezama, I.; Ono, S.; Morpurgo, A.; Catalan, G.; Triscone, J. Electric-Field Control of the Metal-Insulator Transition in Ultrathin NdNiO3 Films. Adv. Mater. 2010, 22, 5517–5520. [Google Scholar] [CrossRef] [PubMed]
- Shukla, N.; Joshi, T.; Dasgupta, S.; Borisov, P.; Lederman, D.; Datta, S. Electrically induced insulator to metal transition in epitaxial SmNiO3 thin films. Appl. Phys. Lett. 2014, 105, 12108. [Google Scholar] [CrossRef] [Green Version]
- Catalano, S.; Gibert, M.; Bisogni, V.; Peil, O.; He, F.; Sutarto, R.; Viret, M.; Zubko, P.; Scherwitzl, R.; Georges, A.; et al. Electronic transitions in strained SmNiO3 thin films. APL Mater. 2014, 2, 116110. [Google Scholar] [CrossRef] [Green Version]
- Torriss, B.; Margot, J.; Chaker, M. Metal-Insulator Transition of strained SmNiO3 Thin Films: Structural, Electrical and Optical Properties. Sci. Rep. 2017, 7, 40915. [Google Scholar] [CrossRef] [Green Version]
- Capon, F.; Ruello, P.; Bardeau, J.; Simon, P.; Laffez, P.; Dkhil, B.; Reversat, L.; Galicka, K.; Ratuszna, A. Metal-insulator transition in thin films of RxR1-xNiO3 compounds: DC electrical conductivity and IR spectroscopy measurements. J. Phys. Condens. Matter 2005, 17, 1137–1150. [Google Scholar] [CrossRef]
- Zhang, Z.; Schwanz, D.; Narayanan, B.; Kotiuga, M.; Dura, J.; Cherukara, M.; Zhou, H.; Freeland, J.; Li, J.; Sutarto, R.; et al. Perovskite nickelates as electric-field sensors in salt water. Nature 2018, 553, 68–72. [Google Scholar] [CrossRef]
- Yoo, P.; Liao, P. First principles study on hydrogen doping induced metal-to-insulator transition in rare earth nickelates RNiO3 (R = Pr, Nd, Sm, Eu, Gd, Tb, Dy, Yb). Phys. Chem. Chem. Phys. 2020, 22, 6888–6895. [Google Scholar] [CrossRef]
- Georgescu, A.B.; Peil, O.E.; Disa, A.S.; Georges, A.; Millis, A.J. Disentangling lattice and electronic contributions to the metal–insulator transition from bulk vs. layer confined RNiO3. Proc. Natl. Acad. Sci. USA 2019, 116, 14434–14439. [Google Scholar] [CrossRef] [Green Version]
- Georgescu, A.B.; Millis, A.J. Energy Landscape Analysis of Metal-Insulator Transitions: Theory and Application to Ca2RuO4, RNiO3 and Their Heterostructures. 2021. Available online: http://arxiv.org/abs/2105.02271 (accessed on 11 November 2022).
- Bak, J.; Bae, H.B.; Kim, J.; Oh, J.; Chung, S.-Y. Formation of Two-Dimensional Homologous Faults and Oxygen Electrocatalytic Activities in a Perovskite Nickelate. Nano Lett. 2017, 17, 3126–3132. [Google Scholar] [CrossRef]
- Mundet, B.; Jareño, J.; Gazquez, J.; Varela, M.; Obradors, X.; Puig, T. Defect landscape and electrical properties in solution-derived LaNiO3 and NdNiO3 epitaxial thin films. Phys. Rev. Mater. 2018, 2, 63607. [Google Scholar] [CrossRef] [Green Version]
- Ovshinsky, S.R. Reversible Electrical Switching Phenomena in Disordered Structures. Phys. Rev. Lett. 1968, 21, 1450–1453. [Google Scholar] [CrossRef]
- Chen, M.; Rubin, K.A.; Barton, R.W. Compound materials for reversible, phase-change optical data storage. Appl. Phys. Lett. 1986, 49, 502–504. [Google Scholar] [CrossRef]
- Ohno, E.; Yamada, N.; Kurumizawa, T.; Kimura, K.; Takao, M. TeGeSnAu Alloys for Phase Change Type Optical Disk Memories. Jpn. J. Appl. Phys. 1989, 28, 1235–1240. [Google Scholar] [CrossRef]
- Ruiz de Galarreta, C.; Sinev, I.; Alexeev, A.; Trofimov, P.; Ladutenko, K.; Garcia-Cuevas Carrillo, S.; Gemo, E.; Baldycheva, A.; Bertolotti, J.; David Wright, C. Reconfigurable multilevel control of hybrid all-dielectric phase-change metasurfaces. Optica 2020, 7, 476–484. [Google Scholar] [CrossRef]
- Zhang, Y.; Chou, J.; Li, J.; Li, H.; Du, Q.; Yadav, A.; Zhou, S.; Shalaginov, M.; Fang, Z.; Zhong, H.; et al. Broadband transparent optical phase change materials for high-performance nonvolatile photonics. Nat. Commun. 2019, 10, 4279. [Google Scholar] [CrossRef] [PubMed] [Green Version]
PCM | Optical Constants (n, κ) | Ref. | |||
---|---|---|---|---|---|
Insulating/Amorphous | Measured Wavelength λ (nm) | Metallic/Crystalline | Measured Wavelength λ (nm) | ||
VO2 | 3.1, 0.4 | 500 | 2.8, 0.7 | 500 | [37] |
GST | 3.9, 1.5 | 700 | 1.6, 3.7 | 700 | [38] |
GSST | 3.5, 1.8 × 10−4 | 1000 | 5.1, 1.18 | 1000 | [39] |
SbSe | 3.47, 0.71 | 500 | 3.9, 4.3 | 500 | [40] |
SbS | 3.15, 0.13 | 621 | 3.55, 0.8 | 621 | [41] |
TiO2 | 2, 0.02 | 700 | 2.6, 0.15 | 700 | [42] |
Ti2O3 | 1.2, 0.6 | 621 | N/A | N/A | [43] |
Ti3O5 | 2.8, 1.9 | 621 | 0.1, 1 | 621 | [44] |
LaCoO3 | 2.6, 0.65 | 700 | 2.2, 0.8 | 700 | [45] |
NbO2 | 2.35, 2.57 | 621 | N/A | 621 | [46] |
La2NiO4 | 1.35, 1.5 | 621 | 1.95, 1.1 | 621 | [47] |
SmNiO3 | 3.2, 2.4 | 2000 | 2.4, 2.5 | 2000 | [48] |
PCM | Device Type | Properties | Applications | Refs. |
---|---|---|---|---|
VO2 | VO2-based unit cell |
| Reflectarray antenna | [1,2,3] |
VO2 | VO2-based coding metasurface |
| THz communications systems and MIMO systems | [4] |
VO2 | Bifunctional VO2-based THz device |
| Switchable photonic devices | [5] |
VO2 | Simultaneous absorber and transparent conductor |
| Terahertz energy farming, transparent conducting devices, modulating, and filtering | [6] |
VO2 | Terahertz bifunctional absorber |
| Intelligent absorbers, terahertz switches, and photovoltaic devices | [7] |
VO2 | Broadband switchable terahertz HWP/QWP |
| Switchable, reconfigurable metasurfaces | [8] |
VO2 | Reconfigurable multistate optical system |
| Optical information storage, optical encryption, and high-resolution optical and holographic displays | [9] |
GST | Switchable metasurface reflector |
| Switchable reflective/transmissive metasurface for SWIR | [28] |
GST | GST-based antenna and metasurface |
| Meta-atoms for large scale metasurfaces, programmable active wavefront manipulation | [29] |
GSST | Electrically reconfigurable non-volatile metasurface |
| Chip-scale reconfigurable optics | [30] |
GSST | Nonlinear mid-infrared metasurface |
| Reconfigurable nonlinear optical architectures, MWIR systems | [31] |
SbSe | Nonvolatile programmable silicon photonics using Sb2Se3 |
| On-chip light detection, photonic quantum technology, artificial intelligence hardware, optical tensor cores | [32] |
SbS | Rewritable color nanoprints in antimony trisulfide films |
| High-resolution colordisplay devices, optical encryption | [33] |
TiO2 | Liquid crystal-based RIS cell with TiO2 nanodisks |
| VLC beam steering | [10] |
Ti2O3 | Photothermal conversion of Ti2O3 film for tuning terahertz waves |
| Solar light-tuning of THz waves | [11] |
Ti3O5 | λ-Ti3O5-based electromagnetic wave absorber |
| Electromagnetic absorber | [12] |
TiO2/TiOx | Memristor using TiO2/TiOx thin films |
| Memristors | [13] |
NNO | Fluorinated perovskite nickelate |
| Thermal or atmospheric sensors | [21] |
NNO | Thermochromic NNO films |
| Smart windows | [22] |
LNO | Sr-modified LNO | Tetragonal lattice
| Microwave absorber | [23] |
SNO | Pinned and bound modes in SNO |
| CDW conduction, optical waveguides | [24] |
SNO | SNO films with RP faults |
| Basis for growth performance for nickelate oxide films, suggests possibility of harnessing RP faults to control physical properties | [25] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Matos, R.; Pala, N. A Review of Phase-Change Materials and Their Potential for Reconfigurable Intelligent Surfaces. Micromachines 2023, 14, 1259. https://doi.org/10.3390/mi14061259
Matos R, Pala N. A Review of Phase-Change Materials and Their Potential for Reconfigurable Intelligent Surfaces. Micromachines. 2023; 14(6):1259. https://doi.org/10.3390/mi14061259
Chicago/Turabian StyleMatos, Randy, and Nezih Pala. 2023. "A Review of Phase-Change Materials and Their Potential for Reconfigurable Intelligent Surfaces" Micromachines 14, no. 6: 1259. https://doi.org/10.3390/mi14061259
APA StyleMatos, R., & Pala, N. (2023). A Review of Phase-Change Materials and Their Potential for Reconfigurable Intelligent Surfaces. Micromachines, 14(6), 1259. https://doi.org/10.3390/mi14061259