Hyperspectral Dimensionality Reduction by Tensor Sparse and Low-Rank Graph-Based Discriminant Analysis
"> Figure 1
<p>Visual illustration of <span class="html-italic">n</span>-mode vectors, <span class="html-italic">n</span>-mode unfolding, and <span class="html-italic">n</span>-mode product of a third-order tensor from a hyperspectral image.</p> "> Figure 2
<p>Parameter tuning of <math display="inline"> <semantics> <mi>β</mi> </semantics> </math> and <math display="inline"> <semantics> <mi>λ</mi> </semantics> </math> for the proposed TSLGDA algorithm using three datasets: (<b>a</b>) Indian Pines; (<b>b</b>) University of Pavia; (<b>c</b>) Salinas.</p> "> Figure 3
<p>Parameter tuning of window size for MPCA and TSLGDA using three datasets: (<b>a</b>) Indian Pines; (<b>b</b>) University of Pavia; (<b>c</b>) Salinas.</p> "> Figure 4
<p>Overall accuracy versus the reduced spectral dimension for different methods using three datasets: (<b>a</b>) Indian Pines; (<b>b</b>) University of Pavia; (<b>c</b>) Salinas.</p> "> Figure 5
<p>Classification maps of different methods for the Indian Pines dataset: (<b>a</b>) ground truth; (<b>b</b>) training set; (<b>c</b>) origin; (<b>d</b>) PCA; (<b>e</b>) LDA; (<b>f</b>) LFDA; (<b>g</b>) SGDA; (<b>h</b>) GDA-SS; (<b>i</b>) SLGDA; (<b>j</b>) MPCA; (<b>k</b>) G-LTDA; and (<b>l</b>) TSLGDA.</p> "> Figure 6
<p>Classification maps of different methods for the University of Pavia dataset: (<b>a</b>) ground truth; (<b>b</b>) training set; (<b>c</b>) origin; (<b>d</b>) PCA; (<b>e</b>) LDA; (<b>f</b>) LFDA; (<b>g</b>) SGDA; (<b>h</b>) GDA-SS; (<b>i</b>) SLGDA; (<b>j</b>) MPCA; (<b>k</b>) G-LTDA; and (<b>l</b>) TSLGDA.</p> "> Figure 7
<p>Classification maps of different methods for the Salinas dataset: (<b>a</b>) ground truth; (<b>b</b>) training set; (<b>c</b>) origin; (<b>d</b>) PCA; (<b>e</b>) LDA; (<b>f</b>) LFDA; (<b>g</b>) SGDA; (<b>h</b>) GDA-SS; (<b>i</b>) SLGDA; (<b>j</b>) MPCA; (<b>k</b>) G-LTDA; and (<b>l</b>) TSLGDA.</p> "> Figure 8
<p>Overall classification accuracy and standard deviation versus different numbers of training samples per class for all methods using three datasets: (<b>a</b>) Indian Pines; (<b>b</b>) University of Pavia; (<b>c</b>) Salinas.</p> ">
Abstract
:1. Introduction
2. Related Work
2.1. Tensor Basics
2.2. Sparse and Low-Rank Graph-Based Discriminant Analysis
2.3. Multilinear Principal Component Analysis
3. Tensor Sparse and Low-Rank Graph-Based Discriminant Analysis
3.1. Tensor Sparse and Low-Rank Graph
3.2. Tensor Locality Preserving Projection
Algorithm 1: Tensor Sparse and Low-Rank Graph-Based Discriminant Analysis for Classification. |
Input: Training patches , testing patches , regularization parameters and , |
reduced dimensionality . |
Initialize: , , , , , , , |
maxIter = 100, . |
1. for do |
2. repeat |
3. Compute , , and according to (16)–(18). |
4. Update the Lagrangian multipliers: |
, . |
5. Update : , where |
6. Check convergence conditions: . |
7. . |
8. until convergence conditions are satisfied or maxIter. |
9. end for |
10. Construct the block-diagonal weight matrix according to (13). |
11. Compute the projection matrices according to (21). |
12. Compute the reduced features: |
, . |
13. Determine the class label of by NN classifier. |
14. Output: The class labels of test patches. |
4. Experiments and Discussions
4.1. Experimental Datasets
4.2. Parameters Tuning
4.2.1. Regularization Parameters for TSLGDA
4.2.2. Window Size for Tensor Representation
4.2.3. The Number of Spectral Dimension for TSLGDA
4.3. Classification Results
4.3.1. Classification Accuracy
4.3.2. Classification Maps
4.3.3. The Influence of Training Size
4.3.4. The Analysis of Computational Complexity
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- He, Z.; Li, J.; Liu, L. Tensor block-sparsity based representation for spectral-spatial hyperspectral image classification. Remote Sens. 2016, 8, 636. [Google Scholar] [CrossRef]
- Peng, B.; Li, W.; Xie, X.M.; Du, Q.; Liu, K. Weighted-fusion-based representation classifiers for hyperspectral imagery. Remote Sens. 2015, 7, 14806–14826. [Google Scholar] [CrossRef]
- Yu, S.Q.; Jia, S.; Xu, C.Y. Convolutional neural networks for hyperspectral image classification. Neurocomputing 2017, 219, 88–98. [Google Scholar] [CrossRef]
- Jimenez, L.O.; Landgrebe, D.A. Supervised classification in high-dimensional space: Geometrical, statistical, and asymptoticla properitier of multivariate data. IEEE Trans. Syst. Man Cybern. Part C Appl. Rev. 1998, 28, 39–54. [Google Scholar] [CrossRef]
- Chang, C.-I.; Safavi, H. Progressive dimensionality reduction by transform for hyperspectral imagery. Pattern Recognit. 2011, 44, 2760–2773. [Google Scholar] [CrossRef]
- Yuan, Y.; Lin, J.Z.; Wang, Q. Dual-clustering-based hyperspectral band selection by contextual analysis. IEEE Trans. Geosci. Remote Sens. 2016, 54, 1431–1445. [Google Scholar] [CrossRef]
- Wang, Q.; Lin, J.Z.; Yuan, Y. Salient band selection for hyperspectral image classification via manifold ranking. IEEE Trans. Neural Netw. Learn. Syst. 2016, 27, 1279–1289. [Google Scholar] [CrossRef] [PubMed]
- Jolliffe, I.T. Principal Component Analysis; Springer-Verlag: New York, NY, USA, 2002. [Google Scholar]
- Bandos, T.V.; Bruzzone, L.; Camps-Valls, G. Classification of hyperspectral images with regularized linear discriminant analysis. IEEE Trans. Geosci. Remote Sens. 2009, 47, 862–873. [Google Scholar] [CrossRef]
- Li, W.; Prasad, S.; Fowler, J.E.; Bruce, L.M. Locality-preserving dimensionality reduction and classification for hyperspectral image analysis. IEEE Trans. Geosci. Remote Sens. 2012, 50, 1185–1198. [Google Scholar] [CrossRef]
- Tan, K.; Zhou, S.Y.; Du, Q. Semisupervised discriminant analysis for hyperspectral imagery with block-sparse graph. IEEE Geosci. Remote Sens. Lett. 2015, 12, 1765–1769. [Google Scholar] [CrossRef]
- Chatpatanasiri, R.; Kijsirikul, B. A unifier semi-supervised dimensionality reduction framework for manifold learning. Neurocomputing 2010, 73, 1631–1640. [Google Scholar] [CrossRef]
- Yan, S.C.; Xu, D.; Zhang, B.Y.; Zhang, H.-J.; Yang, Q.; Lin, S. Graph embedding and extensions: A general framework for dimensionality reduction. IEEE Trans. Pattern Anal. Mach. Intell. 2007, 29, 40–51. [Google Scholar] [CrossRef] [PubMed]
- He, X.F.; Cai, D.; Yan, S.C.; Zhang, H.-J. Neighborhood preserving embedding. In Proceedings of the 2005 IEEE Conference on Computer Vision (ICCV), Beijing, China, 17–20 October 2005; pp. 1208–1213. [Google Scholar]
- Feng, F.B.; Li, W.; Du, Q.; Zhang, B. Dimensionality reduction of hyperspectral image with graph-based discriminant analysis considering spectral similarity. Remote Sens. 2017, 9, 323. [Google Scholar] [CrossRef]
- Wright, J.; Yang, A.Y.; Ganesh, A.; Sastry, S.S.; Ma, Y. Robust face recognition via sparse representation. IEEE Trans. Pattern Anal. Mach. Intell. 2009, 31, 210–227. [Google Scholar] [CrossRef] [PubMed]
- Wright, J.; Ma, Y.; Mairal, J.; Sapiro, G.; Huang, T.S.; Yan, S.C. Sparse representation for computer vision and pattern recognition. Proc. IEEE 2010, 98, 1031–1044. [Google Scholar] [CrossRef]
- Cheng, B.; Yang, J.C.; Yan, S.C.; Fu, Y.; Huang, T.S. Learning with l1-graph for image analysis. IEEE Trans. Image Process. 2015, 23, 2241–2253. [Google Scholar]
- Ly, N.H.; Du, Q.; Fowler, J.E. Sparse graph-based discriminant analysis for hyperspectral imagery. IEEE Trans. Geosci. Remote Sens. 2014, 52, 3872–3884. [Google Scholar]
- He, W.; Zhang, H.Y.; Zhang, L.P.; Philips, W.; Liao, W.Z. Weighted sparse graph based dimensionality reduction for hyperspectral images. IEEE Geosci. Remote Sens. Lett. 2016, 13, 686–690. [Google Scholar] [CrossRef]
- Ly, N.H.; Du, Q.; Fowler, J.E. Collaborative graph-based discriminant analysis for hyperspectral imagery. IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. 2014, 7, 2688–2696. [Google Scholar] [CrossRef]
- Li, W.; Du, Q. Laplacian regularized collaborative graph for discriminant analysis of hyperspectral imagery. IEEE Trans. Geosci. Remote Sens. 2016, 54, 7066–7076. [Google Scholar] [CrossRef]
- Li, W.; Liu, J.B.; Du, Q. Sparse and low-rank graph for discriminant analysis of hyperspectral imagery. IEEE Trans. Geosci. Remote Sens. 2016, 54, 4094–4105. [Google Scholar] [CrossRef]
- Xue, Z.H.; Du, P.J.; Li, J.; Su, H.J. Simultaneous sparse graph embedding for hyperspectral image classification. IEEE Trans. Geosci. Remote Sens. 2015, 53, 6114–6132. [Google Scholar] [CrossRef]
- Lu, H.P.; Plataniotis, K.N.; Venetsanopoulos, A.N. MPCA: Multilinear principal component analysis of tensor objects. IEEE Trans. Neural Netw. 2008, 19, 18–39. [Google Scholar] [PubMed]
- Guo, X.; Huang, X.; Zhang, L.F.; Zhang, L.P.; Plaza, A.; Benediktssom, J.A. Support tensor machines for classification of hyperspectral remote sensing imagery. IEEE Trans. Geosci. Remote Sens. 2016, 54, 3248–3264. [Google Scholar] [CrossRef]
- An, J.L.; Zhang, X.R.; Jiao, L.C. Dimensionality reduction based on group-based tensor model for hyperspectral image classification. IEEE Geosci. Remote Sens. Lett. 2016, 13, 1497–1501. [Google Scholar] [CrossRef]
- Zhang, L.P.; Zhang, L.F.; Tao, D.C.; Huang, X. Tensor discriminative locality alignment for hyperspectral image spectral-spatial feature extraction. IEEE Trans. Geosci. Remote Sens. 2013, 51, 242–256. [Google Scholar] [CrossRef]
- Zhong, Z.S.; Fan, B.; Duan, J.Y.; Wang, L.F.; Ding, K.; Xiang, S.M.; Pan, C.H. Discriminant tensor spectral-spatial feature extraction for hyperspectral image classification. IEEE Geosci. Remote Sens. Lett. 2015, 12, 1028–1032. [Google Scholar] [CrossRef]
- Benediktsson, J.A.; Palmason, J.A.; Sveinsson, J.R. Classification of hyperspectral data from urban areas based on extended morphological profiles. IEEE Trans. Geosci. Remote Sens. 2005, 43, 480–491. [Google Scholar] [CrossRef]
- Dallal Mura, M.; Benediktsson, J.A.; Waske, B.; Bruzzone, L. Morphological attribute profiles for the analysis of very high resolution images. IEEE Trans. Geosci. Remote Sens. 2010, 48, 3747–3762. [Google Scholar] [CrossRef]
- Rajadell, O.; Garcia-Sevilla, P.; Pla, F. Spectral-spatial pixel characterization using Gabor filters for hyperspectral image classification. IEEE Geosci. Remote Sens. Lett. 2013, 10, 860–864. [Google Scholar] [CrossRef]
- Zhao, H.T.; Sun, S.Y. Sparse tensor embedding based multispectral face recognition. Neurocomputing 2014, 133, 427–436. [Google Scholar] [CrossRef]
- Lai, Z.H.; Xu, Y.; Chen, Q.C.; Yang, J.; Zhang, D. Multilinear sparse principal component analysis. IEEE Trans. Neural Netw. Learn. Syst. 2014, 25, 1942–1950. [Google Scholar] [CrossRef] [PubMed]
- Boyd, S.; Parikh, N.; Chu, E.; Peleato, B.; Eckstein, J. Distributed optimization and statistical learning via the alternating direction method of multipliers. Found. Trends Mach. Learn. 2011, 3, 1–122. [Google Scholar] [CrossRef]
- Cai, J.-F.; Candés, E.J.; Shen, Z. A singular value thresholding algorithm for matrix completion. SIAM J. Optim. 2010, 24, 1956–1982. [Google Scholar] [CrossRef]
- Nie, F.P.; Xiang, S.M.; Song, Y.Q.; Zhang, C.S. Extracting the optimal dimensionality for local tensor discriminant analysis. Pattern Recognit. 2009, 42, 105–114. [Google Scholar] [CrossRef]
- SPArse Modeling Software. Available online: http://spams-devel.gforge.inria.fr/index.html (accessed on 20 January 2017).
- Hyperspectral Remote Sensing Scenes. Available online: http://www.ehu.eus/ccwintco/index.php?title=Hyperspectral_Remote_Sensing_Scenes (accessed on 20 January 2017).
Indian Pines | University of Pavia | |||||
---|---|---|---|---|---|---|
Class | Name | Training | Testing | Name | Training | Testing |
1 | Alfalfa | 5 | 41 | Asphalt | 40 | 6591 |
2 | Corn-notill | 143 | 1285 | Meadows | 40 | 18,609 |
3 | Corn-mintill | 83 | 747 | Gravel | 40 | 2059 |
4 | Corn | 24 | 213 | Tree | 40 | 3024 |
5 | Grass-pasture | 48 | 435 | Painted metal sheets | 40 | 1305 |
6 | Grass-trees | 73 | 657 | Bare Soil | 40 | 4989 |
7 | Grass-pasture-mowed | 3 | 25 | Bitumen | 40 | 1290 |
8 | Hay-windrowed | 48 | 430 | Self-blocking bricks | 40 | 3642 |
9 | Oats | 2 | 18 | Shadows | 40 | 907 |
10 | Soybean-notill | 97 | 875 | |||
11 | Soybean-mintill | 246 | 2209 | |||
12 | Soybean-clean | 59 | 534 | |||
13 | Wheat | 21 | 184 | |||
14 | Woods | 127 | 1138 | |||
15 | Buildings-Grass-Trees-Drive | 39 | 347 | |||
16 | Stone-Steel-Towers | 9 | 84 | |||
Total | 1027 | 9222 | 360 | 42,416 |
Salinas | |||
---|---|---|---|
Class | Name | Training | Testing |
1 | Brocoli-green-weeds-1 | 40 | 1969 |
2 | Brocoli-green-weeds-2 | 75 | 3651 |
3 | Fallow | 40 | 1936 |
4 | Fallow-rough-plow | 28 | 1366 |
5 | Fallow-smooth | 54 | 2624 |
6 | Stubble | 79 | 3880 |
7 | Celery | 72 | 3507 |
8 | Grapes-untrained | 225 | 11,046 |
9 | Soil-vinyard-develop | 124 | 6079 |
10 | Corn-senesced-green-weeds | 66 | 3212 |
11 | Lettuce-romaine-4wk | 21 | 1047 |
12 | Lettuce-romaine-5wk | 39 | 1888 |
13 | Lettuce-romaine-6wk | 18 | 898 |
14 | Lettuce-romaine-7wk | 21 | 1049 |
15 | Vinyard-untrained | 145 | 7123 |
16 | Vinyard-vertical-trellis | 36 | 1771 |
Total | 1083 | 53,046 |
No. | Origin | PCA | LDA | LFDA | SGDA | GDA-SS | SLGDA | MPCA | G-LTDA | TSLGDA |
---|---|---|---|---|---|---|---|---|---|---|
1 | 39.02 | 54.15 | 33.66 | 44.88 | 65.04 | 49.59 | 48.78 | 71.34 | 92.20 | 91.71 |
±8.27 | ±11.1 | ±17.8 | ±15.5 | ±7.45 | ±12.2 | ±6.90 | ±9.63 | ±4.69 | ±8.02 | |
2 | 55.92 | 52.96 | 57.28 | 67.78 | 69.31 | 74.24 | 73.04 | 81.09 | 96.47 | 97.32 |
±2.68 | ±1.53 | ±2.13 | ±3.56 | ±2.37 | ±3.95 | ±1.93 | ±2.74 | ±1.01 | ±0.68 | |
3 | 49.83 | 50.15 | 58.34 | 66.75 | 62.65 | 69.57 | 67.00 | 82.26 | 93.98 | 97.51 |
±2.68 | ±2.34 | ±2.57 | ±2.82 | ±1.76 | ±5.56 | ±0.28 | ±2.74 | ±2.34 | ±0.91 | |
4 | 42.07 | 40.19 | 38.12 | 54.93 | 49.14 | 58.06 | 62.68 | 87.91 | 96.53 | 97.37 |
±7.75 | ±4.56 | ±4.00 | ±7.69 | ±5.40 | ±8.24 | ±12.3 | ±4.65 | ±3.93 | ±1.90 | |
5 | 82.95 | 84.47 | 81.20 | 88.25 | 89.55 | 92.03 | 93.32 | 91.13 | 93.15 | 97.00 |
±2.93 | ±4.58 | ±3.87 | ±2.41 | ±1.74 | ±1.34 | ±0.98 | ±2.00 | ±1.44 | ±2.50 | |
6 | 90.75 | 93.06 | 93.36 | 94.64 | 95.38 | 96.91 | 96.27 | 97.53 | 94.76 | 99.27 |
±1.00 | ±2.95 | ±1.47 | ±1.59 | ±0.61 | ±0.89 | ±0.11 | ±1.14 | ±2.94 | ±0.46 | |
7 | 81.60 | 72.00 | 76.00 | 79.20 | 88.00 | 88.00 | 88.00 | 94.00 | 95.20 | 96.80 |
±8.29 | ±13.6 | ±12.3 | ±22.5 | ±4.00 | ±8.00 | ±5.66 | ±7.66 | ±7.15 | ±3.35 | |
8 | 96.28 | 93.02 | 95.26 | 99.12 | 99.53 | 97.91 | 99.19 | 98.37 | 97.81 | 99.86 |
±1.78 | ±1.52 | ±2.71 | ±1.47 | ±0.40 | ±2.02 | ±0.49 | ±1.66 | ±0.67 | ±0.31 | |
9 | 26.67 | 34.44 | 25.56 | 43.33 | 50.00 | 37.04 | 25.00 | 54.17 | 78.89 | 93.33 |
±4.65 | ±12.0 | ±16.5 | ±9.94 | ±33.8 | ±16.9 | ±11.8 | ±19.4 | ±15.4 | ±7.24 | |
10 | 66.06 | 63.91 | 65.40 | 69.04 | 69.64 | 73.64 | 74.03 | 84.12 | 95.93 | 96.52 |
±2.04 | ±3.49 | ±3.61 | ±3.05 | ±5.81 | ±3.02 | ±0.32 | ±1.32 | ±1.35 | ±1.56 | |
11 | 71.75 | 71.41 | 73.65 | 72.43 | 78.18 | 79.45 | 79.52 | 90.30 | 96.32 | 98.53 |
±3.00 | ±2.00 | ±1.81 | ±1.83 | ±1.42 | ±1.23 | ±2.08 | ±0.78 | ±1.41 | ±0.59 | |
12 | 43.41 | 41.46 | 48.63 | 67.20 | 67.29 | 74.78 | 76.83 | 73.73 | 93.60 | 96.17 |
±6.34 | ±2.55 | ±3.25 | ±1.56 | ±2.19 | ±4.59 | ±1.99 | ±2.38 | ±1.70 | ±1.75 | |
13 | 91.41 | 94.02 | 93.59 | 98.70 | 96.01 | 97.83 | 98.64 | 98.23 | 91.85 | 99.46 |
±2.44 | ±2.40 | ±1.11 | ±0.62 | ±0.63 | ±1.63 | ±1.15 | ±1.12 | ±4.21 | ±0.67 | |
14 | 90.04 | 89.65 | 89.44 | 93.83 | 94.58 | 94.00 | 96.05 | 95.78 | 97.72 | 99.67 |
±1.96 | ±2.10 | ±2.16 | ±1.56 | ±0.89 | ±1.18 | ±0.87 | ±0.40 | ±0.66 | ±0.43 | |
15 | 37.98 | 36.54 | 41.15 | 61.04 | 48.90 | 56.20 | 56.48 | 88.26 | 95.91 | 98.67 |
±2.18 | ±2.30 | ±3.73 | ±2.89 | ±1.92 | ±3.20 | ±2.85 | ±4.69 | ±1.62 | ±1.16 | |
16 | 88.43 | 88.67 | 91.08 | 89.64 | 92.37 | 91.27 | 93.98 | 93.07 | 84.29 | 97.35 |
±6.30 | ±3.02 | ±3.47 | ±5.56 | ±3.03 | ±2.99 | ±1.70 | ±4.33 | ±8.68 | ±1.32 | |
OA | 69.25 | 68.52 | 70.86 | 76.60 | 77.65 | 80.51 | 80.76 | 88.34 | 95.67 | 98.08 |
±1.16 | ±0.88 | ±0.76 | ±0.82 | ±1.44 | ±0.31 | ±0.08 | ±0.51 | ±0.49 | ±0.30 | |
AA | 65.89 | 66.26 | 66.36 | 74.42 | 75.97 | 76.91 | 76.80 | 86.33 | 93.41 | 97.28 |
±1.19 | ±1.62 | ±2.30 | ±1.79 | ±2.37 | ±2.38 | ±1.98 | ±1.17 | ±0.56 | ±0.85 | |
64.90 | 64.04 | 66.73 | 73.32 | 74.40 | 77.70 | 78.01 | 86.70 | 95.07 | 97.81 | |
±1.30 | ±0.98 | ±0.92 | ±0.93 | ±1.68 | ±0.38 | ±0.14 | ±0.59 | ±0.56 | ±0.34 |
No. | Origin | PCA | LDA | LFDA | SGDA | GDA-SS | SLGDA | MPCA | G-LTDA | TSLGDA |
---|---|---|---|---|---|---|---|---|---|---|
1 | 56.13 | 55.98 | 64.77 | 60.56 | 47.44 | 52.88 | 52.84 | 84.20 | 72.41 | 91.15 |
±1.99 | ±2.90 | ±2.11 | ±5.24 | ±2.00 | ±6.58 | ±1.98 | ±1.49 | ±2.03 | ±1.46 | |
2 | 69.68 | 70.30 | 68.75 | 77.05 | 82.15 | 78.88 | 80.92 | 84.60 | 89.24 | 92.59 |
±5.59 | ±3.27 | ±3.44 | ±4.42 | ±2.71 | ±2.80 | ±3.74 | ±3.31 | ±0.93 | ±2.68 | |
3 | 68.02 | 67.34 | 69.90 | 66.47 | 63.83 | 64.27 | 61.17 | 80.24 | 89.48 | 86.83 |
±3.95 | ±1.49 | ±3.10 | ±3.94 | ±10.5 | ±3.28 | ±3.26 | ±3.01 | ±5.68 | ±2.44 | |
4 | 90.21 | 86.98 | 88.92 | 91.33 | 90.73 | 91.26 | 92.54 | 92.20 | 71.28 | 96.04 |
±4.43 | ±3.70 | ±2.23 | ±2.01 | ±2.25 | ±2.10 | ±0.07 | ±1.85 | ±4.90 | ±2.23 | |
5 | 99.39 | 99.49 | 99.51 | 99.88 | 99.73 | 99.79 | 99.66 | 99.72 | 98.41 | 100 |
±0.38 | ±0.23 | ±0.25 | ±0.10 | ±0.18 | ±0.08 | ±0.27 | ±0.26 | ±1.10 | ±0.00 | |
6 | 59.11 | 61.68 | 66.35 | 65.36 | 59.47 | 65.07 | 63.97 | 77.99 | 95.04 | 93.06 |
±2.25 | ±6.60 | ±6.62 | ±7.09 | ±5.18 | ±2.72 | ±0.50 | ±4.68 | ±2.35 | ±3.12 | |
7 | 83.36 | 83.22 | 86.34 | 75.78 | 82.25 | 79.04 | 81.71 | 89.22 | 98.26 | 97.50 |
±4.59 | ±3.57 | ±2.25 | ±1.97 | ±5.40 | ±3.64 | ±1.75 | ±2.09 | ±1.37 | ±0.90 | |
8 | 68.06 | 66.89 | 68.24 | 60.81 | 61.16 | 64.67 | 65.46 | 76.30 | 93.31 | 86.07 |
±2.72 | ±4.34 | ±3.24 | ±4.18 | ±8.92 | ±4.21 | ±2.87 | ±3.07 | ±1.32 | ±3.27 | |
9 | 95.94 | 95.90 | 97.00 | 83.95 | 84.04 | 87.81 | 85.17 | 99.49 | 88.00 | 98.39 |
±1.52 | ±1.36 | ±1.82 | ±4.64 | ±6.01 | ±2.20 | ±1.01 | ±0.32 | ±2.23 | ±1.03 | |
OA | 69.47 | 69.65 | 71.38 | 73.04 | 72.59 | 73.01 | 73.80 | 84.30 | 86.92 | 92.33 |
±2.16 | ±0.88 | ±1.10 | ±0.70 | ±0.68 | ±1.47 | ±1.91 | ±1.05 | ±0.42 | ±0.93 | |
AA | 76.66 | 76.42 | 78.86 | 75.69 | 74.53 | 75.96 | 75.94 | 87.11 | 88.38 | 93.52 |
±0.52 | ±0.70 | ±0.92 | ±1.55 | ±1.82 | ±0.74 | ±0.25 | ±0.71 | ±0.43 | ±0.53 | |
61.22 | 61.43 | 63.79 | 65.31 | 64.39 | 65.22 | 66.10 | 79.57 | 82.88 | 89.93 | |
±2.30 | ±0.88 | ±1.19 | ±0.83 | ±0.89 | ±1.74 | ±2.14 | ±1.24 | ±0.50 | ±1.17 |
No. | Origin | PCA | LDA | LFDA | SGDA | GDA-SS | SLGDA | MPCA | G-LTDA | TSLGDA |
---|---|---|---|---|---|---|---|---|---|---|
1 | 98.07 | 98.73 | 98.98 | 99.44 | 99.49 | 99.39 | 99.61 | 98.00 | 96.94 | 99.92 |
±0.44 | ±0.80 | ±0.81 | ±0.10 | ±0.13 | ±0.14 | ±0.23 | ±0.98 | ±1.63 | ±0.15 | |
2 | 98.68 | 98.90 | 98.88 | 99.23 | 99.54 | 99.25 | 99.50 | 99.47 | 98.73 | 99.98 |
±0.38 | ±0.25 | ±0.29 | ±0.17 | ±0.28 | ±0.21 | ±0.37 | ±0.55 | ±0.81 | ±0.03 | |
3 | 96.20 | 96.85 | 95.13 | 99.16 | 99.28 | 99.59 | 99.57 | 98.17 | 93.65 | 99.97 |
±0.25 | ±0.61 | ±1.05 | ±0.25 | ±0.05 | ±0.15 | ±0.17 | ±0.19 | ±1.88 | ±0.06 | |
4 | 99.24 | 99.39 | 99.51 | 99.12 | 99.41 | 99.12 | 99.15 | 99.71 | 93.92 | 98.41 |
±0.08 | ±0.35 | ±0.18 | ±0.46 | ±0.13 | ±0.41 | ±0.30 | ±0.87 | ±3.27 | ±0.68 | |
5 | 94.55 | 93.45 | 95.63 | 98.79 | 98.64 | 98.42 | 99.03 | 97.95 | 96.50 | 98.87 |
±0.66 | ±1.85 | ±0.81 | ±0.09 | ±0.87 | ±0.62 | ±0.12 | ±1.28 | ±1.76 | ±1.33 | |
6 | 99.67 | 99.63 | 99.56 | 99.79 | 99.77 | 99.70 | 99.87 | 99.24 | 98.74 | 100 |
±0.16 | ±0.25 | ±0.11 | ±0.21 | ±0.05 | ±0.13 | ±0.13 | ±1.27 | ±0.52 | ±0.00 | |
7 | 98.87 | 99.40 | 99.34 | 99.43 | 99.44 | 99.64 | 99.64 | 98.18 | 96.21 | 99.99 |
±0.53 | ±0.11 | ±0.24 | ±0.24 | ±0.09 | ±0.30 | ±0.08 | ±0.35 | ±2.39 | ±0.02 | |
8 | 72.41 | 73.59 | 74.13 | 73.01 | 76.25 | 78.11 | 78.86 | 90.80 | 97.93 | 97.73 |
±2.03 | ±2.33 | ±0.49 | ±3.40 | ±4.74 | ±0.42 | ±1.50 | ±0.19 | ±0.60 | ±0.22 | |
9 | 97.82 | 97.91 | 98.79 | 98.92 | 99.10 | 98.78 | 99.65 | 99.54 | 98.71 | 100 |
±0.01 | ±0.88 | ±0.50 | ±0.18 | ±0.19 | ±1.46 | ±0.12 | ±0.07 | ±1.07 | ±0.00 | |
10 | 87.70 | 89.62 | 91.68 | 95.24 | 96.07 | 94.88 | 95.42 | 94.77 | 94.96 | 99.77 |
±4.21 | ±0.33 | ±1.05 | ±0.44 | ±1.28 | ±1.65 | ±1.12 | ±0.67 | ±2.25 | ±0.37 | |
11 | 93.82 | 96.85 | 93.47 | 95.03 | 96.49 | 95.61 | 97.29 | 94.58 | 90.58 | 100 |
±1.38 | ±1.92 | ±4.81 | ±2.28 | ±3.75 | ±2.83 | ±3.54 | ±1.72 | ±4.90 | ±0.00 | |
12 | 99.75 | 99.93 | 99.45 | 99.95 | 99.91 | 99.95 | 99.82 | 99.44 | 97.17 | 100 |
±0.16 | ±0.12 | ±0.46 | ±0.09 | ±0.06 | ±0.07 | ±0.17 | ±0.98 | ±1.53 | ±0.00 | |
13 | 97.29 | 96.14 | 97.14 | 98.36 | 97.84 | 97.94 | 98.59 | 99.74 | 95.01 | 100 |
±0.17 | ±1.56 | ±0.17 | ±0.73 | ±0.89 | ±0.08 | ±0.84 | ±0.28 | ±2.11 | ±0.00 | |
14 | 92.49 | 93.89 | 95.00 | 94.91 | 96.91 | 95.23 | 97.23 | 94.97 | 93.16 | 99.87 |
±1.53 | ±0.87 | ±0.98 | ±1.63 | ±1.39 | ±2.02 | ±0.25 | ±2.23 | ±5.57 | ±0.15 | |
15 | 62.04 | 58.38 | 64.37 | 69.36 | 67.05 | 67.51 | 66.31 | 88.63 | 96.22 | 96.77 |
±1.48 | ±2.25 | ±1.98 | ±4.08 | ±5.23 | ±1.65 | ±1.88 | ±0.62 | ±1.10 | ±1.47 | |
16 | 94.75 | 94.44 | 98.00 | 98.78 | 98.57 | 98.76 | 99.30 | 96.95 | 91.91 | 100 |
±1.41 | ±0.85 | ±0.58 | ±0.40 | ±0.31 | ±0.16 | ±0.46 | ±1.68 | ±7.30 | ±0.00 | |
OA | 86.97 | 86.96 | 88.23 | 89.34 | 89.86 | 90.13 | 90.43 | 95.27 | 96.73 | 98.98 |
±0.63 | ±0.49 | ±0.27 | ±0.79 | ±0.45 | ±0.42 | ±0.07 | ±0.04 | ±0.89 | ±0.15 | |
AA | 92.71 | 92.94 | 93.69 | 94.91 | 95.24 | 95.12 | 95.55 | 96.70 | 95.65 | 99.46 |
±0.58 | ±0.23 | ±0.40 | ±0.43 | ±0.38 | ±0.24 | ±0.18 | ±0.06 | ±1.41 | ±0.08 | |
85.50 | 85.48 | 86.90 | 88.15 | 89.02 | 88.33 | 89.34 | 94.74 | 96.35 | 98.86 | |
±0.70 | ±0.53 | ±0.30 | ±0.88 | ±0.49 | ±0.46 | ±0.08 | ±0.05 | ±0.99 | ±0.16 |
Methods | 6% | 8% | 10% | 12% | 14% |
---|---|---|---|---|---|
PCA | 1.23 | 1.49 | 1.86 | 2.35 | 2.54 |
LDA | 1.23 | 1.51 | 1.88 | 2.34 | 2.54 |
LFDA | 1.24 | 1.57 | 1.93 | 2.40 | 2.62 |
SGDA | 10.60 | 14.11 | 18.53 | 23.90 | 29.30 |
GDA-SS | 1.13 | 1.36 | 1.67 | 2.15 | 2.45 |
SLGDA | 3.24 | 4.81 | 7.20 | 10.19 | 13.09 |
MPCA | 115.94 | 150.00 | 161.06 | 182.37 | 203.94 |
G-LTDA | 30.96 | 40.24 | 49.86 | 62.41 | 74.83 |
TSLGDA | 183.91 | 225.06 | 281.19 | 349.44 | 456.84 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pan, L.; Li, H.-C.; Deng, Y.-J.; Zhang, F.; Chen, X.-D.; Du, Q. Hyperspectral Dimensionality Reduction by Tensor Sparse and Low-Rank Graph-Based Discriminant Analysis. Remote Sens. 2017, 9, 452. https://doi.org/10.3390/rs9050452
Pan L, Li H-C, Deng Y-J, Zhang F, Chen X-D, Du Q. Hyperspectral Dimensionality Reduction by Tensor Sparse and Low-Rank Graph-Based Discriminant Analysis. Remote Sensing. 2017; 9(5):452. https://doi.org/10.3390/rs9050452
Chicago/Turabian StylePan, Lei, Heng-Chao Li, Yang-Jun Deng, Fan Zhang, Xiang-Dong Chen, and Qian Du. 2017. "Hyperspectral Dimensionality Reduction by Tensor Sparse and Low-Rank Graph-Based Discriminant Analysis" Remote Sensing 9, no. 5: 452. https://doi.org/10.3390/rs9050452